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Abstract—This paper studies non-asymptotic model selection consider two fundamental measures of coherence among the
and recovery of sparse signals in high-dimensional, lineainfer-  (normalized) columngx; € C"} of X, namely*
ence problems. In contrast to the existing literature, the écus here

is on the general case of arbitrary design matrices and arbiary « Worst-Case Coherence(X) = ax |(xi,;)], and

nonzero entries of the signal. In this regard, it utilizes tw
easily computable measures of coherence—termed as the wers  « Average Coherence/(X) = p%l max |y (X, Xj)|.
case coherence and the average coherence—among the columns v g

of a design matrix to analyze a simple, model-order agnostic Roughly speaking, worst-case coherence—which seems to
one-step thresholding (OST) algorithm. In particular, the paper  haye been introduced in the related literature in [1]—is a

establishes that if the design matrix has reasonably small evst- similarity measure between the columns of a desian matre: t
case and average coherence then OST performs near-optimal y 9 :

model selection when either (i) the energy of any nonzero et Smaller the worst-case coherence, the less similar thenwiu
of the signal is close to the average signal energy per nonzer On the other hand, average coherence—which was introduced
entry or (i) the signal-to-noise ratio (SNR) in the measurement in a prequel to this paper [2]—is a measure of the spread of
system is not too high. Further, the paper shows that if the d&ign  the columns of a design matrix within thedimensional unit

matrix in addition has sufficiently small spectral norm then OST ball: the smaller the average coherence. the more spread out
also exactly recovers most sparse signals whose nonzero rigg ) 9 ! P

have approximately the same magnitude even if the number of the column vectors.

nonzero entries scales almost linearly with the number of ravs The first main contribution of this paper is that we make use
of the design matrix. Finally, the paper also presents varios of these two measures of coherence to propose and analyze
classes of random and deterministic design matrices that cabe model-order agnostic thresholds for thee-step thresholding

used together with OST to successfully carry out near-optiral . . .
model selection and recovery of sparse signals under certasNR (OST) algorithm (see Algorithm 1) for model selection and

regimes or for certain classes of signals. recovery of sparse signals. Specifically, we strengthetis t
paper our recent result concerning OST [2] by (i) character-
. INTRODUCTION izing in Section II-A both the exact and the partial model-

gFIection performance of OST in a non-asymptotic setting in
terms of, andv, and (ii) extending in Section II-B our results
on model selection using OST to (noiseless) recovery ofsgpar
signals by making use of a recent result by Tropp [3]. Two
key implications of the reported results in this regard ase a
follows. First, if the design matri¥ satisfiesy(X) =< n=1/2
andv(X) 2 n~! then OST—despite being computationally
imitive—performs near-optimal model selection whemeit
le)f the energy of any nonzero entry ¢fis not too far away
rom the average signal energy per nonzero enfyj3/k

Model selection and signal recovery are two of the mo
well-studied problems in the statistics and signal prdogss
literature. In this paper, we revisit these two problemstfer
case when the measured dgta C" is characterized by the
linear modely = X + n and the signals € C? satisfies
180 = >0 1 1qpy>0y < k < p. Here, X is ann x p
matrix called themeasuremerdr design matrixwhilen € C™
represents noise in the measurement system. In this satip,
assumption thats is “k-sparse” allows one to operate in th%

so-called “compressed” setting,< n < p, thereby enablin . . ) : .
b go<n <p y 9 or (i) the signal-to-noise ratiosfN\R) in the measurement

tasks that might be deemed prohibitive otherwise. system is not too high.Second, if X in addition satisfies

The primary objective of this paper is to consider th o
general case of arbitrary (random or deterministic) desi@r{(|2 > +/p/n then OST also exactly recovers méstparse

. . . . nimodal signals(defined as signals whose nonzero entries
matrices and arbitrary nonzero entries of the signal andlyst ave approximately the same magnitude) as long gs
in a compressed setting the problems of gidlynomial- PP y 9 § &sn.

time, model-order agnostic model selecti(also known as hThe tsepoqd rgalr:. COT;[IH?#“O” Oft this papr(]er 'S t;\st we
variable selectiorandsparsity pattern recovejyand (ii) low- characterize In-section € worst-case coherepeene

pomplexﬂy, model-order agnostic recovery of sparse S‘gna IHere, we assume without loss of generality thahas (approximately) unit
in the noiseless casén order to accomplish this task, Wey, norm columns. This is because deviations to this assumgiEn always
be accounted for by appropriately scaling the entrieg afistead.

