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ABSTRACT

The work presented in this dissertation revolves arounektimajor research thrusts: (i) effi-
cient acquisition of data from physical sources, (ii) reletransmission of data from one point
to another, and (iii) optimal extraction of meaningful infeation from given data. The common
theme underlying these (often intertwined) research thrigsvhat can be termed as the “blessing
of sparsity”: while real-world data might live in a very high-dimensiosplace, the critical infor-
mation conveyed by that data is often embedded in a much{dwemsional (often non-linear)
manifold of the observation space

The thesis of this dissertation is thaldint exploitation of the sparsity of real-world data by
the acquisition, transmission, and information extrant{processing) operations allows design of
new computationally efficient and nearly optimal informatprocessing algorithms that—despite
being agnostic to the underlying information embeddingar+educe the amount of data col-
lected without incurring any reduction in the informatioantent as measured by some fidelity
criterion.” In order to support our thesis, we have developed new thand methods in the dis-
sertation for some of the fundamental problems arising nel&ss systems that involve sparse (or
approximately sparse) data. In the process, we have alse madmber of significant scholarly
contributions in the diverse areas of compressed sensingiegss communications, and wireless
sensor networks.

First, as part of our contribution in the area of compressedisng, we have abstractly studied
in the dissertation three classes of “structured sensiotpx& that are given by the rows of either
Toeplitz matrices, Gabor matrices, or “low-rank projecsd of unitary matrices. Collectively,
these three sensing-vector classes arise naturally in aggplication areas and we have rigorously

proved using various tools from linear algebra, statisacsl probability theory in Banach spaces
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that collections of sensing vectors belonging to theseselmgan also successfully encode and
decode high-dimensional sparse data.

Second, as part of our contribution in the area of wirelessroanications, we have formalized
the notion of sparse multipath channels and developed anagmefvork in the dissertation for es-
timating sparse channels in time, frequency, and spacearticplar, we have established that the
proposed channel estimation framework—which is based omvotk on structured sensing vec-
tors and is accordingly termed as “compressed channelrggrsachieves a target reconstruction
error using far less energy and, in many instances, latemtypandwidth than that dictated by the
traditional training-based channel estimation methods.

Finally, as part of our contribution in the area of wirelesasor networks, we have proposed
and analyzed new distributed algorithms in the dissertatiat are capable of efficiently accom-
plishing the task of information extraction in resourcensivained wireless sensor networks using
minimal energy and bandwidth. The basic idea behind ourqgeeg approach is to combine pro-
cessing and communication into a single operation desigmedaximize the potential gain in
informationper operation Using this procedure, we have shown that critical infororain sen-
sor network data can be reliably obtained at a distant fusémmer as long as the total number of
“information processing operations” carried out in thewwk is proportional to the “intrinsic”

dimension of the information embedding.



Chapter 1

Introduction

“Something marvelous has been happening to humankind. mafan is moving
faster and becoming more plentiful, and people everywhexebanefiting from this
change. But there’s a surprising postscript to this storyhéw it comes to informa-

tion, it turns out that one can have too much of a good tfiing

— David ShenkAuthor of Data Smod1997)

1.1 Motivation

While the expression “we live in an information age” has unatedly become one of the most
worn out clichés of the 21st century, there is no denyingféice that the information revolution
has had a profound impact on the lives of ordinary people arehsfic researchers alike. The
dominant trend underscoring the evolution of this phenameran be summed up in one phrase:
Data, data, and more datalrhanks to spectacular technological advances of theastiecades,
scientists and engineers have been able to build devicestadyl systems that are capable of gen-
erating massive quantities of data, on scales consideigthgimable until recently. Paradoxically,
however, this sheer abundance of (raw) data is also thiegtembecome the Achilles’ heel of the
information revolution: Computational and analytical ®developed in the 20th century for the
extraction of information from data are fast becoming avent in the face of large problem sizes
necessitated by today’s applications. Therefore, thdaigd facing us today is to devise a new
computationally efficient set ahformation processingools that can effectively cope with this

relentless barrage of data.



It is generally recognized in this regard that the basic ajp@ns of acquisition, transmission,
and processing are interdependent and—in order to attdimalpperformance—they must be
jointly optimized in problems involving large collection$ data. Despite the need for joint opti-
mization, however, our fundamental understanding of thieglex problem is very limited, owing
in part to the absence of a well-developed mathematicaryhdés a result, information process-
ing tools over the last few decades have been largely desdlbp separating them from the data
acquisition and transmission. Despite the past succegssofrtodular approach, however, there
is now an imminent need for a reconnection between acquisittansmission, and processing if
we are to successfully manage the 21st century data deludg b@looking at these three opera-
tions through a unified lens can we characterize the relships among them, reveal fundamental
trade-offs between the sizes of data compilations and taétgof retained information, and de-
vise radically new, but highly efficient, approaches to infation extraction bysimultaneously
exploiting data redundancy atl stages of the problem. This dissertation is one such small, b

nonetheless significant, undertaking in this direction.

1.2 Thesis Statement

The work presented in this dissertation revolves arounektimajor research thrusts: (i) effi-
cient acquisition of data from physical sources, (ii) releatransmission of data from one point
to another, and (iii) optimal extraction of meaningful infeation from given data. The common
theme underlying these (often intertwined) research thrisswhat can be termed as thkess-
ing of sparsity The task of gleaning information from data, aptly termedimation processing,
hinges on our ability to gather a large collection of obsgoves that adequately capture the under-
lying phenomenon of interest. The more observations weegaliowever, the harder it becomes
to make sense out of the collected data. The phrase “cursenaindionality” is often used in
scientific and engineering circles to describe this paraddevertheless, it has long been ob-
served that data in the real-world are often approximatesyse: While the data might live in a
very high-dimensional space, the critical informationwwyed by the data is often embedded in

a much lower-dimensional (often non-linear) manifold oé thbservation space. Intuitively, this



means that one needs to focus resources only on this lowesrgdional manifold of the data, pro-
vided the information embedding can be learned in a comipuity efficient manner. This has

been the key idea behind the success of many informatiorepsatgy tools used for compression,
estimation, data mining, pattern recognition, etc.

Classical information processing methods, however, wetalasigned to cope with the kind
of explosive data growth that we are seeing today. In pddicthe effectiveness of these methods
is getting constrained by their inability to learn the lovd@mensional information embeddings (in
large data sets) in a computationally tractable mannes Aécessitates a fundamental rethinking
of the data gathering and information processing probletichvbrings us to the thesis of this

dissertation, stated as follows:

Joint exploitation of the sparsity of real-world data by thequisition, transmission,
and processing operations allows design of new computalipefficient and nearly
optimal information processing algorithms that—desp#ely agnostic to the under-
lying information embeddings—can reduce the amount ofdaltacted without incur-

ring any reduction in the information content as measureddaye fidelity criterion.

1.3 Major Contributions

In order to support our thesis, we have developed new theatynegethods in the dissertation
for some of the fundamental problems arising in wirelessesgs that involve sparse (or approx-
imately sparse) data. In the process, we have also made aenwinkignificant scholarly contri-
butions in the diverse areas of compressed sensing, waretesmunications, and wireless sensor

networks. Below, we highlight some of the primary aspecthe$e contributions.
Compressed Sensing

Compressed sensing is a relatively new area of theore@isabrch that lies at the intersection of
a number of other research areas such as signal procedaiigjcs, and computational harmonic

analysis, and describes a new acquisition paradigm in wépetise (or approximately sparse),



high-dimensional data can be well-approximated by a smatilver of its (nonadaptive, linear)
projections onto a collection of sensing vectors [1-5]. Atadstract level, there are two main

ingredients to a compressed sensing problem:

[1] Designing a collection of sensing vectors that can adetyuedpture critical information in

the high-dimensional data.

[2] Designing computationally efficient reconstruction methahat can faithfully reproduce

data from the resulting projections.

In particular, with regard tfil], some of the earliest work in the compressed sensing literditas
established the sufficiency of using either independenizegeons of certain zero-mean random
variables or rows of certain unitary matrices as sensingpve¢6—12]. From an implementation
viewpoint, however, it is not always possible to use thes&ructuredsensing vectors for acquisi-
tion purposes in many application areas due to the physitgeainderlying problems.

Itis in this context that we abstractly study in the diss@stathree specific classesstfuctured
sensing vectorthat are given by the rows of either Toeplitz matrices, Gahatrices, or “low-rank
projections” of unitary matrices Collectively, these three sensing-vector classes arisgaily in
many application areas such as time-invariant and timghvgiinear system identification [13—
15], time-frequency analysis [16], coded aperture imadiyj, sampling theory [18], and radar
and seismic imaging [19,20]. As part of diurst major contribution , which appears iChapter 3
of the dissertation, we rigorously prove using various soobm linear algebra, statistics, and
probability theory in Banach spaces that collections ossenvectors belonging to these classes

can also successfully encode and decode high-dimensipaiaesdata.
Wireless Communications

Wireless communication systems have emerged as the vitkbbae of information revolu-

tion over the last two decades. In particular, coherent camoation systems are generally far

!Note that the ternprojectionis not being used here in the usual linear algebra sense;estier$3.5 for further
details on this.



more efficient than the non-coherent ones, but require kigathannel response be known at the
receiver [21,22]. In practice, however, the channel respasmseldom—if ever—available to com-
munication systems a priori and the channel needs to beo(eaily) estimated at the receiver to
reap the benefits of coherent communication. As such, trgihased methods—which probe the
channel in time, frequency, and space with known signalsraadnstruct the channel response
from the output signals—are most commonly used to accomilis task [23].

Traditional training-based channel estimation methogsically comprising of linear recon-
struction techniques (such as the maximum likelihood onthemum mean squared error estima-
tors), are known to be optimal for rich multipath channelé4{22]. However, physical arguments
and growing experimental evidence suggest that wirelesgsrads encountered in practice exhibit
a sparse structure that gets pronounced as the signal Spaeesibn gets large (e.g., due to large
bandwidth or large number of antennas) [33—-37]. Ssdrse channelsan be characterized with
significantly fewer parameters compared to the maximum reundictated by the angle-delay-
Doppler spread of the channel. Abstractly, all the relevafirmation about a sparse channel is
embedded in an unknown low-dimensional manifold of the fdghensional channel space and
the challenge is to learn this embedding without resortingrobing the entire channel space.

