
Revisiting Model Selection and Recovery of Sparse
Signals Using One-Step Thresholding

Waheed U. Bajwa, Robert Calderbank, and Sina Jafarpour

Abstract—This paper studies non-asymptotic model selection
and recovery of sparse signals in high-dimensional, linearinfer-
ence problems. In contrast to the existing literature, the focus here
is on the general case of arbitrary design matrices and arbitrary
nonzero entries of the signal. In this regard, it utilizes two
easily computable measures of coherence—termed as the worst-
case coherence and the average coherence—among the columns
of a design matrix to analyze a simple, model-order agnostic
one-step thresholding (OST) algorithm. In particular, the paper
establishes that if the design matrix has reasonably small worst-
case and average coherence then OST performs near-optimal
model selection when either (i) the energy of any nonzero entry
of the signal is close to the average signal energy per nonzero
entry or (ii) the signal-to-noise ratio (SNR) in the measurement
system is not too high. Further, the paper shows that if the design
matrix in addition has sufficiently small spectral norm then OST
also exactly recovers most sparse signals whose nonzero entries
have approximately the same magnitude even if the number of
nonzero entries scales almost linearly with the number of rows
of the design matrix. Finally, the paper also presents various
classes of random and deterministic design matrices that can be
used together with OST to successfully carry out near-optimal
model selection and recovery of sparse signals under certain SNR
regimes or for certain classes of signals.

I. I NTRODUCTION

Model selection and signal recovery are two of the most
well-studied problems in the statistics and signal processing
literature. In this paper, we revisit these two problems forthe
case when the measured datay ∈ Cn is characterized by the
linear modely = Xβ + η and the signalβ ∈ Cp satisfies
‖β‖0 .

=
∑p

i=1 1{|βi|>0} ≤ k � p. Here, X is an n × p
matrix called themeasurementor design matrix, while η ∈ Cn

represents noise in the measurement system. In this setup, the
assumption thatβ is “k-sparse” allows one to operate in the
so-called “compressed” setting,k < n� p, thereby enabling
tasks that might be deemed prohibitive otherwise.

The primary objective of this paper is to consider the
general case of arbitrary (random or deterministic) design
matrices and arbitrary nonzero entries of the signal and study
in a compressed setting the problems of (i)polynomial-
time, model-order agnostic model selection(also known as
variable selectionandsparsity pattern recovery) and (ii) low-
complexity, model-order agnostic recovery of sparse signals
in the noiseless case. In order to accomplish this task, we
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consider two fundamental measures of coherence among the
(normalized) columns{xi ∈ Cn} of X , namely,1

• Worst-Case Coherence: µ(X)
.
= max

i,j:i6=j

∣∣〈xi, xj〉
∣∣, and

• Average Coherence: ν(X)
.
= 1

p−1 max
i

∣∣∣∣
∑

j:j 6=i

〈xi, xj〉
∣∣∣∣.

Roughly speaking, worst-case coherence—which seems to
have been introduced in the related literature in [1]—is a
similarity measure between the columns of a design matrix: the
smaller the worst-case coherence, the less similar the columns.
On the other hand, average coherence—which was introduced
in a prequel to this paper [2]—is a measure of the spread of
the columns of a design matrix within then-dimensional unit
ball: the smaller the average coherence, the more spread out
the column vectors.

The first main contribution of this paper is that we make use
of these two measures of coherence to propose and analyze
model-order agnostic thresholds for theone-step thresholding
(OST) algorithm (see Algorithm 1) for model selection and
recovery of sparse signals. Specifically, we strengthen in this
paper our recent result concerning OST [2] by (i) character-
izing in Section II-A both the exact and the partial model-
selection performance of OST in a non-asymptotic setting in
terms ofµ andν, and (ii) extending in Section II-B our results
on model selection using OST to (noiseless) recovery of sparse
signals by making use of a recent result by Tropp [3]. Two
key implications of the reported results in this regard are as
follows. First, if the design matrixX satisfiesµ(X) � n−1/2

and ν(X) - n−1 then OST—despite being computationally
primitive—performs near-optimal model selection when either
(i) the energy of any nonzero entry ofβ is not too far away
from the average signal energy per nonzero entry‖β‖22/k
or (ii) the signal-to-noise ratio (SNR) in the measurement
system is not too high.2 Second, ifX in addition satisfies
‖X‖2 �

√
p/n then OST also exactly recovers mostk-sparse

unimodal signals(defined as signals whose nonzero entries
have approximately the same magnitude) as long ask w n.

The second main contribution of this paper is that we
characterize in Section III the worst-case coherenceµ, the

1Here, we assume without loss of generality thatX has (approximately) unit
`2-norm columns. This is because deviations to this assumption can always
be accounted for by appropriately scaling the entries ofβ instead.