This work was completed at Princeton University. Two of thehars, 2Recall ‘Big-O' notation: f(n) = O(g(n)) (alternatively, f(n) 3 g(n))
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part by NSF under grant DMS-0914892, by ONR under grant N@O01 f(n) = g(n)) if g(n) = O(f(n)), and f(n) = ©(g(n)) (alternatively,
08-1-1110, and by AFOSR under grants FA9550-09-1-0643 ak@b50- f(n) =< g(n)) if g(n) 3 f(n) 2 g(n). In addition, we sometimes use
09-1-0551. (E-mails{w. baj wa, robert.cal derbank}@luke. edu, the shorthand notatiorf(n) < g(n) (resp. f(n) < g(n)) to indicate that
si na@s. pri ncet on. edu) f(n) zZ g(n) (resp. f(n) 2 g(n)) modulo a logarithmic factor.



average coherence, and the spectral normiX||» of vari- contrast, [19] only studies the problem of Gaussian design
ous classes of random and deterministic design matrices.natrices whereas the most influential results reported 7, [1
particular, these results—in conjunction with the reswfs [18], [20] assume that the values of the nonzero entries of
Section [l—imply that OST can be used together with randogh are independent and statistically symmetric around zero;
design matrices, such as Gaussian matrices and (randdii)) In contrast to [17]-[20], we relate the model-selecti
partial Fourier matrices, as well as with deterministicigies performance of OST to two global parametersiof namely,
matrices, such as Alltop Gabor frames [4], [5], discretagch 1 and v, which are trivially computable in polynomial time;
matrices [6], [7], Delsarte—Goethals frames [8], and duaHB (iv) Similar to [17], [19], [20], the analysis in this papeaitbe
sensing matrices, to successfully carry out model selectiased to establish that OST achieves (asymptotically) starsi
and sparse-signal recovery under certaifR regimes or for model selection under certain conditions. However, thaltes
certain classes of signals as long/ag n. reported in this paper are completely non-asymptotic inneat
. , . (with explicit constants) and thereby shed light on the eite

A. Relationship to Previous Work which OST achieves consistent model selection; and (v) In

In the context of model selection in the compressed settirggdition to the exact model-selection performance of OST,
Mallow's C, selection procedure [9], Akaike’s informationwe also characterize in the paper its partial model-selacti
criterion [10], and their variants [11], [12] are known toperformance. In this regard, we establish that tméversal
perform well empirically as well as theoretically. Solvinghresholdproposed in Section II-A for OST guarante8sc
these model-selection procedures, however, is known to 8e= {i € {1,...,p} : [8;| > 0} with high probability and
an NP-hard problem. In order to overcome the computationaé quantify the cardinality of the estimat® On the other
intractability of [9]-[12], several methods based on convehand, both [18] and [19] study only exact model selection,
optimization have been proposed in recent years. Amomdereas [17], [20] study approximate (though not partial)
these proposed methods, the lasso [13] has arguably beconaglel selection only for Gaussian design matrices [17] and
the standard tool for model selection, which can be parthssuming Gaussian (resp. statistical) priors on the nonzer
attributed to the theoretical guarantees provided fordaked in entries of3 [20] (resp. [17]).
[14]-[16]. Despite the recent theoretical triumphs of thesb, Finally, in the context of sparse-signal recovery in the
however, it is still desirable to study alternative soln8oto compressed setting, there exists a large body of literdhate
the problem of polynomial-time, model-order agnostic modstudies this problem under the rubric @dmpressed sensing
selection in a compressed setting. This is because: (i)oLas$owever, low-complexity iterative algorithms such as rhatc
requires the minimum singular values of the submatrices iofg pursuit [22], subspace pursuit [23], CoSaMP [24], and
X corresponding to the true models to be bounded away fratarative hard thresholding [25], and combinatorial aitions
zero [14]-[16]. While this is a plausible condition for these based on group testing such as HHS pursuit [26] and Fourier
when one is interested in recoverifgit is arguable whether samplers [27], [28] have been shown to perform well either
this condition is necessary for the case of model selectiamly for some special classes of design matrices [26]-[28] o
(ii) The current literature on model selection using thestas for design matrices that satisfy thestricted isometry property
lacks guarantees beyorid - 1 ~! for the case of generic (RIP) [29]. Nevertheless, explicitly verifying that satisfies
design matrices and arbitrary nonzero entries. In pagiculthe RIP of orderk = p~! is computationally intractable;
given an arbitrary design matriX [14]-[16] do not provide in particular, since we have from the Welch bound [30] that
any guarantees beyorid \/n for even the simple case of y~! < \/n for p > 1, the guarantees provided in [23]-[25]
B € RE; and (iii) The computational complexity of the lassdor the case of generic design matrices at best hold only for
for generic design matrices tends to BEp® + np?) [17]. k-sparse signals wittk < /n. On the other hand, convex
This makes the lasso computationally demanding for largeptimization procedures such as basis pursuit [31] andlass
scale model-selection problems. are ill-suited for large-scale problems because of thein-co