As part of oursecond major contribution, which appears itChapter 4 of the dissertation,
we formalize the notion of sparse multipath channels aneéldgva new framework for estimat-
ing sparse channels in time, frequency, and space. In pkntiove establish that the proposed
channel estimation framework—which is based on our work tomctured compressed sensing
vectors (matrices) and is accordingly termedcampressed channel sensirgchieves a target
reconstruction error using far less energy and, in manantss, latency and bandwidth than that

dictated by the traditional training-based methods.
Wireless Sensor Networks

Sensor networking is an emerging technology that promisesprecedented ability to moni-

tor the physical world via a spatially distributed netwoflsmall and inexpensive wireless devices



that have the ability to self-organize into a well-conndatetwork [38]. A wide range of applica-
tions of sensor networks are being envisioned in a numbeteasaincluding geographical moni-
toring (e.g., habitat monitoring, precision agricultyri@dustrial control (e.g., in a power plant or
a submarine), business management (e.g., inventory figekith radio frequency identification
tags), homeland security (e.g., tracking and classifyimying targets) and health care (e.g., pa-
tient monitoring, personalized drug delivery) [39]. Theegtial task in many such applications of
sensor networks is to extract relevant information aboeisgnsed data—which we catworked
datato emphasize both the distributed nature of the data andathelfat the data may be shared
over the underlying communications infrastructure of teénork—and deliver it with a desired
fidelity to a (usually) distant fusion center. The overalabm the design of sensor networks is to
execute this task with least consumption of network resss#eenergy and bandwidth being the
most limited resources, typically.

As part of ourthird major contribution , which appears iChapter 5 of the dissertation, we
develop new distributed algorithms that are capable ofiefftty accomplishing the task of in-
formation extraction in resource-constrained wirelesseenetworks. Our approach represents a
departure from existing methodologies from an architedtand protocol viewpoint, and involves
a novel combination of techniques from nonparametric dtesi, compressed sensing, and wire-
less communications to effectively straddle the two exeemf: (i) in-network data processing
followed by transmission of sufficient statistics to theifunscenter, and (ii) communication of raw
data to the fusion center followed by out-of-network infation extraction. The basic idea be-
hind the proposed approach—inspired by recent resultsri@legs communications [40-43]—is
to combine processing and communication into a single diperdesigned to maximize the poten-
tial gain in informationper operation Using this procedure, we show that critical information in
the networked data can be obtained at the fusion center gaotine total number ofriformation
processing operatiorigarried out in the network is proportional to tivgrinsic dimension of the
information embedding.

A few other remarkable features of the proposed framewarkide: (i) it requires almost no

explicit collaboration among sensing nodes, (ii) consisestimates can be obtained at the fusion



center under mild assumptions on the structure of the n&eudodata even if the total network
power consumption tends to zero asymptotically, and (@nsistent (though necessarily subopti-
mal) estimates can be obtained at the fusion center evenpfinoknowledge is assumed about

the structure of the networked data.

1.4 Notational Convention

Here, we present some general and basic notation that werieyé use coherently through-
out this dissertation. Any exceptions to this notationadv@ntion, while rare, are explicitly men-

tioned in the body of the dissertation.

e Set and Function Notation: We useR, C, andN to denote the sets of all real humbers,
complex numbers, and positive integers (usually startroghfl), respectively. Given a
collection of setd X;}' |, we useX; x - - - x X, to denote their cartesian product. Given two
integersn andm, we use the shorthand notatipn. . . m] to denote the set of all consecutive
integers between (and includingandm: [n ... m)| = {n,n+1,...,m}, where the symbol
“/ means equality by-virtue-of definitioh Given anyz € R, we use|z| and|[x] to denote

the largest integer less than or equaktand the smallest integer greater than or equal to

respectively. Given any € C, we usez* to denote the conjugate of We also usé - | to

denote both the magnitude of a real- or complex-valued gyantand the cardinality of a

finite setX. Given any constant > 1, we sometimes use the shorthand notatiolylog(z)

to denote the functiotbg®(z). In addition, we define the indicator functidn (x) to take

the valuel if x € X and0 otherwise, while we usé;; to denote the Kronecker delta,

which takes valud if ; = 5 and0 otherwise. Finally, we use ~ F'(a,b) to denote a

random variable: with the cumulative distribution functio#’(a, b). In particular, we use

F(a,b) = N(my,0c}) to denote a Gaussian distribution with mean and variancer?,

while we useF(a,b) = CN(ms,c2) to denote a circularly symmetric, complex-Gaussian

distribution with meann, and variance3.



e Linear Algebra Notation: We use bold-faced, upper-case letters, sucA andB, to de-
note matrices. Similarly, we use bold-faced, lower-catielg such as andy, to denote
vectors. Further, unless explicitly stated, we take alMietors to be column vectors. Given
anyn x m matrix A, we userank(A), trace(A), andvec(A) to denote the rank oA, the
trace ofA, and thenm x 1 vectorized version oA (obtained by stacking all its columns),
respectively. We also ugeA||s, ||A||F, and||A || max to denote the spectral norm éf (the
largest singular value ad), the Frobenius norm oA, and the max norm oA (absolute
value of the largest-magnitude entry A), respectively. Sometimes, we also use the short-
hand notationA € C"*™ to denote a complex-valued matrix that hasn rows andm
columns. Given any: x 1 vectorx, we use||x||,, ||x||o, anddiag(x) to denote the usual
¢,-norm ofx, the number of nonzero entriesxfand then x n diagonal-matrix version of
x (obtained by placing its entries on the main diagonal of asgmatrix), respectively. We
further usel,,, O,,, 1,,, and0,, to denoten x n identity matricesp x n all-zeros matrices,

n x 1 all-ones vectors, and x 1 all-zeros vectors, respectively. In addition, we use the
superscriptg-)", (-)", and(-) to denote the operations of transposition, conjugate p@ns
sition, and (Moore—Penrose) pseudoinverse, respectiFeally, we use(-, -) to denote an
inner product between two vectors that is linear in the figument, while we us@ and®

to denote the Kronecker product and the Hadamard prodisgectively.

e Scaling Notation: We establish scaling relationships between different tjias using
Landau’s notation. Specifically, if(z) andg(x) are positive-valued functions of € R,
then we writef(z) = O(g(z)) andg(z) = Q(f(z)) if there exist some;, > 0 and
somez, € R such thatf(z) < ¢,g(z) V= > z,, while we write f(z) = O(g(x)) if
f(z) = O(g(z)) andg(z) = O(f(x)). Occasionally, with a slight abuse of notation, we
also write f(z) = O(g(z)) even though we really meaf{z) = ©(g(x)). In addition, we
sometimes also express the scaling relationships usindytdanotation for compactness:
f(2) 2 g(x), F(x) = g(x), andf(z) = g(x) in place off(z) = O(g(x)), f(x) = 2(g(x)),
and f(z) = O(g(z)), respectively. Finally, we writef(z) ~ g(x) if there exists some
positive-valued functiot(z) such thatf(z) < h(x) andg(z) < h(z).



1.5 Dissertation Outline

The rest of this dissertation is organized as follows. Ingi&a2 of the dissertation, we briefly
review the key compressed sensing results that are the elesant to our discussion in the rest
of the dissertation.

In Chapter 3 of the dissertation, we prove using tools fraradr algebra, statistics, and prob-
ability theory in Banach spaces that collections of strredisensing vectors given by the rows of
certain Toeplitz matrices, Gabor matrices, and low-rard§gmtions of unitary matrices can also
successfully encode and decode high-dimensional spaiae da

In Chapter 4 of the dissertation, we motivate the idea of aesged channel sensing for esti-
mating sparse single- and multiple-antenna channels &t vesults from Chapter 2 and Chap-
ter 3, rigorously establish that compressed channel sgr&ihieves a target reconstruction error
using far less energy and, in many instances, latency andildtin than that dictated by the tra-
ditional training-based methods.

Finally, in Chapter 5 of the dissertation, we develop andyaesan energy efficient distributed
architecture for estimation of both sparse and approxiipatgarse networked data in resource-
constrained wireless sensor networks.

Together, Chapters 3-5 constitute the major original rekezontributions of the dissertation.
As an organizational convention, we have tried to make eatiftese chapters as self-contained as
possible and—instead of the more general practice of cdimdithe dissertation with a discussion

chapter—we have opted to conclude each chapter with a discusection of its own.
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Chapter 2
Theory of Compressed Sensing: A Brief Overview

2.1 Introduction

In signal processing, the purpose of sampling (or senssty) accurately capture the salient
information in a signal of interest using as few samples asipte. A question that often comes up
then in designing sampling systemsweghat is the minimum number of samples needed to ensure
perfect recovery of the original signall’he Nyquist—Shannon sampling theorem, which forms the
basis of modern-day signal processing, provides a satisfaanswer to this question for the class
of bandlimited signalssignals that are bandlimited td” Hz can be perfectly recovered from their
samples as long as the (uniform) sampling rate excé€dsamples per secondl'he theory of
compressed sensing (CS) can be thought of as a generalipdtibis traditional sampling theory
(applicable only to bandlimited signals) to a much broadiesscof signals.

In order to rigorously motivate and carefully review thedhetical underpinnings of CS, we

begin with the following classical linear measurement niode
vi=a"'g i=1,...,n (2.1)

wherea!! € C? is a known row vector, termed assensing vectgrand3 € C? is a nonzero,
deterministic but unknown vector. The model (2.1) correslsoto a nonadaptive measurement
process that senses a discrete sighal C? by takingn linear measurements of the signal. This

measurement model can also be written compactly using thdxavactor representation

v=Ap (2.2)
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wherev € C" is termed as thebservationor measurement vectoand thesensing matrixA €
C™*? is comprised of the: sensing vectors as its rows. The goal then is to reliablywergd from
the knowledge of» andA.