2Recall “Big–O” notation: f(n) = O(g(n)) (alternatively,f(n) - g(n))
if ∃ co > 0, no : ∀ n ≥ no, f(n) ≤ cog(n), f(n) = Ω(g(n)) (alternatively,
f(n) % g(n)) if g(n) = O(f(n)), and f(n) = Θ(g(n)) (alternatively,
f(n) � g(n)) if g(n) - f(n) - g(n). In addition, we sometimes use
the shorthand notationf(n) v g(n) (resp.f(n) w g(n)) to indicate that
f(n) % g(n) (resp.f(n) - g(n)) modulo a logarithmic factor.



average coherenceν, and the spectral norm‖X‖2 of vari-
ous classes of random and deterministic design matrices. In
particular, these results—in conjunction with the resultsof
Section II—imply that OST can be used together with random
design matrices, such as Gaussian matrices and (random)
partial Fourier matrices, as well as with deterministic design
matrices, such as Alltop Gabor frames [4], [5], discrete-chirp
matrices [6], [7], Delsarte–Goethals frames [8], and dual BCH
sensing matrices, to successfully carry out model selection
and sparse-signal recovery under certainSNR regimes or for
certain classes of signals as long ask w n.

A. Relationship to Previous Work

In the context of model selection in the compressed setting,
Mallow’s Cp selection procedure [9], Akaike’s information
criterion [10], and their variants [11], [12] are known to
perform well empirically as well as theoretically. Solving
these model-selection procedures, however, is known to be
an NP-hard problem. In order to overcome the computational
intractability of [9]–[12], several methods based on convex
optimization have been proposed in recent years. Among
these proposed methods, the lasso [13] has arguably become
the standard tool for model selection, which can be partly
attributed to the theoretical guarantees provided for the lasso in
[14]–[16]. Despite the recent theoretical triumphs of the lasso,
however, it is still desirable to study alternative solutions to
the problem of polynomial-time, model-order agnostic model
selection in a compressed setting. This is because: (i) Lasso
requires the minimum singular values of the submatrices of
X corresponding to the true models to be bounded away from
zero [14]–[16]. While this is a plausible condition for the case
when one is interested in recoveringβ, it is arguable whether
this condition is necessary for the case of model selection;
(ii) The current literature on model selection using the lasso
lacks guarantees beyondk % µ−1 for the case of generic
design matrices and arbitrary nonzero entries. In particular,
given an arbitrary design matrixX [14]–[16] do not provide
any guarantees beyondk %

√
n for even the simple case of

β ∈ Rp
+; and (iii) The computational complexity of the lasso

for generic design matrices tends to beO(p3 + np2) [17].
This makes the lasso computationally demanding for large-
scale model-selection problems.

Recently, a few researchers have raised somewhat similar
concerns about the lasso and revisited the much older (and oft-
forgotten) method of thresholding for model selection [17]–
[20], which has computational complexity ofO(np) only and
which is known to be nearly optimal forp × p orthonormal
design matrices [21]. Algorithmically, this makes our approach
to model selection similar to that of [17]–[20]. Nevertheless,
the OST algorithm presented in this paper differs from [17]–
[20] in five key aspects: (i) Unlike [17]–[20], the OST algo-
rithm presented in this paper is completely agnostic to the
true model orderk; (ii) The results reported in this paper
hold for arbitrary (random or deterministic) design matrices
and do not assume any statistical prior on the values of the
nonzero entries ofβ even whenk scales linearly withn. In

contrast, [19] only studies the problem of Gaussian design
matrices whereas the most influential results reported in [17],
[18], [20] assume that the values of the nonzero entries of
β are independent and statistically symmetric around zero;
(iii) In contrast to [17]–[20], we relate the model-selection
performance of OST to two global parameters ofX , namely,
µ and ν, which are trivially computable in polynomial time;
(iv) Similar to [17], [19], [20], the analysis in this paper can be
used to establish that OST achieves (asymptotically) consistent
model selection under certain conditions. However, the results
reported in this paper are completely non-asymptotic in nature
(with explicit constants) and thereby shed light on the rateat
which OST achieves consistent model selection; and (v) In
addition to the exact model-selection performance of OST,
we also characterize in the paper its partial model-selection
performance. In this regard, we establish that theuniversal
thresholdproposed in Section II-A for OST guaranteesŜ ⊂
S .

= {i ∈ {1, . . . , p} : |βi| > 0} with high probability and
we quantify the cardinality of the estimatêS. On the other
hand, both [18] and [19] study only exact model selection,
whereas [17], [20] study approximate (though not partial)
model selection only for Gaussian design matrices [17] and
assuming Gaussian (resp. statistical) priors on the nonzero
entries ofβ [20] (resp. [17]).

Finally, in the context of sparse-signal recovery in the
compressed setting, there exists a large body of literaturethat
studies this problem under the rubric ofcompressed sensing.
However, low-complexity iterative algorithms such as match-
ing pursuit [22], subspace pursuit [23], CoSaMP [24], and
iterative hard thresholding [25], and combinatorial algorithms
based on group testing such as HHS pursuit [26] and Fourier
samplers [27], [28] have been shown to perform well either
only for some special classes of design matrices [26]–[28] or
for design matrices that satisfy therestricted isometry property
(RIP) [29]. Nevertheless, explicitly verifying thatX satisfies
the RIP of orderk % µ−1 is computationally intractable;
in particular, since we have from the Welch bound [30] that
µ−1 -

√
n for p � 1, the guarantees provided in [23]–[25]

for the case of generic design matrices at best hold only for
k-sparse signals withk -

√
n. On the other hand, convex

optimization procedures such as basis pursuit [31] and lasso
are ill-suited for large-scale problems because of their com-
putational complexity and because they too lack guarantees
beyondk % µ−1 for the case of generic design matrices and
arbitrary nonzero entries [16], [32]. In contrast, and motivated
by the need to have verifiable sufficient conditions for low-
complexity algorithms and arbitrary values of the nonzero
entries ofβ even whenk %

√
n, we extend in Section II-B

our results on model selection using OST and characterize the
sparse-signal recovery performance of Algorithm 1 in terms
of three global parameters ofX : µ(X), ν(X), and‖X‖2. In
particular, a key implication of this part of the paper is that
any design matrix that satisfiesµ(X) � n−1/2, ν(X) - n−1,
and ‖X‖2 �

√
p
n can be used along with OST to recover

mostk-sparse unimodal signals with arbitrary nonzero entries
even whenk scales almost linearly withn.