Recently, a few researchers have raised somewhat simpatational complexity and because they too lack guarantees
concerns about the lasso and revisited the much older (and beyondk - .~ for the case of generic design matrices and
forgotten) method of thresholding for model selection A 7]arbitrary nonzero entries [16], [32]. In contrast, and wettied
[20], which has computational complexity 6f(np) only and by the need to have verifiable sufficient conditions for low-
which is known to be nearly optimal fgr x p orthonormal complexity algorithms and arbitrary values of the nonzero
design matrices [21]. Algorithmically, this makes our aggzh  entries of 3 even whenk = /n, we extend in Section 1I-B
to model selection similar to that of [17]-[20]. Nevertrede our results on model selection using OST and characteri&e th
the OST algorithm presented in this paper differs from [17]sparse-signal recovery performance of Algorithm 1 in terms
[20] in five key aspects: (i) Unlike [17]-[20], the OST algo-of three global parameters of: x(X), v(X), and||X|2. In
rithm presented in this paper is completely agnostic to tlparticular, a key implication of this part of the paper isttha
true model orderk; (ii) The results reported in this paperany design matrix that satisfieg X) =< n~/2, v(X) < n~ 1,
hold for arbitrary (random or deterministic) design masc and || X|» =< \/g can be used along with OST to recover
and do not assume any statistical prior on the values of thmstk-sparse unimodal signals with arbitrary nonzero entries
nonzero entries off even whenk scales linearly withn. In even whenk scales almost linearly with.



Algorithm 1 The One-Step Thresholding (OST) Algorithm for Model Sdtattand Recovery of Sparse Signals

Input: An n x p matrix X, a vectory € C", and a threshold > 0
Output: An estimateS C {1, ..., p} of the modelS and an estimatg € CP of the signalg

B+ 0 {Initialize}
f+— XHy {Form signal proxy
$\\<—{i€{1,...,p} S fil > A} {Select model via OSFT
Bs + (Xg)ly {Recover signal via least-squafes
II. MAIN RESULTS 5. Likewise, SNRy,i, is the ratio of the energy in the smallest
A. Model Selection Using One-Step Thresholding nonzero entry of3 and the averagmoiseenergy per nonzero

entry, whilesNR simply denotes the usual signal-to-noise ratio
in the system. We are now ready to state the first main result
of this paper that concerns the performance of OST in terms
of exact model selection.

We begin by reconsidering the modgl= X3 + n and
assume thatX is ann x p design matrix having units-
norm columns, € CP is a k-sparse signal||5]lo < k),
andk < n < p. Here, we allowX to be either a random or a
deterministic design matrix, while we taketo be a complex Theorem 1(Exact Model Selection Using OSTpuppose that
additive white Gaussian noise vector that is distributed a6 satisfies the coherence property and choose the threshold
CN(0,0°1). Finally, the main assumption that we make herg = max{%mm/m, ﬁ\/i}‘ /262 1ogp for any ¢ €
is that the true modef = {i € {1,...,p} : |5;| > 0} is a
uniformly randomk-subset of{1,...,p}. In other words, we
have a uniform prior on theupportof the signals.

Intuitively speaking, successful model selection recpihe
columns of the design matrix to becoherent In this paper,

we formulate this notion in terms of th@herence property El El v/2
n > max{2klogp, 2l 08P (CS ng) } (1)

Definition 1 (The Coherence PropertyAn n x p design SNRmin MAR

matrix X having unit/s-norm columns is said to obey the

coherence property if the following two conditions hold:  Here, the quantities,, c3 > 0 are defined as, = 16(1 —t) 2
0.1 " and c; = 800c3t—2, while the probability of failure is with

Nk and (CP-2 v(X)< /n fespect to the true model and the noise vectar.

(0,1). Then, if we writeu(X) as p = ¢;n~'/7 for some
c1 > 0 (which may depend op) andy € {0} U [2,00), the
OST algorithm (Algorithm 1) satisfieBr(S # S) < 6p~—!
providedp > 128 and the number of measurements satisfies

(CP-)  p(X) <

Note that the coherence property is superior to other measur The proof of this theorem is provided in [33, Theorem 1].
of incoherence such as thieepresentable conditioril4] in Note that the parameter in Theorem 1 can always be fixed
two key aspects. First, it does not require the singularasabf @ priori (sayt = 1/2) without affecting the scaling relation in

the submatrices ok to be bounded away from zero. Secondl). In practice, howevetr, should be chosen so as to reduce
it can be easily verified in polynomial time since it simpl)lhe total number of measurements needed to ensure sudcessfu
requires checking thatX "X — I||max < (200logp)~/2 and model selection. There are a few important remarks that need
[(XPX —D)1]|oo < (p— D)0 V2| XHX — || max. to be made at this point. First, it is easy to see that the m@gho
Below, we describe the implications of the coherendBreshold in Theorem 1 is completely agnostic to the model
property for both the exact and the partial model-selecti@der & and only requires knowledge of thenr and the
performance of OST. Before proceeding further, howevdtoise variance. Second, some of the bounds in the proof of
it is instructive to first define some fundamental quantitid$3, Theorem 1] and extensive simulations suggest that the

pertaining to the problem of model selection as follows: ~ absolute constant0 in the proposed threshold is somewhat
conservative and can be reduced through the use of more