Conventional wisdom in solving (2.2) fg8 follows the basic principle of elementary linear
algebra [44]: one needs > p to ensure a successful (and unique) recoverg &fom v. This
conventional wisdom is indeed true in general. However, @Selatively new area of theoretical
research that lies at the intersection of a number of otlserareh areas such as signal processing,
statistics, and computational harmonic analysis—sugdbat the conditiom > p can be relaxed
under certain circumstances. Specifically, if one assuh@gtis intrinsically low-dimensional—
in the sense that only a few entries@fire nonzero—then one can sesgarsesolutions to (2.2).
The search for sparse solutions of (2.2) completely transfdghe problem at hand and can lead to
successful recovery @ even whem is much smaller thap.

At a fundamental level, the theory of CS—sometimes alsamedeto as the theory of sparse
approximation or the theory of sparse signal represematibeals with the case of < p and

attempts to answer the following questions:
[Q1] What conditions doeA need to satisfy to ensure successful recovery of a spiitse
[Q2] Can the solution to (2.2) be reliably obtained in practicagipolynomial-time solvers?

[Q3] What performance guarantees can be given for various pahsblvers whew is corrupted

by either stochastic noise or deterministic perturbation?

A number of researchers have successfully addressed thesgans, and their extensions to
less restrictive notions of sparsity, over the past few gebr particular, the celebrated success of
CS theory—as evidenced by its applications in areas ass#ivaes coding and information theory
[6,45], sampling theory [18,46], imaging [47,48], and samnsetworks [49-53]—can primarily be

attributed to the following research breakthroughs:

[1] A relatively small number—typically much smaller thar-of appropriately designed sens-

ing vectors can capture most of the salient information ifngaad 3 that is either sparse
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(has only a few nonzero entries) or approximately sparseiwlordered by magnitude, its

entries decay rapidly).

[2] The signal3 in this case can be reliably reconstructed from (noiselessisy)r by making
use of tractable convex optimization programs, efficieeegdy algorithms, or fast iterative

thresholding methods.

At this point, the CS literature is growing so rapidly thaigtdifficult to do any justice to its
achievements and results in this chapter alone. Instealriefty review the key CS results in this
chapter that are the most relevant to our discussion in #sedation; we refer the reader to [1,2,4]
for a tutorial overview of some of the foundational devel@mnts and to [5] for some of the recent

advances in this field.

2.2 Necessary and Sufficient Conditions for Recovery of Spse Signals

We begin by revisiting the problem of recoverigigfrom v with the added constraint thak
is S-sparse (i.e., no more thahentries of3 are nonzero). Mathematically, this can be expressed

using the so-called/;-norm” notation

18l < #{i: 18] # 0} < 5. (2.3)
Note that an implicit assumption underlying this notion wfral sparsity is that < p (in par-
ticular, we have that < 0.5p). Now suppose that either the null-spacefofcontainsg, i.e.,
AB = 0, or A maps another distingg-sparse signal, sag’, to the same observation vectey
i.e.,, A3 = v = AB. One could not possibly hope to recoygin this case since the measure-
ment vector does not provide (i) any information ab@uh the former scenario, and (ii) enough
information abouf3 in the latter scenario. We therefore have the following teeoand corollary

from linear algebra.

Theorem 2.1 Any arbitrary S-sparse signgB can be uniquely recovered from= A3 only if

everyn x 2S5 submatrix ofA has full column rank.
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Corollary 2.2 Any arbitrary S-sparse signgB can be uniquely recovered from= A3 only if

the number of observations> 25.

The proof of Theorem 2.1 is rather elementary in nature aga/en in Section 2.5.1. Also, recall
that the rank of a matrix is upper bounded by the minimum ofilm@ber of rows and the number
of columns of the matrix. Corollary 2.2 therefore followsially from Theorem 2.1.

The property that every x 25 submatrix ofA has full column rank was studied in [54,55] for
the uniqueness of sparse solutions of underdeterminegisgsif equations. We term this property

as theunique representation proper{{RP) following the terminology in [54].

Definition 2.3 (Unique Representation Property) An n x p matrix A is said to have the URP of

order2S if everyn x 25 submatrix ofA has full column rank.

The importance of URP for the study of the uniqueness of spsotutions was first unraveled
in [54]. In particular, it was shown in [54, 55] that URP of er®.S is also a sufficient condition
for unique recovery of-sparse3 from (2.2). Specifically, define the combinatorial optinmiaa
program ) as
B, = argmin ||B]|p subjectto v =Ap3 (Pp)
Becr

then we have the following theorem regarding the equivaerig, and the true3.

Theorem 2.4 If the sensing matriA satisfies URP of ordexS then any arbitrarys-sparse signal

(3 can be uniquely recovered fromm= A3 as a solution to the optimization prograi}.

The proof of this theorem is given in Section 2.5.2 for theesakcompletion; similar versions of
the proof can also be found in [54, 55].

Unfortunately, a straightforward approach to solvidg)(seems hopeless since it is an NP-
hard problem [56]. The computational intractability ¢%) has over the years led researchers to
develop many heuristic (tractable) approximations of thabfem, including convex relaxations
of (Fy) [54, 57], greedy algorithms [58, 59], and iterative th@sing methods [60, 61]. The

results achieved so far in the CS literature range from ity@ng conditions under whichif,) has
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the same solution as its heuristic approximations, to ¢ardi under which the approximations
yield a reliable sparse solution even wh@ns not truly sparse, to conditions under which the
approximations yield a robust solution in a stochastic cadversarial noise setting. Some of the
strongest results in this regard have been obtained fordheex optimization based approach to
solving (2.2) for a sparsB. As such, we focus only on those recovery/reconstructiothats in
the sequel that are based on (or inspired by) convex retaxafi(F))—see [5] for the references

of approximate solutions based on greedy algorithms anative thresholding methods.

2.3 Sufficient Conditions for Practical Recovery of Sparse i§nals

In the literature, a frequently discussed alternative eodbmputational intractability off{)
is to regularize the problem by replacing the (highly diggmmous)/,-norm with an/,- “norm”
for somep € (0,1] [54]. While this is a practical strategy, little can be gudesd in terms of
whether a local minimum of the resulting problem will actydde a good approximation to the
global minimum of ). Instead, a better strategy is ¢onvexifythe problem by replacing the
{o-norm with the/;-norm

B, = argmin ||3; subjectto v = A3 (BP)
Becr
which results in a global minimum because of the convex eabfithe problem [62]. This opti-
mization program, which goes by the namebakis pursuitin the signal processing literature, is
computationally tractable because it can also be recaslireaa program [57].

We now discuss the performance guarantees of basis punsu#ipeecify the conditions under
which solving (BP) is equivalent to solving). Clearly, this equivalence cannot be expected for
all sensing matriced that satisfy URP of orde2S, since this would contradict the known NP-
hardness of;) in the general case. Nevertheless, the initial succesSah€ory is largely in part
due to the seminal works of Candes and Tao [6, 8], CandaspReny and Tao [7, 9], and Donoho
[10] that established that (BP) can produce the globallynegit solution of (%) under mildly
stronger conditions oA. Proofs of these remarkable initial results all rely on thme property

of the sensing matrix, namely that any collection2¢f columns of (appropriately normalized)
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A should behave almost like an isometry. One concise way te 8t condition is through the
restricted isometry propertRIP), first introduced in [6]. The RIP, defined below, candesraged

to establish a series of fundamental results in CS.

Definition 2.5 (Restricted Isometry Property) Ann x p matrix A having unit/,-norm columns

is said to have the RIP of ordérwith parametety if there exists somés < (0, 1) such that

(1=05)1B113 < [IABII3 < (1 +65)lIBI3 (2.4)

holds for all S-sparse vector8. In this case, we sometimes make use of the shorthand notatio

A € RIP(S,ds) to state thatA satisfies the RIP of ordef with parameteby.

The initial contributions to the theory of CS establishesgemtially, that (BP) andH)) have
identical solutions for alb-sparse signalg if an appropriately normalized satisfies the RIP of
order2S with a sufficiently small parametéss. The following theorem—a generalization of the

earlier results—also describes the recovery of signatsafeanot exactly sparse.

Theorem 2.6 (Noiseless Recovery [63])et v = A3 be ann x 1 vector of observations of any
deterministic but unknown signal € CP. Assume that the columns & have unit/;-norms and

further letA € RIP(2S,0.3). Then the vectoB, obtained as the solution of (BP) satisfies

18 — BslI3
S

181 — B3 < co (2.5)

wheregg is the vector formed by setting all but tielargest (in magnitude) entries gfto zero,

andc, > 0 is a constant given by

2
%:4(1+%3). (2.6)

Remark 2.7 The statement of Theorem 2.6 is a slight variation on [63 oFé® 1.2], which arises
due to the complex-valued setup here as opposed to theakedebone in [63]. Specifically, in the
case of a real-valued setup, one only requires tat R/ P(25S5,0.41) and the constant, in that

case can be given by

(2.7)

2
1 — 0o5 + V2055

Co = 4 .
1 — 895 — V2695
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Note that Theorem 2.6 guarantees that the recovefy isfexact in the case whe® has no
more thanS nonzero entries (sing8¢ = (3 in that case). It is worth mentioning at this point that
the idea to use thé -norm as a sparsity-inducing objective function existecady as in 1973
in the geophysics literature [64]. In fact, Santosa and Sydeveloped this idea further in 1986
and proved that a variation of (BP) (termed basis pursuibtmng) succeeds in recovering sparse
spike trains under moderate restrictions [19]. Howeves dnly recently that researchers have

been able to get the most rigorous results concerning theadgunce between (BP) and).

2.3.1 Compressed Sensing Matrices

It is clear from the definition of RIP that the conditich € RIP(2S,0.3) is essentially a
statement about the singular values ofiak 25 submatrices oA. However, the definition of RIP
and the statement of Theorem 2.6 make no mention of eitheo\{ijto design sensing matrices that
satisfy the RIP of orde2S or (ii) how to check if a given sensing matrix satisfies the Bil®rder
25. Nevertheless, while no algorithms are known to date thatback the RIP for a given matrix
in polynomial time, one of the reasons that has led to the spead applicability of CS theory
in various application areas is the revelation that cenpmobabilistic constructions of matrices
satisfy the RIP with high probability. In this regard, théldaving theorems are representative of
the relevant results that can be found in the CS literature.