Algorithm 1 The One-Step Thresholding (OST) Algorithm for Model Selection and Recovery of Sparse Signals
Input: An n× p matrix X , a vectory ∈ Cn, and a thresholdλ > 0
Output: An estimateŜ ⊂ {1, . . . , p} of the modelS and an estimatêβ ∈ Cp of the signalβ

β̂ ← 0 {Initialize}
f ← XHy {Form signal proxy}
Ŝ ← {i ∈ {1, . . . , p} : |fi| > λ} {Select model via OST}
β̂Ŝ ← (XŜ)

†y {Recover signal via least-squares}

II. M AIN RESULTS

A. Model Selection Using One-Step Thresholding

We begin by reconsidering the modely = Xβ + η and
assume thatX is an n × p design matrix having unit̀ 2-
norm columns,β ∈ Cp is a k-sparse signal(‖β‖0 ≤ k),
andk < n ≤ p. Here, we allowX to be either a random or a
deterministic design matrix, while we takeη to be a complex
additive white Gaussian noise vector that is distributed as
CN (0, σ2I).3 Finally, the main assumption that we make here
is that the true modelS .

= {i ∈ {1, . . . , p} : |βi| > 0} is a
uniformly randomk-subset of{1, . . . , p}. In other words, we
have a uniform prior on thesupportof the signalβ.

Intuitively speaking, successful model selection requires the
columns of the design matrix to beincoherent. In this paper,
we formulate this notion in terms of thecoherence property.

Definition 1 (The Coherence Property). An n × p design
matrix X having unit `2-norm columns is said to obey the
coherence property if the following two conditions hold:

(CP-1) µ(X) ≤ 0.1√
2 log p

, and (CP-2) ν(X) ≤ µ√
n
.

Note that the coherence property is superior to other measures
of incoherence such as theirrepresentable condition[14] in
two key aspects. First, it does not require the singular values of
the submatrices ofX to be bounded away from zero. Second,
it can be easily verified in polynomial time since it simply
requires checking that‖XHX− I‖max ≤ (200 logp)−1/2 and
‖(XHX − I)1‖∞ ≤ (p− 1)n−1/2‖XHX − I‖max.

Below, we describe the implications of the coherence
property for both the exact and the partial model-selection
performance of OST. Before proceeding further, however,
it is instructive to first define some fundamental quantities
pertaining to the problem of model selection as follows:

βmin
.
= min

i∈S
|βi| , MAR

.
=

β2
min

‖β‖22/k
,

SNRmin
.
=

β2
min

E[‖η‖22]/k
, SNR

.
=
‖β‖22

E[‖η‖22]
.

In words,βmin is the magnitude of the smallest nonzero entry
of β, while MAR—which is termed asminimum-to-average
ratio [19]—is the ratio of theenergy in the smallest nonzero
entryof β and theaverage signal energy per nonzero entryof

3Note that Gaussianity ofη is just a simplified assumption for the sake of
this exposition; in particular, the results presented hereare generalizable to
other noise distributions as well as perturbations having bounded`2-norms.

β. Likewise,SNRmin is the ratio of the energy in the smallest
nonzero entry ofβ and the averagenoiseenergy per nonzero
entry, whileSNR simply denotes the usual signal-to-noise ratio
in the system. We are now ready to state the first main result
of this paper that concerns the performance of OST in terms
of exact model selection.

Theorem 1(Exact Model Selection Using OST). Suppose that
X satisfies the coherence property and choose the threshold
λ = max

{
1
t 10µ

√
n · SNR, 1

1−t

√
2
}√

2σ2 log p for any t ∈
(0, 1). Then, if we writeµ(X) as µ = c1n

−1/γ for some
c1 > 0 (which may depend onp) and γ ∈ {0} ∪ [2,∞), the
OST algorithm (Algorithm 1) satisfiesPr(Ŝ 6= S) ≤ 6p−1

providedp ≥ 128 and the number of measurements satisfies

n > max

{
2k log p,

c2k log p

SNRmin
,

(
c3k log p

MAR

)γ/2
}
. (1)

Here, the quantitiesc2, c3 > 0 are defined asc2
.
= 16(1−t)−2

and c3
.
= 800c21t

−2, while the probability of failure is with
respect to the true modelS and the noise vectorη.