Bmin = min |3, MAR = Bﬁgn , sophisticated analytical tools (this constant vasin [2]).
i€S 18115/ k Finally, while estimating the true model ordértends to be

SR - B2 SNR = 1813 harder than estimating th&\R and the noise variance? in
R[N3R E[[n|3] majority of the situations, it might be the case that estingat

k is easier in some applications. It is better in such situatio

: o . % work with a sorted variant of the OST algorithm that
of 5, while MAR—which is termed asninimum-to-average relies on knowledge of the model orderinstead and returns
ratio [19]—is the ratio of theenergy in the smallest nonzero 3 Y

: an estimateS corresponding to thé largest (in magnitude)
entry of § and theaverage signal ener er nonzero entfy . .
yot s ge sl 9y'p entries of f = XHy. We characterize the performance of

3Note that Gaussianity of is just a simplified assumption for the sake ofthiS algorithm—which we term asorted one-step thresholding

this exposition; in particular, the results presented teee generalizable to (SOST) algorithm—in terms of the following theorem.
other noise distributions as well as perturbations haviognded/s-norms.

In words, iy is the magnitude of the smallest nonzero ent



Theorem 2 (Exact Model Selection Using SOSTpHuppose integer for which the following inequality holds:

that X satisfies the coherence property and wrjiéX) as ,

w = cin~1/7 for somec; > 0 (which may depend op) and LAR); > max { chlng7 C3k102gp}, 3)
7 € {0}U[2, 00). Then the sorted variant of the OST algorithm n-SNR -

satisfiesPr(S # S) < 6p~! as long asp > 128 and

Here, ¢y > 0 is as defined in Theorem &; > 0 is defined as
)7/2} s = 800t~2, and the probability of failure is with respect to
- (2)

k1l k1l ;
R o8P (63 oep the true modelS and the noise vecton.

te(0,1) SNRmin MAR

n > min maX{leogp,
B ) _ The proof of this theorem is provided in [33, Theorem 5].
Here, the quantities,, c3 > 0 are as defined in Theorem 1. \ne conclude here by pointing out that no counterpart of

The proof of this theorem is just a slight variant of thd heorem 3 exists for the SOST algorithm since we can never

cerning OST and SOST. First, the computational complexify Recovery of Sparse Signals Using One-Step Thresholding
of SOST is comparable with that of OST since efficient sorting . . .
: . n this section, we extend our results on model selection

algorithms (such as heap sort) tend to have computatlonal X )

. Sing OST to model-order agnostic recoveryke$parse sig-
complexity ofO(plog p) only. Second, (1) and (2) suggest that o o -

nals. Note that we limit ourselves in this exposition to resry

knowledge of the true model ordérallows SOST to perform of k-sparse signals in a noiseless setting; extensions of these
better than OST in situations where the threshold parameter P 9 9:

is fixed a priori (cf. Theorem 1). In this sense, SOST shourSSUItS o reconstruction df-sparse signals in noisy settings

be preferred over OST for exact model selectwovidedone Would be reported in a sequel to this paper. Ir.] other words,
the measurement model that we study in herg is X 3 and
has accurate knowledge of the true model ordeiOn the

other hand, OST should be the algorithm of choice for modeﬂ:—;g(t)iilnlstr:gtrticeol/reurethrﬁ:dp;ria?_us'?lg OST;T;T theofs-
selection problems where it is difficult to obtain a reliablé P = U Eh Py P >

estimate of the true model order. is a uniformly randonk-subset of{1, ..., p}.

The final result that we present here concerns the partiall.mumvely speaking, the problem of sparse-signal recpve

model-selection performance of OST. Specifically, note thIS inherently more difficult _thgn th.e prob!em.of model sglec-
jon. We capture part of this intuitive notion in the follavg

our focus in this section has so far been on speC|fy|n”q Eerms of thestrong coherence propetty

conditions for the number of measurements that ensure exac
model selection. In many real-world applications, howevebefinition 2 (The Strong Coherence Propertydn n x p
the parameters of the problem are fixed and it is not alwaglesign matrixX having unit/s-norm columns is said to obey
possible to ensure that satisfies the aforementioned conthe strong coherence property if the following hold:
ditions. A natural question to ask then is whether the OST 1 L
algorithm completely fails in such circumstances or whethéSCP-1 1(X) < G0clozp and (SCP-2 v(X) < Nk