Theorem 2.8 (Independent and Identically Distributed Matrices [11]) Let A be ann x p ma-
trix whose entries are drawn in an independent and idehtidadtributed (i.i.d.) fashion from one
of the following zero-mean distributions, each having aacel /n:

® o N (0,1/n),

iid. 1/4/n  with probability1/2

[ ] ai7' ~ ]
! ~1/ym with probability1/2
3/n with probability1/6

o a; KL 0 with probability2/3 -

—+/3/n with probability1/6
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For each integef € N, and for anyis € (0,1) and anye; < 02(3 — ds)/48, set

~ 1921og (12/6s)
302 — 63— 48¢y

C2

(2.8)
Then wheneven > ¢S logp, A € RIP(S, 0s) with probability exceeding — exp (—cin).

Theorem 2.9 (Subsampled Unitary Matrices [12])Let U be anyp x p unitary matrix. Choose
a subsef) of cardinalityn = |2| uniformly at random from the sét . .. p|]. Further, letA be the
n X p matrix obtained by samplingrows ofU corresponding to the indices{hand renormalizing
the resulting columns so that they have upinorms. For each integer.S > 2, and for anyt > 1
and anyds € (0,1), let

n > (cs pé; tSlog p) log(tSlog p) log? S (2.9)

then the subsampled matrik € RIP(S,ds) with probability exceedind — 10 exp(—c4d%t).
Here, uu def VPmax; ; [u; ;| is termed as theoherenceof the unitary matrixU, andcs, ¢, > 0

are absolute constants that do not depend.gnor S.

Corollary 2.10 (Polynomial Probability of Success [12])Let U be anyp x p unitary matrix with
entries of magnitud€©(1/,/p). Then for each integey, S > 2, and for anyjs € (0, 1), the
(appropriately normalized) matri& obtained by sampling = (S log® p) rows of U uniformly

at random satisfieRI P(S, d5) with probability exceeding — p=©0%).

Remark 2.11 The original specification of the results in [12] assumed tha = O(1/,/p) and
ds = 0.5, but the proofs actually provide more general results fbiteary 1y anddgs. In addition,
the subsef in [12] corresponds to Bernoulli sampling of the §et. . p|]. Thatis, let(y, .. ., (, be

independent Bernoulli random variables taking the valuéth probabilityn /p. Then,
Q={i:¢ =1} (2.10)

Nevertheless, it has been shown in [7] that if the subsampiadry matrixA € RIP(S, dg) with
probability1 — n for the Bernoulli sampling model, theh € RIP(S, d5) with probability1 — 27

for the uniformly-at-random sampling model. Hence, théesteent of Theorem 2.9 above.
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Note that Corollary 2.10 trivially follows from Theorem 2t takingt = ©(logp). The
preceding discussion in this section and Theorem 2.6 @aligiguarantee thatracticalrecovery
of sparse signals from (2.2) is possible (with high probaBiusing onlyn = Q (S x polylog(p))

observations. In this sense, the near-optimality of neseCS is evident.

2.3.2 Remark on Minimum ¢>-Norm Reconstruction

Another classical approach to the computational intralitybf ( /) is to convexify the prob-
lem by replacing thé,-norm with the/;-norm

B, = argmin ||B]|, subjectto v =Ap3 (%)
Becr

which also results in a global minimum because of the conayure of the problem. Geomet-
rically, the collection of all solutions to (2.2) is an affisebspace of? and () selects that
element of this subspace which is the closest to the origgsu#ch,3, is sometimes also called
theminimum-energy solution

The key advantage that{) has over other convex approximations &%) is that it has a nice
closed-form solution given by the Moore—Penrose pseuéos@ofA: 3, = ATv. However, (%)

has two key problems that make it highly unsuitable for recpwf sparse signals [57]:

[1] Because of the geometry of the probledy,is not very likely to be sparse.

[2] Little can be guaranteed in terms of whetlggrwill be a good approximation t3.

2.4 Sufficient Conditions for Reliable Reconstruction of Sprse Signals

From an implementation viewpoint, one cannot expect to oressreal-world signad without
any errors. Instead, a more plausible scenario is to ashatiéne observation vectoris corrupted

by some additive noise
v=AB+n (2.11)

wheren € C" is either a deterministic (but unknown) perturbation, as i vector whose entries

are i.i.d. realizations of some zero-mean random varialblgs problem has been studied by a
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number of researchers in the recent past [9, 65—70] andhi tout that the CS theory can be used
in either case to obtain results that are in some sense glaathose in the noiseless case. The
only difference here being that the notion of exact recoveryonger applies—it is replaced by
the notion of reliable reconstruction. Below, we brieflyaliss some of what is currently known

in the context of reliable reconstruction of sparse signals

2.4.1 Reconstruction in the Presence of Bounded Noise

We begin by considering that the observation veot corrupted with a bounded perturbation
vectorn : ||n||2 < e and study conditions under whighcan be reliably reconstructed from In
this case, one may reconsidé} ) and define an error-tolerant version of it as follows

B, = argmin||B[y subjectto v — AB|><e. (P5)
BeCr
Loosely speaking,K;) aims to do roughly the same thing &%) would do on noiseless observa-
tions A3. Results establishing the stability and near-optimalft¢/¢f) can be found in [66, 71].

Similar to the case ofHKy), however, £f) is impractical to solve in general. Following the
rationale of the previous section, we can instead replaeé thorm in (F§) with the/;-norm and
get the following error-tolerant variant of (BP)

B, = argmin||B3[, subjectto v — AB|,<e. (BPIC)
Becr
This optimization program, which we term as th&sis pursuit with inequality constrains con-
vex in nature and can be solved in a computationally traetaddnner by recasting it as a linear
optimization problem under quadratic inequality consti®{72]. Finally, the following theorem
establishes that (BPIC) guarantees stable reconstruafighfrom (2.11) in a deterministic (or

adversarial) noise setting.

Theorem 2.12 (Noisy Reconstruction [63])Letv = A3 + i be ann x 1 vector of observations
of any deterministic but unknown sign@l € CP, where the noise vector satisfigg|l. < e.
Assume that the columns & have unit/s-norms and further leA € RIP(2S,0.3). Then the
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vector3, obtained as the solution of (BPIC) satisfies

2
I8, - 818 < e (che+ 1= 2l @2.12)
wherec, and3g are as defined earlier in Theorem 2.6, ajd- 0 is a constant given by
ch=2(1+0y5) 2. (2.13)

2.4.2 Reconstruction in the Presence of Stochastic Noise

In many applications of practical interest, it is typicallgsumed that the observation vector
v is corrupted by a stochastic noise vectowhose entries are i.i.d. realizations of a zero-mean,
circularly complex, Gaussian random variable with var@mt. One of the first theoretical results
in the (real) stochastic noise setting was established#huy6ing an unconstrained error-tolerant
version of (), given by
B, = rgmin (51~ ABl. + A3 B
where the parameter > 0 is a function ofp ando?. It is worth mentioning at this point that
(Py) is the Lagrangian of ) and the two are related in the sense that any solutio®pf for a
particular\ corresponds to a solution oFf) with an appropriate choice ef Strictly speaking,
however, ) and (P;") are two distinct optimization programs.
Since (7)) requires solving a combinatorial program much li&g)( a practical solution is to
use an unconstrained error-tolerant version of (BP) bya@py/, with the /;-norm in (7))
B, = argmin (%HV—ABHg—i—)\HBHl). (BPDN)
BeCr
This optimization program goes by the namebakis pursuit denoising the signal processing
community [57], while it is known akssoin the statistics literature [73]. The solution to (BPDN)
can be found in a computationally tractable manner usinyistia@ convex optimization techniques
since its objective is an unconstrained convex functiof [C&nvex programs of the form (BPDN)
have been extensively studied by researchers in the pastiy different application areas [19,

57,60, 73, 74]. However, very little attention has been paithese and similarly related works
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to develop a rigorous correspondence betwef) @nd (BPDN) in the stochastic setting. In
particular, while (BPDN) has been known to perform well imgiice in a number of situations,
results suggesting that (BPDN) gives reconstruction ésmamds similar to those offf}) have
been reported only very recently in the literature [69, 70].

We now present another constrained optimization basedadgtvhich is in some sense related
to (BPDN), for reliable reconstruction ¢f from (2.11) in the stochastic noise setting

B, ., =argmin|B]; subjectto [|A"(r— AB)[w <. (DS)
BeCr

This convex optimization program—which goes by the nam®ahtzig selecterguarantees
near-optimal reconstruction @@ based on the RIP characterization of the sensing matrix [68]
Before stating the theoretical performance of (DS), howewds worth pointing out the main
reasons that make the Dantzig selector an integral partrafisaussion on reliable reconstruction

of sparse signals in the presence of stochastic noise:

[1] Itis one of the few reconstruction methods in the CS litexatbat are guaranteed to perform

near-optimally vis-a-vis stochastic noise—the otheiapér;') and (BPDN).

[2] Unlike the combinatorial optimization progranky), it is highly computationally tractable

since it can be recast as a linear program.

[3] It comes with the cleanest and most interpretable recartgtruerror bounds that we know

for both sparse and approximately sparse signals.

Finally, note that some of the recent results in the litematseem to suggest that (BPDN)
also enjoys many of the useful properties of (DS), includimg reconstruction error bounds that
appear very similar to those of (DS) [69, 70]. As such, makisg of (BPDN) in practical settings
can sometimes be more computationally attractive becauhee @vailability of a wide range of
efficient software packages, such as GPSR [75] and SpaR3Af¢r&olving it. However, since
a RIP-based characterization of (BPDN) that parallelsdh@iDS) does not exist to date, we limit

ourselves in this chapter to discussing the results for @fB). The original specification of the
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following theorem in [68] in this regard assumed a specifgmal class, but the proof actually

provides a more general oracle result.