The proof of this theorem is provided in [33, Theorem 1].
Note that the parameter ‘t’ in Theorem 1 can always be fixed
a priori (sayt = 1/2) without affecting the scaling relation in
(1). In practice, however,t should be chosen so as to reduce
the total number of measurements needed to ensure successful
model selection. There are a few important remarks that need
to be made at this point. First, it is easy to see that the proposed
threshold in Theorem 1 is completely agnostic to the model
order k and only requires knowledge of theSNR and the
noise variance. Second, some of the bounds in the proof of
[33, Theorem 1] and extensive simulations suggest that the
absolute constant10 in the proposed threshold is somewhat
conservative and can be reduced through the use of more
sophisticated analytical tools (this constant was24 in [2]).
Finally, while estimating the true model orderk tends to be
harder than estimating theSNR and the noise varianceσ2 in
majority of the situations, it might be the case that estimating
k is easier in some applications. It is better in such situations
to work with a sorted variant of the OST algorithm that
relies on knowledge of the model orderk instead and returns
an estimateŜ corresponding to thek largest (in magnitude)
entries of f

.
= XHy. We characterize the performance of

this algorithm—which we term assorted one-step thresholding
(SOST) algorithm—in terms of the following theorem.



Theorem 2 (Exact Model Selection Using SOST). Suppose
that X satisfies the coherence property and writeµ(X) as
µ = c1n

−1/γ for somec1 > 0 (which may depend onp) and
γ ∈ {0}∪[2,∞). Then the sorted variant of the OST algorithm
satisfiesPr(Ŝ 6= S) ≤ 6p−1 as long asp ≥ 128 and

n > min
t∈(0,1)

max

{
2k log p,

c2k log p

SNRmin
,

(
c3k log p

MAR

)γ/2
}
. (2)

Here, the quantitiesc2, c3 > 0 are as defined in Theorem 1.

The proof of this theorem is just a slight variant of the
proof of Theorem 1. A few remarks are in order now con-
cerning OST and SOST. First, the computational complexity
of SOST is comparable with that of OST since efficient sorting
algorithms (such as heap sort) tend to have computational
complexity ofO(p log p) only. Second, (1) and (2) suggest that
knowledge of the true model orderk allows SOST to perform
better than OST in situations where the threshold parametert
is fixed a priori (cf. Theorem 1). In this sense, SOST should
be preferred over OST for exact model selectionprovidedone
has accurate knowledge of the true model orderk. On the
other hand, OST should be the algorithm of choice for model-
selection problems where it is difficult to obtain a reliable
estimate of the true model order.

The final result that we present here concerns the partial
model-selection performance of OST. Specifically, note that
our focus in this section has so far been on specifying
conditions for the number of measurements that ensure exact
model selection. In many real-world applications, however,
the parameters of the problem are fixed and it is not always
possible to ensure thatn satisfies the aforementioned con-
ditions. A natural question to ask then is whether the OST
algorithm completely fails in such circumstances or whether
any guarantees can still be provided for its performance. We
address this aspect of the OST algorithm in the following and
show that OST has the ability to identify the locations of the
nonzero entries ofβ whose energies are greater than both the
noise power and the average signal energy per nonzero entry.
In order to make this notion mathematically precise, we first
define them-th largest-to-average ratio(LARm) of β as the
ratio of theenergy in them-th largest nonzero entry ofβ and
the average signal energy per nonzero entry ofβ; that is,

LARm
.
=
|β(m)|2
‖β‖22/k

whereβ(m) denotes them-th largest nonzero entry ofβ (note
that MAR ≡ LARk). We are now ready to specify the partial
model-selection performance of the OST algorithm.

Theorem 3 (Partial Model Selection Using OST). Suppose
that X satisfies the coherence property and letp ≥ 128.
Next, fix a parametert ∈ (0, 1) and choose the threshold

λ = max
{

1
t 10µ

√
n · SNR, 1

1−t

√
2
}√

2σ2 log p. Then, under

the assumption thatk ≤ n/(2 log p), the OST algorithm
(Algorithm 1) guarantees with probability exceeding1−6p−1

that Ŝ ⊂ S and
∣∣S − Ŝ

∣∣ ≤ (k −M), whereM is the largest

integer for which the following inequality holds:

LARM > max

{
c2k log p

n · SNR
,
c′3k log p

µ−2

}
. (3)

Here, c2 > 0 is as defined in Theorem 1,c′3 > 0 is defined as
c′3

.
= 800t−2, and the probability of failure is with respect to

the true modelS and the noise vectorη.

The proof of this theorem is provided in [33, Theorem 5].
We conclude here by pointing out that no counterpart of
Theorem 3 exists for the SOST algorithm since we can never
haveŜ ⊂ S in that case because of the nature of the algorithm.

B. Recovery of Sparse Signals Using One-Step Thresholding

In this section, we extend our results on model selection
using OST to model-order agnostic recovery ofk-sparse sig-
nals. Note that we limit ourselves in this exposition to recovery
of k-sparse signals in a noiseless setting; extensions of these
results to reconstruction ofk-sparse signals in noisy settings
would be reported in a sequel to this paper. In other words,
the measurement model that we study in here isy = Xβ and
the goal is to recover thek-sparseβ using OST under the as-
sumption that the true modelS .

= {i ∈ {1, . . . , p} : |βi| > 0}
is a uniformly randomk-subset of{1, . . . , p}.

Intuitively speaking, the problem of sparse-signal recovery
is inherently more difficult than the problem of model selec-
tion. We capture part of this intuitive notion in the following
in terms of thestrong coherence property.

Definition 2 (The Strong Coherence Property). An n × p
design matrixX having unit`2-norm columns is said to obey
the strong coherence property if the following hold:

(SCP-1) µ(X) ≤ 1

60e logp
, and (SCP-2) ν(X) ≤ µ√

n
.