any guarantees can still be provided for its performance. We q b il he diff b h h
address this aspect of the OST algorithm in the following arlfl ©"der to better illustrate the difference between theeco

show that OST has the ability to identify the locations of th nce property an<(jj trr:e strong cohﬁrence propelrty, note Lh?t
nonzero entries off whose energies are greater than both e worst-case and the average coherence results reporte

noise power and the average signal energy per nonzero enﬁgu;&an de_S|gn rr]natm;]es in Section Ill-A S.T]O\r’]v. t:at G;“E.Sl'a
In order to make this notion mathematically precise, we firgpatrices satisfy the coherence property with high proktgbi

2
define them-th largest-to-average ratigLAR,,) of 3 as the @S [0ng asu Z (logp)”. The same results, however, suggest
ratio of theenergy in them-th largest nonzero entry of and that Gaussian matrices satisfy the strong coherence gyoper

the average signal energy per nonzero entrgofhat is, with high probability as long as - (logp)*. In other words,
there are scaling regimes in which Gaussian design matrices

LAR.. = 1B(m) 2 satisfy the coherence property but are not guaranteedisfysat
"8I3/ K the strong coherence property. We are now ready to state the

wheref,,,) denotes then-th largest nonzero entry gf (note main result of this section.

that MAR = LARy). We are now ready to specify the partialTheorem 4 (Sparse-Signal Recovery Using OST3uppose
model-selection performance of the OST algorithm. that X satisfies the strong coherence property anchlet 128.

21lo
Theorem 3 (Partial Model Selection Using OSTBuppose Next, choose the threshokj: 10plyll2\/ =257 - Then the
that X satisfies the coherence property and fet> 128. OST algorithm satisfieBr(3 # 3) < 6p—* provided
Next, fix a parametet € (0,1) and choose the threshold _2
. p I~ “MAR
k< mln{ }

A= max{%lOus/n - SNR, ﬁ\/?}\/chQ logp. Then, under 02||X||210gp’ Zlogp
the assumption that < n/(2logp), the OST algorithm Az 5

(Algorithm 1) guarantees with probability exceeding 6p—' Here, the probability of failure is only with respect to thae
thatS ¢ S and \S — S] < (k— M), where M is the largest modelS, while ¢4, c; are defined ag, = 37e and ¢; = 43.

(4)



The proof of this theorem is provided in [33, Theorem 6uch thatU"U = pI. Next, populate? by samplingn times
We conclude this section by pointing out that if one doesith replacement from the sét, ..., p} and constructX by
have knowledge of the true model order then it can be showallecting the rows of/ corresponding to the indices in and
through a slight variation of the proof of [33, Theorem 6]tthanormalizing the resulting matrix by//n. Then X satisfies
SOST (the sorted variant of the OST) can also recover spafse /12logp ii 1 _p-n
signals with high probability—the only difference in thatse (ﬁ r/f(X)bSb'l' § ?jr_]d 0 ;(fi) = max{i’*l’ "(Pfl)}
being thatcs in Theorem 4 gets replaced with = 1/800. with probability exceeding — 2p™.

In this lemma, the worst-case coherence bound follows by
noting that the columns off form a group under pointwise
multiplication and then making use of the complex Hoeffding

Section Il establishes that design matrices with smaIIWor$nequa|ity [35]. On the other hand, the average coherence
case coherence (and consequently small average coheregggjession in it follows from the definition of the average
and small spectral norm are particularly well-suited ford®o coherence and the fact thiis in the null space of any partial
selection and recovery of sparse signals using OST (cf. Thesurier matrix that does not include the first rowtof Finally,
orems 1-4). Further, since the Welch bound [30] dictates thbte that the fact that sampling in Lemma 2 is carried out with
p z n~t/? for p > 1 and since we have from elementaryeplacement makes it difficult to specify the spectral norm
linear algebra thaf X ||> > \/p/n, we are in particular inter- of X In practice, however, one would not construct partial
ested in design matrices that approximately satisfy théngca Fourier matrices with identical rows and the spectral nofm o
relationsy(X) =< n~'/2, v(X) 30!, and|| X2 < \/p/n. partial Fourier matrices in such cases would p& for the