Theorem 2.13 (The Dantzig Selector [68]Letrv = AB+n be ann x 1 vector of observations of
any deterministic but unknown signdle C?, where the entries af are independently distributed

asCN (0, 0%). Assume that the columns &f have unit/,-norms and further leA € RIP(2S5,0.3)

for some integetS > 1. Choose\ = /202(1 + a)logp for anya > 0. Then the vectop,

obtained as the solution of (DS) satisfies

- 2
181~ B3 < § iy (v + 122l 21

-1
with probability exceeding — 2 ( m(1+a)logp- p“) . The constant] = 16/ (1 — 3d,5)°,
and as in Theorem 2.63,, is the vector formed by setting all but thwe largest (in magnitude)

entries of the true signd to zero.

Remark 2.14 Notice that the reconstruction error in (2.14) is essegta@mprised of two factors.
One factor is due to the “estimation error” (or variance} #réses from determiningr unknown
guantities from noisy data, while the other is due to the fagjnation error” (or bias) arising
from estimating the unknown sign&lusing onlym components. For a given signal class, the best
rate of error decay is obtained by balancing the two termat iBhthe best choice of is the value

m, such that

18 = B |1 = Am.. (2.15)

Thus, to make the optimal rates achievable, the sensingxsauld be chosen to satisfy RIP of

order2S such thatS is at least as large as the “effective sparsity,.

Note that Theorem 2.13 differs in two key respects from tkalte stated in [68] for the Dantzig
selector. First, the probability of failure in Theorem 2id Bwvice the probability of failure obtained

in [68]. This difference stems from the fact that the resut€8] are established only for the real-

valued setup. In particular, [68, Section 3] proves for thgecofn; "< A/ (0, 0?) that

Pr (B, ., does not satisfy (2.13)< Pr (|ATn]l. > ) < ( (1 +a)logp - pa) (2.16)
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for the choice of\ in Theorem 2.13. The arguments underlying Theorem 2.13h@rcbmplex

case are almost the same as those for the real case. The fiafgrie in the arguments in the

complex case is due to the fact th@f'@d' CN (0, 0?), which results in

-1
Pr (8, ,, does not satisfy (2.14)< Pr (|A"n[. > A) <2 < (1 +a)logp - p“) . (2.17)
The second inequality in (2.17) is a consequence of theviolig lemma, proved in Section 2.5.3.

Lemma 2.15 Let A be ann x p matrix having unit/,-norm columns. Further, lej be ann x 1

vector having entries independently distributedA$(0, o%). Then for anyu > 0

4p ‘ exp(—u?/2) .

V2T U

Second, the sufficient condition stated in the original itesu[68] for (DS) to succeed in

Pr (|An|le > ou) < (2.18)

reconstructing3 is that A € RIP(2S5,d,5) such thatys + 0525 < 1, wherefg s is called the
S, 2S-restricted orthogonality constatiROC) of A. In general, thes, S’-ROC of A is defined as

the smallest quantity such that
(Aa, Ad)| < bs.5/]lalsl|e- (2.19)

holds for all vectorsx anda’ having no more thaw and.S” nonzero entries, respectively, such
that the nonzero entries of anda’ occur at disjoint indices. Nevertheless, the modified ciooli
A € RIP(2S,0.3) stated in Theorem 2.13 is a simple consequence of the faiplemma, which
can be used to bound tit£2S5-ROC usingj,s. The proof of this lemma appears in Section 2.5.4.

Lemma 2.16 Let A be ann x p matrix having unit/;-norm columns and assume without loss of

generality thats” > S. Then theS, S’-ROC of A can be upper bounded as

0.5 < Cdg, 157 (2.20)

2

whereC' = /2 in a real-valued setup, whil€ = 2 in a complex-valued setup.

Finally, we conclude our review of CS by pointing out that ®reem 2.13 differs significantly

from Theorem 2.12. Indeed, applying the deterministic @oesults of Theorem 2.12 directly to
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the stochastic noise setting (in which cdsg|, ~ /no) only guarantees that the resulting error
scales like theumber of observatiortimes the noise poweti3; — 3|3 = O(no?). On the other
hand, Theorem 2.13 results in a much better reconstructiont@ound, with the error scaling like
the sparsity levetimes the noise power. In other words, the estimation eroomid of (DS) is
adaptive to the sparsity level, while the error bound of Pk not. The difference in the two
reconstruction error bounds could be significant, espgaidien the number of observations is far

greater than the sparsity (or effective sparsity) of thealg

2.5 Appendix
2.5.1 Proof of Theorem 2.1

LetT C [1...p|] be asubset of cardinaliBS and assume that there existsrar 2.5 submatrix
A of A that does not have full column rank. Hefiecorresponds to the indices of the columns
of A that make up the submatriX,. Note that the assumptioank(Ar) < 2S5 means that there
exists a25-sparse vectof’ such thatA3’ = 0 and{i : |5/| #£ 0} = T.

Next, partitionT” into two disjoint sets; and75 of cardinalityS each. Thatis]; UT, =T,

Ty NTy = ¢, and|Ty| = |T,| = S. Further, defineS-sparse vector8, and3, using the set§}

andT5, respectively, as follows

def 2{7 |fZ€T1, def 2{7 |f'L€T2,

Pri = and Poi = (2.21)
0, otherwise; 0, otherwise.

It then follows from the definitions o8, and3, that

AB =A(B,+B,)=0 = AB =Ap, (2.22)

where(3, =l —[, is also anS-sparse vector. The relation (2.22) shows that if am2.S submatrix

of A does not have full column rank then there exist more thanSseparse vector ifC? that get
mapped to the same vector@¥ by the matrixA. Therefore, every, x 25 submatrix ofA must
have full column rank to ensure unique recovery of any abjtf-sparse signab fromv = AS.

This completes the proof of the theorem. |



25

2.5.2 Proof of Theorem 2.4

We prove this theorem by contradiction. Suppose fhattisfies URP of ord&xS but 3, # 3.
This means thats,|| < S (otherwise3d, cannot be a solution ta4))) and

AB=AB, = AB =0 (2.23)

where3’ = B — B, is at most &S-sparse vector (since bofh and 3, are S-sparse vectors).
Next, letT" C [1...p] be such that € T'if and only if | 5| # 0 and defineA, to be a submatrix
obtained by collecting all the columns Af corresponding to the indices i Note thaf7’| < 25
and it is clear from the definition of URP thatX satisfies URP of orde2S then it also satisfies
URP of order|T"|. But we have from (2.23) thah; has a nontrivial null space (sing¥ # 0),
which is a contradiction of the assumption tiasatisfies URP of ordefl’|. Hence,3, = 8 and

this completes the proof of the theorem. |

2.5.3 Proof of Lemma 2.15

Assume without loss of generality that= 1, since the general case follows from a simple

rescaling argument. Let;, ..., a, € C" be thep columns ofA and define

2 = allm,i=1,...,p. (2.24)

Note that thez;’s are identically (but not independently) distributedzas~ CN (0, 1), which
follows from the fact that); - CN(0,1) and the columns oA have unit/,-norms. The rest of

the proof is pretty elementary and follows from the factg tha

..... D

Pr (A" > u) < Pr ({qax 2] > U)
(a)
<p- Pr (|Re(2’1)|2 + ||m(2’1)|2 > Uz)

) = 2p - 2Q(u)

V2
. (2.25)

(b)
< 2p-pr (Rete)] >

(c 4 —u?/2
O 4p  e(=i?/2)

V2T U
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Here, (a) follows by taking a union bound over the evént{|z;| > u}, (b) follows from taking a
union bound over the evefitRe(z;)| > u/v/2} U {|Im(z;)| > u/+/2} and noting that the real and
imaginary parts of;’s are identically distributed a&/(0, 1), and(c) follows by upper bounding

thecomplementary cumulative distribution functias(u) < —5— exp(—zu?) [77]. n

2.5.4 Proof of Lemma 2.16

The proof of this lemma relies on thmlarization identity[78], which expresses the inner
product(-, -) in a vector space over a field in terms of its induced nornjx|| = (x,x) as
follows

S(x+yl?-lx-yl*>), K=R,
x.y) = 1k +y* = %) (2.26)

1| U+ vl = lx=yl?) + 7 (x +5y* - [ —jy||2)}, K=C.
We begin by focussing on the caselldf= C, since the proof foiK = R follows from similar
arguments. Lef” C [1...p| be a subset of cardinality’ corresponding to the indices of nonzero
entries ofa’. Next, partitionT" into disjoint setsl; and7; of cardinality [$] and (5" — [%]),

respectively. Thatis]; UT, = T, Ty N Ty = ¢, and|T1| = [£] and|Tz| = (S’ — [£]). Further,

define d7;|-sparse vectowy; and a|7;|-sparse vecto, as follows

def Oég, |fZ€T1, def O/-, |f’L€T2,

(2

a1; = and Qg = (227)
0, otherwise; 0, otherwise.