In order to better illustrate the difference between the coher-
ence property and the strong coherence property, note that
the worst-case and the average coherence results reported for
Gaussian design matrices in Section III-A show that Gaussian
matrices satisfy the coherence property with high probability
as long asn % (log p)2. The same results, however, suggest
that Gaussian matrices satisfy the strong coherence property
with high probability as long asn % (log p)4. In other words,
there are scaling regimes in which Gaussian design matrices
satisfy the coherence property but are not guaranteed to satisfy
the strong coherence property. We are now ready to state the
main result of this section.

Theorem 4 (Sparse-Signal Recovery Using OST). Suppose
thatX satisfies the strong coherence property and letp ≥ 128.

Next, choose the thresholdλ = 10µ‖y‖2
√

2 log p
1−e−1/2 . Then the

OST algorithm satisfiesPr(β̂ 6= β) ≤ 6p−1 provided

k ≤ min

{
p

c24‖X‖22 log p
,
µ−2MAR

c25 log p

}
. (4)

Here, the probability of failure is only with respect to the true
modelS, while c4, c5 are defined asc4

.
= 37e and c5

.
= 43.



The proof of this theorem is provided in [33, Theorem 6].
We conclude this section by pointing out that if one does
have knowledge of the true model order then it can be shown
through a slight variation of the proof of [33, Theorem 6] that
SOST (the sorted variant of the OST) can also recover sparse
signals with high probability—the only difference in that case
being thatc5 in Theorem 4 gets replaced withc′5

.
=
√
800.

III. N EAR-OPTIMAL DESIGN MATRICES FORONE-STEP

THRESHOLDING: SOME EXAMPLES

Section II establishes that design matrices with small worst-
case coherence (and consequently small average coherence)
and small spectral norm are particularly well-suited for model
selection and recovery of sparse signals using OST (cf. The-
orems 1–4). Further, since the Welch bound [30] dictates that
µ % n−1/2 for p � 1 and since we have from elementary
linear algebra that‖X‖2 ≥

√
p/n, we are in particular inter-

ested in design matrices that approximately satisfy the scaling
relationsµ(X) � n−1/2, ν(X) - n−1, and‖X‖2 �

√
p/n.

In the following, we provide some examples of both random
and deterministic design matrices that are nearly-optimalin
terms of these requisite conditions (also, see Table I for an
overview of the results reported in here).

A. Random Design Matrices

Random matrices are perhaps the most well-studied design
matrices in the literature on high-dimensional, linear inference
problems. This is in part due to the fact that geometric
concepts such as the irrepresentable condition [14] and the
restricted isometry property (RIP) [29] have, to date, been
shown to hold near-optimally only for the case of random
matrices. The following two lemmas specify that traditional
random design matrices such as Gaussian matrices and (ran-
dom) partial Fourier matrices also tend to be near-optimal in
terms of the geometric measures ofµ, ν, and/or‖X‖2.
Lemma 1 (Geometry of Gaussian Matrices). LetX be ann×
p design matrix with independent and identically distributed
(i.i.d.) N (0, 1/n) entries and letn ≥ 60 log p. Then, we have

that X satisfies (i)µ(X) ≤
√

15 log p
n , (ii) ν(X) ≤

√
15 log p
n ,

and (iii) ‖X‖2 ≤ 1 + 2
√

p
n with probability exceeding1 −

2(p−1 + p−2 + e−p/2).4

Note that the worst-case coherence bound in this lemma
follows from bounds on the inner product of independent
Gaussian vectors (see, e.g., [33, Appendix A]) and a simple
union bound argument, the proof of the average coherence
bound is provided in [33, Lemma 2], and the spectral norm
bound follows from [34, (2.3)]. It is worth pointing out here
that similar results can also be obtained for sub-Gaussian
design matrices using standard concentration inequalities and
[34, Proposition 2.4].

Lemma 2 (Geometry of Partial Fourier Matrices). Let U be
a p-point (non-normalized) discrete Fourier transform matrix

4Note that the results (and the definition of the coherence property)
presented earlier remain valid ifµ(X) is replaced with an upperbound̄µ(X).

such thatUHU = pI. Next, populateΩ by samplingn times
with replacement from the set{1, . . . , p} and constructX by
collecting the rows ofU corresponding to the indices inΩ and
normalizing the resulting matrix by1/

√
n. ThenX satisfies

(i) µ(X) ≤
√

12 log p
n and (ii) ν(X) ≤ max

{
1

p−1 ,
p−n

n(p−1)

}

with probability exceeding1− 2p−1.

In this lemma, the worst-case coherence bound follows by
noting that the columns ofU form a group under pointwise
multiplication and then making use of the complex Hoeffding
inequality [35]. On the other hand, the average coherence
expression in it follows from the definition of the average
coherence and the fact that1 is in the null space of any partial
Fourier matrix that does not include the first row ofU . Finally,
note that the fact that sampling in Lemma 2 is carried out with
replacement makes it difficult to specify the spectral norm
of X . In practice, however, one would not construct partial
Fourier matrices with identical rows and the spectral norm of
partial Fourier matrices in such cases would be

√
p
n for the

simple reason that the rows ofU are mutually orthogonal.