In the following, we provide some examples of both randogimple reason that the rows 6f are mutually orthogonal.
and deterministic design matrices that are nearly-optimal

terms of these requisite conditions (also, see Table | for & Detérministic Design Matrices
overview of the results reported in here). Having described the geometry of Gaussian matrices and
. . partial Fourier matrices, we now show that there in fact
A. Random Design Matrices exist many classes of deterministic design matrices that ar
Random matrices are perhaps the most well-studied desiiite similar to these random design matrices in terms of the
matrices in the literature on high-dimensional, lineaeiehce geometric measures pf v, and|| X ||». This is in stark contrast
problems. This is in part due to the fact that geometrig the best known results for the RIP of deterministic matri-
concepts such as the irrepresentable condition [14] and #& and has important implications from an implementation
restricted isometry property (RIP) [29] have, to date, begfewpoint since multiplications with the deterministic triees
shown to hold near-optimally only for the case of randomescribed below (and their adjoints) can be efficientlyiedrr
matrices. The following two lemmas specify that traditibnaut using algorithms such as thest Fourier transform(FFT)
random design matrices such as Gaussian matrices and (et thefast Hadamard transforngFHT).
dom) partial Fourier matrices also tend to be near-optimal i 1) Geometry of Alltop Gabor Frame&abor frames fof"
terms of the geometric measuresgfv, and/or|| X|[>. constitute an important class of frames, which are contglic

Lemma 1 (Geometry of Gaussian Matriced)et X be ann x from time- and frequency-shifts of a nonzero seed vector in
p design matrix with independent and identically distriluiteC " SPecifically, letg € C* be a unit-norm seed vector and
(.i.d.) A’(0,1/n) entries and let: > 60logp. Then, we have defineT to be ann x n time-shift matrixthat is generated

- N - from ¢ as follows
that X satisfies (i)(X) < /12182 (i) 1(xX) < VI5ToER, g

n

Ill. NEAR-OPTIMAL DESIGNMATRICES FORONE-STEP
THRESHOLDING. SOME EXAMPLES

and (iii) || X ]2 < 1+ 2,/Z with probability exceeding — gr 9n 92

2p ' +p 2 e P/2)8 . ;
o T(g)= | ¥ (5)

Note that the worst-case coherence bound in this lemma : : In

follows from bounds on the inner product of independent Gn Gn-1 0

Gaussian vectors (see, e.g., [33, Appendix A]) and a simpl ) . . .
union bound argument, the proof of the average cohereﬁ’&?ere we writeT" = 7;(9) to emphasize thal’ is a matrix-
bound is provided in [33, Lemma 2], and the spectral noriff ued f““°“°r? onC*. _Next,_ de_note the collection o
bound follows from [34, (2.3)]. It is worth pointing out hereSamples of ‘?‘ discrete smqsmd with fTrequemy%,m € Zn

that similar results can also be obtained for sub-Gauss@dwm = [¢/27=0 ... /27w (D] Finally, define the

design matrices using standard concentration inequakiiel corresponding: x n diagonalmodulation matricesis W, =
[34, Proposition 2.4]. diagw,,). Then the Gabor frame generated frgris ann x n?

: . i block matrix of the form
Lemma 2 (Geometry of Partial Fourier Matrices)et U be

a p-point (non-normalized) discrete Fourier transform matri X =[WT WiT ... W,T|. (6)

“Note that the results (and the definition of the coherencepgty) In words, C_Olumns qf the Gabor fra;mX are given bY
presented earlier remain valid,if X) is replaced with an upperbound X). downward circular shifts and modulations (frequency shift



TABLE |
COMPARISONSBETWEENDIFFERENTCLASSES OFRANDOM AND DETERMINISTICDESIGNMATRICES

Design Matrices” D | w(X) | v(X) | [1X])2 | Randomnessl Complexity |

Gaussian Matrices - @) ( 105;)) @) <7vl°,f3p> €] ( %) © (np) O (np)
Partial Fourier Matrices - @) <1/ 1°§”> @) (max{%, =D ) - O (n) O (plogp)
Alltop Gabor Frames n? % 0 (1) \/g - O (plogp)
Discrete-Chirp Matrices| n? ﬁ Ty \/% - O (plogp)

n2+7‘ o 1
_ S P -
Delsarte—Goethals Frames (0 << log n71> O (\/H) P L O (plogp)
=TS 7

Dual BCH Sensing Matrices n? 2 eyl L - O (plogp)

of the seed vectog. Therefore, Gabor frames are completelyafarpour [8]. Specifically, take: € Z to be an odd number
specified by a total ok numbers that describe the seed vect@nd r € Z, to be smaller thar’!. Next, useDG(m,r)

and matrix—vector multiplication& 3 and X ™y can be carried to denote the Delsarte—Goethals set of binary symmetric
out using the FFT inD(plogp) time. The following lemma matrices, as described in [37]. Then, given= 2™ and
characterizes the geometry of one specific class of Gahor= n2("+)™ then x p DG frame X is constructed from
frames, termed as Alltop Gabor frames [4], [5]. DG(m,r) in the following way. Index the rows oX by binary
Lemma 3. Letn > 5 be a prime number and construct thevectors;: € 3 and mdex(TtE(le)goIL_Jmns ak’ by pa_lrs(R b.)’
Alltop seed vectoy € C" as follows where P ranges over alR binary symmetric matrices

of DG(m,r) andb ranges over all members &%'. Then the

o Ly 37T . .

g= {\/iﬁeﬂ”% ﬁeﬂ”% Lnegzﬂ%} . (7) entries ofX are glven1 by
Then then x n? Gabor frameX generated frony satisfies zpp(2) = NG QMUdR)+2WHD) (2, P2) +2(2,b) 9)
() u(X) = ==, (i) »(X) < =, and (i) | X[ = /L.