It then follows from the triangle inequality and the defioits ofa; anda;, that
(Aa, Ad)| < [(Aa, Aay)| + |[(Aa, Aaw) . (2.28)

Next, focus initially on|(Aa, Aa;)| and observe that because of the disjoint supports of

anda;, we have similar to the case in [68, Lemma 2.1]

(1= s (el + lard) < [Aa = Acul < (1 + dsam) (o3 + eald).  (2:29)
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Paralleling the proof of [68, Lemma 2.1], we have from theapiakation identity (2.26) and the

above expression that

1
‘Re((Aa, Aal))‘ — Z‘HAa + Ay~ |Aa — Ao |

05+|11
< 0 (el + leall). (2.30)

Further, we can also get an expression similar to (2.29)/forv 4 jA |3, which leads to the

following upper bound due to (2.26)

6 1
Im((Aa, Aaw))| < L ([l + flen ). (2.31)

The two upper bounds (2.30) and (2.31) can now be combinedttegto yield

(Aa, Aay)| = \/’Re(<Aa,Aa1>)’2 T ‘lm(<Aa,Aa1>)’2

08+/Ty (@)
< 2L (a3 + [leal3) & V20simlledlzllenl, (2.32)
V2
where(a) follows by noticing the simple fact thatAa, Acy )| = ||“;H||22 }<I\”0;1H||22 Ao, Aay)|. Sim-

ilarly, by following identical arguments, it can be showaath
[(Ac, Acwy)| < V205 1, ]| et l2] 2o (2.33)
Finally, we can upper boundAc, Aa)| using (2.28), (2.32), and (2.33) as follows
(A, Ad)| < V205 mllellzllon |z + V205 llella] o2
< VBss.imledla llonls + flals)
(_2 20541y || |2l |2 (2.34)

Here,(b) is a consequence of the fact thgt |1,) < dg4 7y (Since|T»| < |T1]) and(c) follows from
the fact thatl|a; ||» + |||z < v2||||2 for oy anda, have disjoint supports. The lemma can
now be established from the fact that, by definition, th&’-ROC of A is the smallest quantity

that satisfies the last inequality in (2.34). |
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Chapter 3
Compressed Sensing with Structured Matrices

3.1 Introduction

The field of sparse approximation—or compressed sensing, @Sit is commonly called
today—was arguably born almost 30 years ago out of the desgelve underdetermined inverse
problems in some application areas, such as seismic im#@fgNMR spectroscopy [79], and
array signal processing [54]. The apparent success of thieedpcommunity in solving these
seemingly ill-posed problems spurred the research contyisisurge of interest in understanding
the fundamental theoretical limits of these problems. Amdming back full circle to where
we began—recent mathematical contributions of the reeeammmunity (some of which were
outlined in Chapter 2) have now inspired dozens of appliddipations on reconstruction of sparse
signals in various application areas—far too many to bedistere (see, e.g., [Bpplications of
Compressive Sensif)g

Despite these advancements, however, a number of key tatlufallenges still need to be
overcome in order to fully bridge the gap between theory aadtice in many application areas
of interest. In particular, given a linear or a nonlinear@rse problem involving sparse signals, the
following two questions need to be satisfactorily answedrefibre the practitioner can confidently

make use of CS-based signal reconstruction methods:
[Q1] Can the inverse problem be transformed into the canonicalli@8rvation model (2.2)?

[Q2] Can the ensuing sensing matrix be guaranteed to have thisiteqronditions set forth in

the CS literature for reliable signal reconstruction?
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We focus exclusively oniQ2] in this part of the dissertation; we return Q1] in Chapter 4
and Chapter 5 of the dissertation in the context of estimabiosparse multipath channels and

estimation of sparse networked data, respectively.

3.2 Structured Compressed Sensing Matrices

In many application areas, such as coding theory [6], in@fii], and sensor networks [52], it
turns out that transforming a given problem into the canar@S setting requires the most amount
of work. Once this transformation is carried out succe$gfglaranteeing that the resulting sens-
ing matrix satisfies conditions such as the restricted ispnpeoperty (RIP) is an easy consequence
of fundamental results such as Theorem 2.8 and Theorem 2@ i@S literature. However, in a
number of other application areas, such as linear systentifidation [14, 15], coded aperture
imaging [17], and sampling theory [18], the sensing masri@nd to have a lot more structure to
them due to the physics of the underlying problems. We useethestructured compressed sens-
ing matricesfor such matrices so as to distinguish them from the canb(iicd. and subsampled
unitary) CS matrices studied in Chapter 2.

The peculiar nature of structured CS matrices implies tkiatiag results pertaining to i.i.d.
and subsampled unitary matrices are not applicable in¢asg. In the past, researchers have often
resorted to numerical simulations to prove the efficacy micstired CS matrices arising in various
practical settings [13, 80, 81]. Nevertheless, rigorogstwing the theoretical limits of structured
CS matrices seems important for the credibility of the pegabresearch. It is in this context that
we abstractly study three specific classes of structured @@®igas, namelyJoeplitz matrices
Gabor matricesandstructurally-subsampled unitary matriges this chapter. Collectively, these
three matrix classes arise naturally in many applicati@asrsuch as time-invariant and time-
varying linear system identification [13—15], time-freqag analysis [16], coded aperture imaging
[17], sampling theory [18], and radar and seismic imagir@ D], and our goal is to prove that
sensing matrices belonging to these classes satisfy(25, 0.3) with high probability. As shown
in Chapter 2, this will be sufficient to guarantee reliableorgstruction of sparse signals using

structured CS matrices belonging to the aforementionedxr@dasses.
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Before proceeding further, however, let us introduce soatation (originally used by Rudel-
son and Vershynin in [12]) that will greatly facilitate theathematical analysis in the sequel.
Recall from Chapter 2 that anx p matrix A € RIP(S, ds) when the following inequality holds

for some constants € (0,1)

~ ~ ~H ~
I1AB5 — 18Il B (A"A -1,)8
max = <y <= max 7 < dg. (3.1)
1Blo<s 1813 1Blo<s 33
B#0 B#0

The expression on the right-hand side of (3.1) looks intnigly similar to a bound on the spectral
norm of thep x p matrix (AHA — I,,), except that the maximum is taken over only a restricted

subset ofC? [44]. Nevertheless, it is easy to see that

3" (AMA - 1,)3

max — <ds <= max [[AfAr -y, <65 (3.2)
IBllo<S 8 3 TC[1...p]
B#0 IT|<S

whereA denotes am x |T'| submatrix ofA obtained by collecting all the columns &f corre-
sponding to the indices in sét We can write this expression in a compact form with the hélp o
a non-negative functioft- || s : C**? — [0, co) defined as follows

IMlr.s < max {|Mrr|| (3.3)

’ TC1...p] 2
IT|<S

where Mr,r denotes 47| x |T| submatrix ofM obtained by collecting all the entries &f
corresponding to the indices in sBtx 7. Going back to (3.2), we can alternatively say that an

n x pmatrix A € RIP(S,dg) for some constanis € (0, 1) when
|ARA — 1|75 < ds (3.4)

and we will strive to prove this inequality in the sequel foe three matrix classes. Finally, we con-
clude this section with a lemma that will be extremely helfriyproving the RIP for structurally-
subsampled unitary matrices. The proof of the following heanis a trivial consequence of the

definition of || - |15 and is therefore omitted here.

Lemma 3.1 The function|| - ||r s : CP*? — [0, 00) defines a norm—which we term &%, 5)-

norm—on the vector spad&*». Hence B (C»*» | - |1.5) is a Banach space.
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3.3 On the RIP of Toeplitz Matrices

We begin our discussion of structured CS matrices by firstysiig Toeplitz matrices. Recall
that a Toeplitz matrix is a matrix in which every (left to rigfdiagonal is constant. Therefore,
Toeplitz matrices are completely specified by the entrigkeir first rows and first columns. Since
convolution between two discrete-time sequences can b&rc@a as a matrix-vector multiplica-
tion, with one of the sequences converted into a Toeplitzimach matrices frequently arise in
applications involving linear, time-invariant systemg]8

In this section, we primarily focus on two—somewhat relatedt still distinct—forms of
Toeplitz matrices. Specifically, let et {a; € C}¥_, denote ak-lengthgenerating sequence
for somek € N. The first form of Toeplitz matrices considered in this sactiwhich we term as

“full” Toeplitz matrices, is generated from the sequentefor £ > 1 as follows

aq 0
a2
. aq
A= : (3.5)
Qg a9
0 ag

Here, the full Toeplitz matriXA has dimensions x p such that “ (p—1). The second form
of Toeplitz matrices considered in this section, which wentas “partial” Toeplitz matrices, more
closely resembles the canonical underdetermined settitigeiCS literature and is generated from

the sequencgl,, for k£ > p as follows

Qp p—1 . a9 aq
a a ... a a
p+1 P 3 2
A= (3.6)
ar  Qg—1 ... QApg1 Gn

The partial Toeplitz matrix in the above expression has dsiens. x p such than g (p—1).

Notice that whenk > p, the partial Toeplitz matrix described in (3.6) above is hrsatrix of the
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full Toeplitz matrix in (3.5). In contrast, wheh < p, every row of the full Toeplitz matrix has at
least one zero entry, and it is just a scaled versial), @f the limiting case ok = 1.

The main question we address in this section is whether fdllgartial Toeplitz matrices gen-
erated from ERademacher sequengh, satisfy RIP. Here, we term a sequence as a Rademacher
sequence if its elements independently take the valtewith probability 1/2 for some quan-
tity ¢ > 0 (in other words, if the elements of the sequence are indegrgrsymmetric Bernoulli or
Rademacher random variables). Note that initial resultiserCsS literature that considered random
sensing matrices either required statistical indeperslantong the entries ai [11] or—at the
very least—required statistical independence among the od A [12,83]. The problem consid-
ered in this section, however, is significantly more challag since the Toeplitz structure in (3.5)
and (3.6) introduces statistical dependence among the sbwsand hence, existing techniques
can no longer be used to address this problem. Instead, vedoglew novel technique in the sequel

that facilitates analysis in the presence of such depemeamong the rows of a sensing matrix.

3.3.1 Main Results

Before establishing the main claims of this section—that {fr partial) Toeplitz matrices with
entries drawn independently from a Rademacher distribsadisfy RIP—we recall the simplified
definition of RIP from (3.4) of Section 3.2

|ATA — 1|75 = max |AY AL —Tp||, < ds. (3.7)
IT|<S

In other words, to establish RIP for a given sensing ma&ixone needs to bound the spectral

norms of all square submatrices @"A — I,)) having no more thar$ rows/columns. Trivially

from the definition of the spectral norm, however, we havé tha

| A% Ap — Ty

< [[A7Ar =T, (3.8)

B

foranyT’ C T. Therefore, we only need to bound the spectral norms of all.S submatrices of
(A"A —1,). We now state one of the most useful and easily applied tokimwn asGersgorin's

disc theorem-that can give bounds for the spectral norm of a matrix. THewiong result—stated
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as a lemma without proof—seems to have first appeared in 1984 ] and its proof can be found

in any standard text on matrix analysis such as [44].