B. Deterministic Design Matrices

Having described the geometry of Gaussian matrices and
partial Fourier matrices, we now show that there in fact
exist many classes of deterministic design matrices that are
quite similar to these random design matrices in terms of the
geometric measures ofµ, ν, and‖X‖2. This is in stark contrast
to the best known results for the RIP of deterministic matri-
ces and has important implications from an implementation
viewpoint since multiplications with the deterministic matrices
described below (and their adjoints) can be efficiently carried
out using algorithms such as thefast Fourier transform(FFT)
and thefast Hadamard transform(FHT).

1) Geometry of Alltop Gabor Frames:Gabor frames forCn

constitute an important class of frames, which are constructed
from time- and frequency-shifts of a nonzero seed vector in
Cn. Specifically, letg ∈ Cn be a unit-norm seed vector and
defineT to be ann × n time-shift matrixthat is generated
from g as follows

T (g)
.
=




g1 gn g2

g2 g1
. . .

...
...

...
. . . gn

gn gn−1 g1




(5)

where we writeT = T (g) to emphasize thatT is a matrix-
valued function onCn. Next, denote the collection ofn
samples of a discrete sinusoid with frequency2πm

n ,m ∈ Zn

as ωm
.
=

[
ej2π

m
n 0 . . . ej2π

m
n (n−1)

]T
. Finally, define the

correspondingn× n diagonalmodulation matricesasWm =
diag(ωm). Then the Gabor frame generated fromg is ann×n2

block matrix of the form

X =
[
W0T W1T . . . Wn−1T

]
. (6)

In words, columns of the Gabor frameX are given by
downward circular shifts and modulations (frequency shifts)



TABLE I
COMPARISONSBETWEEN DIFFERENTCLASSES OFRANDOM AND DETERMINISTIC DESIGNMATRICES

Design Matrices p µ(X) ν(X) ‖X‖2 Randomness Complexity

Gaussian Matrices – O

(

√

log p

n

)

O
(√

log p

n

)

Θ
(√

p

n

)

Θ(np) O (np)

Partial Fourier Matrices – O

(

√

log p

n

)

O
(

max
{

1
p
,

p−n

n(p−1)

})

– Θ(n) O (p log p)

Alltop Gabor Frames n2 1
√

n
O

(

1
n

)

√

p

n
– O (p log p)

Discrete-Chirp Matrices n2 1
√

n

p−n

n(p−1)

√

p

n
– O (p log p)

Delsarte–Goethals Frames
n2+r

O
(

2r
√

n

)

1
p−1

√

p

n
– O (p log p)(

0 ≤ r ≤ log n−1
2

)

Dual BCH Sensing Matrices n2
√

2
n

p−n

n(p−1)

√

p

n
– O (p log p)

of the seed vectorg. Therefore, Gabor frames are completely
specified by a total ofn numbers that describe the seed vector
and matrix–vector multiplicationsXβ andXHy can be carried
out using the FFT inO(p log p) time. The following lemma
characterizes the geometry of one specific class of Gabor
frames, termed as Alltop Gabor frames [4], [5].

Lemma 3. Let n ≥ 5 be a prime number and construct the
Alltop seed vectorg ∈ Cn as follows

g =
[

1√
n
ej2π

03

n
1√
n
ej2π

13

n . . . 1√
n
ej2π

(n−1)3

n

]T
. (7)

Then then × n2 Gabor frameX generated fromg satisfies
(i) µ(X) ≡ 1√

n
, (ii) ν(X) ≤ 1

n+1 , and (iii) ‖X‖2 ≡
√

p
n .

Here, the worst-case coherence expression follows from [5],
the spectral norm expression is due to [36], while the proof of
the average coherence bound is provided in [33, Theorem 7].

2) Geometry of Discrete-Chirp Matrices:Discrete-chirp
matrices aren×n2 matrices that are constructed by collecting
all possible chirp signals into columns [6]. Specifically, an n-
length chirp signal for any primen takes the form

xm,r(`) =
1√
n
ej2π

m`
n +j2π r`2

n , ` = 0, . . . , n− 1 (8)

where m is the base frequency andr is the chirp rate of
the signal, and the columns of then × n2 discrete-chirp
matrix X are then2 distinct chirp signals corresponding to
then2 possible pairs(m, r) ∈ Zn×Zn. The following lemma
characterizes the geometry of discrete-chirp matrices.

Lemma 4. Let X be ann× n2 discrete-chirp matrix for any
primen. ThenX satisfies (i)µ(X) ≡ 1√

n
, (ii) ν(X) ≡ p−n

n(p−1) ,

and (iii) ‖X‖2 ≡
√

p
n .

Here, the worst-case coherence bound and the spectral norm
expression follow from [7], while the average coherence
expression follows from the fact thatXHX1 ≡ p

n1. Finally,
note that the structure of the discrete-chirp matrixX implies
that the multiplicationsXβ andXHy can be carried out using
the FFT inO(p log p) time in this case also.