Here, the worst-case coherence expression follows from [#fh€réz = v—1, dp denotes the principal diagonal of the
the spectral norm expression is due to [36], while the prdof 817X P, andwt(v) denotes the hamming weight (the number
the average coherence bound is provided in [33, Theorem 91.N0nZero entries) of a given vector It is easy to see from

2) Geometry of Discrete-Chirp MatricesDiscrete-chirp this descrlpu_c_)n that (i) DG frames are unions of orthondrma
matrices are: x n? matrices that are constructed by collectin§@Ses and (i) rows of DG frames correspond to Kronecker

all possible chirp signals into columns [6]. Specifically,&= Product of each row of am x n Hadamard matrix with the
length chirp signal for any prime takes the form corresponding row of an x 2("+*1)™ matrix whose entries are

1 ) given by {+(*7#)}, where P and range over all the possible
Xmr(0) = —=I?T W 2T =0, ,n—1 (8) choices. This implies that the multiplication§3 and X"y in
Vn the case of DG frames can be carried out using the FHT in
where m is the base frequency and is the chirp rate of O(plogp) time. Finally, the following lemma borrows results
the signal, and the columns of the x n? discrete-chirp from [8] to characterize the geometry of DG frames.
matrix X are then? distinct chirp signals corresponding to
then? possible pairgm,r) € Z,, x Z,,. The following lemma
characterizes the geometry of discrete-chirp matrices.

Lemma 5. Let X be ann x n?™" Delsarte—Goethals frame
obtained fromDG (m, r) set for some odeh. ThenX satisfies

(i) p(X) < 22, (i) v(X) = A5, and (i) | X2 = /5.
Lemma 4. Let X be ann x n? discrete-chirp matrix for any ) )
primen. ThenX satisfies (iy(X) = % (i) v(X) = ;27—_711 ’ 4).Geomet.ry of Duall BCH Sensing Matnce@ue}l BCH .
B " ™r=1)"  sensing matrices constitute another class of design reatric

and (i) || = \/E that corresponds to exponentiating the codewords of an alge
Here, the worst-case coherence bound and the spectral nbraic code. Specifically, take: € Z to be an odd number
expression follow from [7], while the average coherencand useBC H (m,2) to denote the extendéderror correcting,
expression follows from the fact tha&t" X1 = 21. Finally, binary BCH code of lengtm = 2™ [38]. Then the dual of
note that the structure of the discrete-chirp mafXiximplies BCH (m,2) is a code of length and dimensior2m + 1 that
that the multiplicationsY 5 and Xy can be carried out using is the union ofn cosets of the first-order Reed—Muller code
the FFT inO(plogp) time in this case also. RM (1, m) of dimensionm + 1; see [35] for further details.

3) Geometry of Delsarte—Goethals Framekhe Delsarte— The important thing to point out here is that exponentiating
Goethals (DG) frames is a class of design matrices that taslewords in the dual d8C H (m, 2) and scaling the resulting
been recently introduced in the literature by Calderbard an x n? matrix X by 1/4/n gives a union of, orthonormal ba-



sis. This can be seen by noting that exponentiating codesvowde have established here thmbdel selection is inherently an

in RM (1, m) gives Walsh basis vectors (and their negativesasier problem than sparse-signal reconstruction

which we discard in here). We also note because of the veryFinally, it is worth comparing the model-selection perfor-
same reason that the multiplicatioAs3 and X"y in the case mance of OST with that of the lasso for the cases when the
of dual BCH sensing matrices can also be carried out using fagso does succeed. In this regard, the most general result
FHT in O(plogp) time. The following lemma characterizesfor model selection using the lasso states thaXifis close

the geometry of duaBCH (m,2) sensing matrices (a proofto being a tight frame in the sense thak|, ~ +/p/n

of this lemma would be provided in a sequel to this paper)then the lasso identifies the correct model with probability

Lemma 6. Let X be ann x n? dual BCH sensing matrix exce_edingl - O(p™') as '0,”9 as (i) the honzero entries@f
obtained from the dual aBCH (m, 2) for some oddn. Then are independent and statistically symmetric around zéijo, (

k =< n/logp, and (iii) MAR = X182 [16 Theorem 1.3]. On
the matrix X satisfies (i)u(X) = @ (i) v(X) = b2 ~ n/logp, and (i) [ ]