Lemma 3.2 (Ge&gorin) LetM € C¥*% andm; ;,i,j = 1,..., S, denote the entries &1. Then

every eigenvalue dM lies in at least one of th€ discs defined below

S
D, (M) {z €C:|z—my|<Y |mm-|}, i=1,...,5. (3.9)
=1
=
The Gersgorin’s disc theorem allows us to prove a very piwvauxiliary lemma that relates

the (T, S)-norm of(A"A — 1)) to ||[AHA — I, || n.ax as follows.
Lemma 3.3 Let A be ann x p matrix having unit/,-norm columns. Then
|AMA =T [l7s < (S = 1)[|A"A = T [|max- (3.10)

Proof: To prove this lemma, consider any arbitrayC [1...p| of cardinality|7’| = S and
let G(T) = (AH AT — Ig). Itis easy to see that each enyy;(T),i,j = 1,...,5, of G(T)
corresponds to one of the entries in thalow Gram matrixG = (A"A —1,). Therefore, we

have the trivial inequality
1G(T) |lmax < |G|l max- (3.11)

Further, we have that the main-diagonal enttig$7’),i = 1,...,S, of G(T') are zero since
the main-diagonal entrieg;,7 = 1, ..., p, of G are zero—a simple consequence of the fact that
each column ofA has unit/s-norm. Therefore, the centers of all GerSgorin’s disceeiased with
G(T) are zero and, from (3.11), their radii are upperbounde@by 1)||G || max- Finally, note that

this assertion is true regardless of the choic& oT hat is?
Di(G(T)) c{zxeR:|z| < (S =1D|G|max}, i =1,...,5, VT (3.12)

which implies that| G(T) |2 < (S — 1)||G||max ¥ T'. This completes the proof of the lemma since
this leads td|A"A — 1|75 = max IG(T)]l2 < (S — 1)||G||max- n

I'Note that Gersgorin’s discs in the complex plane are in@stgorin’s intervalon the real line in this case since
we are dealing with Hermitian matrices.
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An immediate consequence of Lemma 3.3 is that it allows usdeegthat a given (appro-
priately normalized) sensing matrix € RIP(S,ds) by showing thaf| A"A — T, ||,..., is close
to 65/S (with high probability). Next, we provide a lemma that wik helpful in the proofs in
describing the tail behavior of the distribution[pA"A — 1, ||,.... The following result—known

asHoeffding’s inequality—first appeared in this form in 1963 in [85].

Lemma 3.4 (Hoeffding’s Inequality) Let =1, z-, ..., zy be (real-valued) independent bounded

N
random variables satisfying < z; < b;,i = 1,..., N, almost surely. Defin€y = > x;, then

=1
foranyt > 0

2t
Pr (|Sy — EISw]| > t) < 2exp <_Eﬁil(bi—ai)2>' (3.13)

We are now ready to establish RIP for the full Toeplitz ma&sicdescribed in (3.5) when the

generating sequencé, is a Rademacher sequence.

Theorem 3.5 Let the elements of the generating sequeAge= {a;}*_, be i.i.d. realizations of
Rademacher random variables taking valtigg+/k with probability 1/2. Let A—as defined in
(3.5)—be then x p full Toeplitz matrix generated by the sequendg wheren “p 4 (p—1).

Then for anyds € (0, 1), there exist constants andc, depending only ois such that whenever

k> cS%logp, A € RIP(S,ds) with probability exceeding — exp (—cik/S?).

Proof: Trivially, since the columns oA have—by construction—unft-norms, we have from
Lemma 3.3 thaf APA — |75 < (S — 1)[|[AMA — L ||,nax - Therefore, we only need to study
|AHA — I, || max in Order to prove that\ € RIP(S, ds). Next, note that

HAHA - IpHmaX = max }<ajv aZM
7]
“ max |(a;, ;)| (3.14)
1<)
wherea; € C" denotes the-th column ofA and(a) follows since|(a;, a;)| = |(a;, a;)|. We can

explicitly write an expression for the inner prodyat;, a;), assumingd <i < j < p, as

k—A
(aj,a:) = ) aqag4a (3.15)
q=1
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whereA (j —i). Observe thaﬂaj,ai)} cannot be bounded through the use of Hoeffding’s
inequality since the terms in the above sum are not mutuadlgpendent. For example, consider
the case of = 1, j = 2, andk = 5. Then(ay, a;) = ajas + asas + agay + agas, and the first two
terms are dependent (duedQ, as are the second and third terms (dug)oetc. Notice, however,
that the first and third terms and the second and fourth terenmdependent, which suggests that
the entire sum can be written as two sums of mutually indepetrteérms.

We now prove that this is true in general. That(ts;, a;) for any: < j can always be written
as two sums having mutually independent terms. To estatblisitlaim, rearrange the summands

in (3.15) as follows

I
MD
el

(a;, &) Agt(r—1)A QgirA

1 r

Sia+SaA+-+San (3.16)

L=}
Il
Il
—

%57

whereS, A = i Agt+(r—1)A Agra,q = 1,..., A. Notice that (i) allS, A’s in the above expres-
sion are mutuaﬁ;lindependent since every element of thergéing sequencd,, only appears in
at most one of the&, A’s, and (ii) every term within any, » is only dependent with its adjacent
terms in the samg, A. Consequently, if we index the individual summands in (Bfiém 1 to

(k — A) then it is easy to see that all the odd-indexed terms in (3Ml6pe mutually indepen-
dent, as will be the even-indexed ones. Finally, partitigrthe indexed sum (3.16) into odd- and

even-indexed terms, followed by a reindexing yields

[452] |52 ]
(aj,az-> = Z a:h + Z a;2 (317)
1=1 =1
q q2
Sky,A Sko,A

where{a/ } and{a,} consist ofk; ) max {0, [552]} andks, wf max {0, |52} i.i.d. Rade-

macher random variables, respectively, that take vattied with probability 1/2.
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We are now ready to bounda;, a;)| by applying Lemma 3.4 to its components Sufisa

andSy, A havingk; andk, terms, respectively, as follows

ds ds ds
9. A I

Pr(‘(aj,al)‘ > S) < Pr ({\skl \>25} {|sk2A\>25}>

(<)2max Pr<|S | > s ) Pr <|S | > 6S>
DT 281798

(c) k252 /{5252
< 2 2 2 ——5 5. 1
< max{ exp( < 52) ex p( 8k252)} (3.18)

Here,(b) follows from a simple union bounding argument gagfollows from Lemma 3.4. Next,

notice from the definitions of, andk, thatk/2 > k; > ko forany A > 1. Therefore, we can

further simplify (3.18) as follows

2
Pr (}(aj,aiﬂ > %S) < 4dexp (—%) ) (3.19)

We have now established thidh;, a;)| < d5/.S with probability exceeding — 4 exp(— 452)
for anyi < j. To prove thatA € RIP(S,ds), however, we need to evaluate the probability that

|APA — I||max < d5/S. To this end, we make use of (3.14) and obtain

53 53
Pr <||AHA — I, |lmax > §> = Pr <nlqu} (aj,a;)| > §>

(d) ko2
< 2p(p—1)exp (—4—552) (3.20)

where(d) follows from taking union bound over a total pfp — 1)/2 events. This implies that for

c1 < 62/4andk > (12/(6% —4c1))S%log p, we have| APA — T |75 < (S —1)|ATA =L, || max <

ds with probability exceeding — exp (—c1k/S5?), which is what we needed to show. |
Given the structural similarities between full and parfiaéplitz matrices, the tools and tech-

niques used in the proof of the previous theorem can also fléedpn the case of partial Toeplitz

matrices. This leads us to the second main result of thigosect

Theorem 3.6 Let the elements of the generating sequedge= {a;}*_, be i.i.d. realizations of
Rademacher random variables taking valttés/n with probability1/2. Let A—as defined in
(3.6)—Dbe then x p partial Toeplitz matrix generated by the sequerdgewheren “g— (p—1).
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Then for anyds € (0, 1), there exist constant$ andc, depending only oiag such that whenever
n > cyS?logp, A € RIP(S,d5) with probability exceeding — exp (—c;n/S?).

Proof: The proof of this theorem proceeds in a similar fashion taotto®f of Theorem 3.5. In

particular, the inner produgh;, a;), assuming < ¢ < j < p, in this case can be expressed as

n

(aj,a;) = Z Ag+Ay Ag+Ar+As (3.21)

q=1

whereA, % (p—j)andA, «f (j — 7). Further, (3.21) can also be shown to consist of two sums
having mutually independent terms by rearranging the sumaisian the expression as follows

\‘ 7L+A2 q J

aj, a;) g E Ag+A1+(r—1)As Qg+ Ai+7rA
r=

= S5+ S2i;++ Sns; (3.22)

\‘n+A27qJ

Ag

where S, ; ; = Yo Ggra(r—1)As Ggia +ras. ¢ = 1,..., Ay, It is easy to see in this case
r=1

too that if we index the summands in (3.22) frdmo » then all the odd-indexed terms in the

resulting sum will be mutually independent, as will be thereindexed ones. Finally, partitioning

the indexed sum (3.22) into odd- and even-indexed termdyiel

4] ]
(g a) = 30, + > (3.23)
q1=1 q2=1
N—— ——
Snying Shng,ij

where{a;, } and{a;, } in this case consist of; «f (5] andny = | 3] i.i.d. Rademacher random

variables, respectively, that take values/n with probability1/2.
We can now boun@(aj, ai>‘ by once again applying Lemma 3.4 to its components sgims;

ands,, ; ; as follows
Pr <}(aj,ai>‘ > %) < 2max{Pr <|Sn1,i,j| 5;) Pr <|Sn1 il > 25)}

252 252
< 2max {2 exp (—SHT(;%) , 2 exp (—87;2552) } . (3.24)
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Finally, notice from the definitions af,; andn, thatn > n; > n,. Therefore, we can further
simplify (3.24) and obtain the following probabilistic bodifor || AHA — I,||max