3) Geometry of Delsarte–Goethals Frames:The Delsarte–
Goethals (DG) frames is a class of design matrices that has
been recently introduced in the literature by Calderbank and

Jafarpour [8]. Specifically, takem ∈ Z+ to be an odd number
and r ∈ Z+ to be smaller thanm−1

2 . Next, useDG(m, r)
to denote the Delsarte–Goethals set of binary symmetric
matrices, as described in [37]. Then, givenn = 2m and
p = n2(r+1)m, the n × p DG frameX is constructed from
DG(m, r) in the following way. Index the rows ofX by binary
vectorsz ∈ Fm

2 and index the columns ofX by pairs(P, b),
whereP ranges over all2(r+1)m binary symmetric matrices
of DG(m, r) andb ranges over all members ofFm

2 . Then the
entries ofX are given by

x(P,b)(z) =
1√
n
ıwt(dP )+2wt(b) ı〈z,Pz〉+2〈z,b〉 (9)

where ı
.
=
√
−1, dP denotes the principal diagonal of the

matrixP , andwt(v) denotes the hamming weight (the number
of nonzero entries) of a given vectorv. It is easy to see from
this description that (i) DG frames are unions of orthonormal
bases and (ii) rows of DG frames correspond to Kronecker
product of each row of ann × n Hadamard matrix with the
corresponding row of ann×2(r+1)m matrix whose entries are
given by{ı〈z,Pz〉}, whereP andz range over all the possible
choices. This implies that the multiplicationsXβ andXHy in
the case of DG frames can be carried out using the FHT in
O(p log p) time. Finally, the following lemma borrows results
from [8] to characterize the geometry of DG frames.

Lemma 5. Let X be ann × n2+r Delsarte–Goethals frame
obtained fromDG(m, r) set for some oddm. ThenX satisfies
(i) µ(X) ≤ 2r√

n
, (ii) ν(X) ≡ 1

p−1 , and (iii) ‖X‖2 ≡
√

p
n .

4) Geometry of Dual BCH Sensing Matrices:Dual BCH
sensing matrices constitute another class of design matrices
that corresponds to exponentiating the codewords of an alge-
braic code. Specifically, takem ∈ Z+ to be an odd number
and useBCH(m, 2) to denote the extended2-error correcting,
binary BCH code of lengthn = 2m [38]. Then the dual of
BCH(m, 2) is a code of lengthn and dimension2m+1 that
is the union ofn cosets of the first-order Reed–Muller code
RM(1,m) of dimensionm + 1; see [35] for further details.
The important thing to point out here is that exponentiating
codewords in the dual ofBCH(m, 2) and scaling the resulting
n×n2 matrixX by 1/

√
n gives a union ofn orthonormal ba-



sis. This can be seen by noting that exponentiating codewords
in RM(1,m) gives Walsh basis vectors (and their negatives,
which we discard in here). We also note because of the very
same reason that the multiplicationsXβ andXHy in the case
of dual BCH sensing matrices can also be carried out using the
FHT in O(p log p) time. The following lemma characterizes
the geometry of dualBCH(m, 2) sensing matrices (a proof
of this lemma would be provided in a sequel to this paper).

Lemma 6. Let X be ann × n2 dual BCH sensing matrix
obtained from the dual ofBCH(m, 2) for some oddm. Then

the matrixX satisfies (i)µ(X) ≡
√

2
n , (ii) ν(X) ≡ p−n

n(p−1) ,

and (iii) ‖X‖2 ≡
√

p
n .

IV. D ISCUSSION

We conclude this paper by discussing our results in light
of some of the results reported in previous works on model
selection and recovery of sparse signals.

A. Model Selection Using One-Step Thresholding

1) Gaussian Design Matrices:Gaussian matrices are per-
haps the most widely assumed design matrices in the model-
selection literature. In order to specialize our results toGaus-
sian design matrices, recall from Lemma 1 that Gaussian ma-
trices satisfy the coherence property with high probability as
long asn % (log p)2. Further, notice the following relation be-
tweenSNRmin andSNR andMAR: SNRmin = SNR ·MAR. The-
orem 1 (resp. Theorem 2) then implies that OST (resp. SOST)
correctly identifies the exact model with probability exceeding
1 − O(p−1) as long asn % max

{
1, 1

SNR·MAR
, log p

MAR

}
k log p.

In particular, this suggests that if eitherMAR(β) = Θ(1) or
SNR = O(1) then OST leads to successful model selection

with high probability providedn v max
{
1, 1

SNR·MAR

}
k log p.

On the other hand, one of the best known results for model
selection using the maximum likelihood algorithm requires
that n % max

{
k log (p−k)

SNR·MAR
, k log (p/k)

}
[39] (also see [19]).

This establishes that OST performs near-optimally for model
selection using Gaussian design matrices provided (i) theSNR

in the measurement system is not too high or (ii) the energy
of any nonzero entry ofβ is not too far away from the average
energy‖β‖22/k andk scales sublinearly withp.

2) Lasso versus OST:Historically, OST is preferred over
the lasso for model selection because of its low computational
complexity. The results reported earlier, however, bring forth
another important aspect of OST (also see [17]):OST can
lead to successful model selection even when the lasso fails.
Specifically, note that the lasso solution is not even guaranteed
to be unique if the minimum singular value of the submatrix
of X corresponding to the true model is not bounded away
from zero (see, e.g., [14], [15]). On the other hand, OST does
not require this condition for model selection. This is in part
due to the fact that model selection using the lasso is in fact
a byproduct of signal reconstruction, whereas the OST results
for model selection do not guarantee signal reconstruction
without imposing additional constraints onX . In other words,

we have established here thatmodel selection is inherently an
easier problem than sparse-signal reconstruction.