~ n-SNR
n(p—1)' the other hand, assume now that the design matrivhas

and (iii) | X |2 = /E. w(X) = n=2 and v(X) = n~! (Section Il shows that
there indeed exist many such matrices). We can then make
use of the relatiorsNR,,;, = SNR - MAR to conclude from

We conclude this paper by discussing our results in lightheorem 1 (resp. Theorem 2) that OST (resp. SOST) identifies
of some of the results reported in previous works on modeile correct model with probability exceeding- O(p~!) as

selection and recovery of sparse signals. long ask 3 n/logp and MAR 5 maxq o=, 1 klogp  This
~ ~ n

suggests that, even for the cases in which the lasso sugceeds

) ) _ _ ) OST can be guaranteed to perform as well as the lasso in
1) Gaussian Design MatricesGaussian matrices are persiiyations where either the energy of any nonzero entrg of

haps the most widely assumed design matrices in the modglnot too far away from the average enefgyr = ©(1)) or

selection literature. In order to specialize our result&SaUS-  the snr is not too high(sNr = O(1)). Equally importantly,

sian design matrices, recall from Lemma 1 that Gaussian mgq in contrast to the lasso results reported in [16], OST is

trices satisfy the coherence property with high probabé$ gyaranteed to attain this performarizespectiveof the values
long asn = (log p)2. Further, notice the following relation be-of the nonzero entries of the signal

tweensNR,;, andSNR andMAR: SNRy,in, = SNR-MAR. The- At . .
orem 1 (resp. Theorem 2) then implies that OST (resp. SOST33) Near-Optimality of OSTWe have concluded up to this

. . i . . point that—under certain conditions omAR and SNR—the
correctly identifies the exact model with probability exdieg OST algorithm for model selection can perform as well as

1—0O(p™') as long asn = maX{L s var [K108P.  the lasso and it performs near-optimally for Gaussian desig
In particular, this suggests that if either(8) = ©(1) or matrices. We conclude this discussion by arguing that OST
SNR = O(1) then OST leads to successful model selectign fact performs near-optimal model selection fory design
with high probability provided: L max < 1, m}klogp. matrix that satisfieg(X) = n~/2 andv(X) 2 n~! as long

On the other hand, one of the best known results for modi MAR = ©(1) or SNR = O(1). In order to accomplish this,
selection using the maximum likelihood algorithm requirege first recall the thresholding results obtained by Donoho
thatn = max { 22e=K) 1150 (5 /k) | [39] (also see [19]). @nd Johnstone [21]—which form the basis of ideas such as

SNR-MAR ’ s .
This establishes that OST performs near-optimally for hod&€ Wavelet denoising—for the case of orthonormal design
matrices. Specifically, it was shown in [21] that ¥ is an

selection using Gaussian design matrices provided (istre
1on UsIng =auss! 9 I provi (i3 g{,thonormal basis then thresholding the entriesXofy at

in the measurement system is not too high or (ii) the ener 5 Its | le-lik f in th
of any nonzero entry of is not too far away from the average’ ~ V¢ log p results in oracle-like performance in the sense

energy|3|12/k andk scales sublinearly with. that one recovers (with high probability) the_locations of a
2) Lasso versus OSTHistorically, OST is preferred overthe nonzero.entne.s of that are aboye the noise floor.

the lasso for model selection because of its low computation NOw the first thing to note regarding the results presented

complexity. The results reported earlier, however, briaghf €arlier is the intuitively pleasing nature of the threshptd-

another important aspect of OST (also see [LQBT can po;ed for model selecnoq using OST. Spemﬂcally, assur_aleth

lead to successful model selection even when the lasso faiisiS @n orthonormal matrix and notice that, sindeX’) = 01in

Specifically, note that the lasso solution is not even guasah this case, the threshold < max {uvn - SNR, 1}\/ o?logp

to be unique if the minimum singular value of the submatrigroposed earlier reduces to the threshold proposed in [21]

of X corresponding to the true model is not bounded awand Theorem 3 guarantees that thresholding recovers (with

from zero (see, e.g., [14], [15]). On the other hand, OST dokggh probability) the locations of all the nonzero entriés3o

not require this condition for model selection. This is intpathat are above the noise floarar,, - % = meS.

due to the fact that model selection using the lasso is in fadbw consider instead design matrices that are not neclssari

a byproduct of signal reconstruction, whereas the OST tesubrthonormal but which have(X) < n="/2 andv(X) 2 n~!

for model selection do not guarantee signal reconstructi¢ef. Table I). Then we have from Theorem 3 that OST identifies

without imposing additional constraints dn. In other words, (with high probability) the locations of the nonzero endrie

IV. DISCUSSION

A. Model Selection Using One-Step Thresholding
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