Finally, it is worth comparing the model-selection perfor-
mance of OST with that of the lasso for the cases when the
lasso does succeed. In this regard, the most general result
for model selection using the lasso states that ifX is close
to being a tight frame in the sense that‖X‖2 ≈

√
p/n

then the lasso identifies the correct model with probability
exceeding1−O(p−1) as long as (i) the nonzero entries ofβ
are independent and statistically symmetric around zero, (ii)
k - n/ log p, and (iii) MAR % k log p

n·SNR
[16, Theorem 1.3]. On

the other hand, assume now that the design matrixX has
µ(X) � n−1/2 and ν(X) - n−1 (Section III shows that
there indeed exist many such matrices). We can then make
use of the relationSNRmin = SNR · MAR to conclude from
Theorem 1 (resp. Theorem 2) that OST (resp. SOST) identifies
the correct model with probability exceeding1 − O(p−1) as

long ask - n/ log p and MAR % max
{

1
SNR

, 1
}

k log p
n . This

suggests that, even for the cases in which the lasso succeeds,
OST can be guaranteed to perform as well as the lasso in
situations where either the energy of any nonzero entry ofβ
is not too far away from the average energy(MAR = Θ(1)) or
the SNR is not too high(SNR = O(1)). Equally importantly,
and in contrast to the lasso results reported in [16], OST is
guaranteed to attain this performanceirrespectiveof the values
of the nonzero entries of the signalβ.

3) Near-Optimality of OST:We have concluded up to this
point that—under certain conditions onMAR and SNR—the
OST algorithm for model selection can perform as well as
the lasso and it performs near-optimally for Gaussian design
matrices. We conclude this discussion by arguing that OST
in fact performs near-optimal model selection forany design
matrix that satisfiesµ(X) � n−1/2 andν(X) - n−1 as long
as MAR = Θ(1) or SNR = O(1). In order to accomplish this,
we first recall the thresholding results obtained by Donoho
and Johnstone [21]—which form the basis of ideas such as
the wavelet denoising—for the case of orthonormal design
matrices. Specifically, it was shown in [21] that ifX is an
orthonormal basis then thresholding the entries ofXHy at
λ �

√
σ2 log p results in oracle-like performance in the sense

that one recovers (with high probability) the locations of all
the nonzero entries ofβ that are above the noise floor.

Now the first thing to note regarding the results presented
earlier is the intuitively pleasing nature of the thresholdpro-
posed for model selection using OST. Specifically, assume that
X is an orthonormal matrix and notice that, sinceµ(X) = 0 in

this case, the thresholdλ � max
{
µ
√
n · SNR, 1

}√
σ2 log p

proposed earlier reduces to the threshold proposed in [21]
and Theorem 3 guarantees that thresholding recovers (with
high probability) the locations of all the nonzero entries of β
that are above the noise floor:LARm % k log p

n·SNR
⇒ m ∈ Ŝ.

Now consider instead design matrices that are not necessarily
orthonormal but which haveµ(X) � n−1/2 andν(X) - n−1

(cf. Table I). Then we have from Theorem 3 that OST identifies
(with high probability) the locations of the nonzero entries



of β whose energies are greater than both the noise power
and the average signal energy per nonzero entry:LARm %

max
{

1
SNR

, 1
}

k log p
n ⇒ m ∈ Ŝ. In particular, under the

assumption that eitherMAR = Θ(1) (and sinceMAR ≤ LARm)
or SNR = O(1), this suggests that the OST in such situations
performs in a near-optimal (oracle-like) fashion in the sense
that it recovers (with high probability) the locations of all the
nonzero entries ofβ that are above the noise floorwithout
requiring the design matrixX to be an orthonormal basis.

B. Recovery of Sparse Signals Using One-Step Thresholding

The significance of the sparse-signal recovery results re-
ported in this paper for OST can be best put into perspective
by considering the case of the design matrixX being an
approximately tight frame in the sense that‖X‖2 ≈

√
p/n

(Section III provides a small list of many such design matri-
ces). It then follows from Theorem 4 that ifX satisfies the
strong coherence property then OST exactly recovers anyk-
sparse vectorβ with high probability as long ask w µ−2MAR;
in particular, if we assume thatMAR = Θ(1) then this condi-
tion reduces tok w µ−2. On the other hand, low-complexity
sparse-recovery algorithms such as subspace pursuit [23],
CoSaMP [24], and iterative hard thresholding [25] all rely on
the restricted isometry property [29]. Therefore, the guarantees
provided in [23]–[25] for the case of generic design matrices
are limited tok-sparse signals that satisfyk - µ−1, which is
much weaker than thek w µ−2 scaling claimed here.

We conclude this discussion by pointing out that it is
established in [32] that basis pursuit [31] also recovers most
k-sparse signals—albeit inO(p3+np2) time—using arbitrary
tight frames as long ask w µ−2. Nevertheless, the basic
difference between that result and Theorem 4 is that [32]
requires the phases of the nonzero entries ofβ to be statisti-
cally independent and uniformly distributed on the unit torus
whereas we do not assume any statistical prior on the values of
the nonzero entries ofβ. Because of this reason, note that the
basis pursuit result does not provide any guarantees beyond
k % µ−1 for even the simple case ofβ ∈ Rp

+.
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