Pr <HAHA — L]l max > %) = Pr <max [(a;,a;)| > %)

1<J

nd>
< 2p(p —1)exp <—8—S‘§> ) (3.25)

The above expression implies that fgr < 6%2/8 andn > (24/(6% — 8¢;))S?logp, we have
JARA —T,||l7s < (S —1)|A"A — I |[max < 05 With probability exceeding — exp (—¢jn/S?),

sinceA has unit/,-norm columns. This completes the proof of the theorem. |

3.4 On the RIP of Gabor Matrices

In this section, we continue our discussion of structurech@®ices by focusing on the class
of Gabor matrices, which is a natural extension of the cl&é3®eplitz matrices. Specifically, let
A, {a; € C}¥_, denote &-length generating sequence for soine N. Further, letZ, > 1 and
M > 0 be two integer parameters such that< (k — 1)/2, and defin€T to be ann x L Toeplitz

matrix that is generated from the sequenteas follows

ap 0
5)

.. aq

T = (3.26)
Qg as
0 ag
def . def [ . . T .
wheren = k+ (L —1). Finally, letw,, = |e/%mk eﬂ("—l)“wk] denote the collection

of n samples of a discrete sinusoid with frequengy, el 27, m € [-M ... M], and define

corresponding: x n diagonalmodulation matriceasW,, = diag(w,,). Then the “full” Gabor

matrix generated from the sequendgis a block matrix of the form
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Here, the Gabor matrbA—or Gabor system matrix, as it is sometimes called in theditee
[86]—has dimensions x p such thatp = L(2M + 1). In words, whereas the columns of a
Toeplitz matrix are given by downward linear shifts 4f,, the columns of a Gabor matrix are
given by downward linear shifsnd modulationgfrequency shifts) of the generating sequence. In
particular, it is trivial to see from (3.5) and (3.27) that al#6r matrix reduces to a Toeplitz matrix
for the case of\/ = 0.

Gabor matrices of the form (3.27) naturally arise in appices involving linear, time-varying
systems, and are frequently encountered by researchekigan the areas of communications,
signal and image processing, and optics [87]. Similar toctme of Toeplitz matrices, the main
guestion we address in this section is whether Gabor matgeaerated from a Rademacher se-
guenceA, satisfy RIP. In particular, note that since a Gabor matriregated from a random
sequence has statistical dependence both arandgvithinits rows (unless\/ = 0), it is quite
reasonable to expect—when compared with Toeplitz matreestricter requirement oinfor Ga-
bor matrices to satisfy RIP. Using some of the tools desdribbéhe last section, however, we prove
in the sequel that Gabor matrices also only reqkire (52 log p) in order to satisfy RIP of order

S, despite the fact that they tend to have more structuralribpeies.

Remark 3.7 It is instructive to note here that—unlike the case of fulepbtz matrices—Gabor
matrices can be either underdetermined or overdetermiegendiing on the choice of the param-
etersk (the length of the generating sequende)the number of shifts), and/ (the number of
one-sided modulations). In particular, for the speciakaafs\/ = (k — 1)/2 andk = L > 1, we

have that the: x p Gabor matrices are highly underdetermined witk |/p/2.

3.4.1 Main Result

The main tool that we will be using to establish the claim th&abor matrixA with entries
drawn independently from a Rademacher distribution satdRIP is again Lemma 3.3. Before
proceeding with a formal proof of the claim, however, it idgfel to state a complex version of

Hoeffding’s inequality that will be used in the proof to dabe the tail behavior of the distribution
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of |[A"A — I,|lmax- The following lemma is an easy consequence of the origiraeffding’s

inequality and its proof is given in Section 3.7.1.

Lemma 3.8 (Complex Hoeffding’s Inequality) Let 1, -, ..., zy be complex-valued indepen-
N
dent random variables satisfying| < a;,i = 1,..., N, almost surely. Defin&y = > z;, then

=1
foranyt > 0

t2
Pr (|Sy — EISw]| 2 t) < dexp (‘@) . (3.28)

We are now ready to establish RIP for Gabor matrices of tha {&.27) when the generating

sequenced, is a Rademacher sequence.

Theorem 3.9 Let the elements of the generating sequedge= {a;}*_, be i.i.d. realizations
of Rademacher random variables taking valtdg /% with probability1/2. Let A—as defined

in (3.27)—be then x p Gabor matrix generated by the sequente wheren “ 4 (L—-1)

andp L(2M + 1) for integersL > 1 and M > 0 such thatd/ < (k — 1)/2. Then for any
ds € (0, 1), there exist constants andc, depending only ois such that whenevér > ¢,5? log p,

A € RIP(S,ds) with probability exceeding — exp (—c3k/S?).
Proof: In the following, we use,, , € C" to denote thé-th column of then-th block, W,,, T,

of the Gabor matrixA, where—M < m < M andl < ¢ < L. It can be easily seen from the
definition of A in (3.27) that

k
||am’zHg g Z ‘aq ej(z"‘q_Q)wnL,k 2 _ 1 (3.29)
q=1

Therefore, we have from Lemma 3.3 th&" A — L,|l7.s < (S —1)||AYA — I, || max @nd—similar

to the case of Theorem 3.5—we only need to study

H
[A"A = I[[max = (m,fr)gf%i’,f’) }<am’,é’7 am,é)} (3.30)

in order to prove tha\ € RIP(S,ds). Further, note that sincBa,.e, am¢)| = |(am.e, anme)|,

the following relationship also holds trivially
{[@mesamd| : (m. ) # (', 0)} =
{}(am’,é’a am,€>‘ m 7& mla = g/} U {Ram’,ﬁ’a aml)} < El} (331)
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The above expression suggests that there are two main tateget need to evaluate here in
order to calculatg A"A — T, ||,... In the first case, correspondingito# m’and? = ¢/, we have

the following equality from the orthogonality of discreiassoids

k
<am’,£’7am,5> = E a €J(Z+q 2)(wmlk Wm, k)

q=1

—_

k—
E Z IND (/) b — 0. (3.32)
n=0

In the second case, corresponding to ¢/, defineA = = (¢’ —¢) and note that the inner product
(ame, am ) in this case can be written as

k—A
- ' €,+ —2 Wi —j(l+q+A-2 Wm k
(amw, am,Z> = E (TMPEN 6]( q-2) "ke Jj(l+q Y,k

q—l

??‘

@ Z ggrn €T b (3.33)

g=1

where(a) simply follows from the observation thét = ¢ + A. Notice that we are once against
faced with the situation that the terms contributing to tiveer producta,,, ., a,, ¢) are not mutu-
ally independent. It is instructive at this point to comp@e3) with (3.15). Given the similarities
between the two expressions, it is easy to see that—sirpithetcase of (3.15)—the sum in (3.33)

can also be written as two sums having mutually indepeneéemst as follows

(s, A ) Z a 6J¢q1—|— Z a e”’q? (3.34)

=1 qa=1
- N -
Vo WV
Sky Skqy

where{a,,} and{a/,} consist ofk; < max {0, [£521} andk, “ max {0, |[552]} i.i.d. Rade-
macher random variables, respectively, that take vattigs: with probability1/2, and{¢,, } and
{¢4, } are some arbitrary (but deterministic) phase factors. NKudéwhile the component sums
Sk, andsS, in (3.34) depend upon the parametersn’, ¢, and?’, we have suppressed this explicit

dependence so as not to clutter the notation.
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We can now bound(a,,,,«, a,, )| for the case’ < ¢ by applying Lemma 3.8 t&), and.Sj,

havingk, andk, terms, respectively, as follows

ds 0s 0s
Pr <‘(am/7g/,am,g>‘ > g) < Pr <{|Sk1| > %} U {|Sk2| > %})

(2 2maX{Pr <|Sk1\ > %),Pr (|Sk2\ > 5—;)}

(C) ]{5252 ]{3252
<92 4 — S 4 — S . 3.35
= max{ eXp( 16k152>’ eXp( 16k252>} (3.39)

Here, () follows from a simple union bounding argument ggg follows from the complex Ho-

effding’s inequality. Next, notice from the definitions bf andk, thatk/2 > k; > k, for any

A > 1. Therefore, we can further simplify (3.35) as follows

Pr ( [(@me,a )\>5—S < Sexp =15 (3.36)
m/ 0y Am S = p 852 . .

We now have from (3.32) and (3.36) thidh,,,.., a,¢)| < J5/S with probability exceeding
1— 8exp(—%) for any (m, ¢) # (m/ ¢'). Finally, to prove thatA € RIP(S,ds), we can make
use of (3.30) to evaluate the probability thia@"A — I,||,.x < ds/S as follows

Pr (HAHA — Ly [lmax > %S) < Ap(p — 1) exp (—]g—g‘%)
where(d) follows from taking union bound over a total pfp — 1) /2 events (since the cardinality
of the set{ | (a,e, ame)| : (m, £) # (m/, ')} isp(p — 1)/2). This implies that for; < 6%/8 and
k > (32/(6% — 8cs))S?log p, we have| AFA — L [[7s < (S — 1)[[APA — I|[max < 05 With

probability exceeding — exp (—c3k/S?), which is what we needed to show. |

3.5 On the RIP of Structurally-Subsampled Unitary Matrices

In this section, we further our discussion of structured C&rives by studying the class of
structurally-subsampled unitary matrices, which—as wi stiortly see—is a generalization of
the class of subsampled unitary matrices. SpecificallyAleflg {a; € C}_, denote g-length
generating sequence. Further, leK k£ < p be an integer parameter that dividesand define

m p/k. Next, defineR to be anm x p row-mixing matrixthat is generated from the sequence
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A, as follows

a; ... Qg 0

k41 .. A2k

R = o . (3.37)

O CLp_k+1 e ap

Finally, letU be anyp x p unitary matrix and choose a subskeof cardinalityn = |2| uniformly
at random from the sét ...m]|. Then the structurally-subsampled unitary matAixgenerated
from (A,, U) is a submatrix oiX “/ RU obtained by sampling rows of X corresponding to the
indices inQ2 and renormalizing the resulting columns so that they havie/ghmorms. It is trivial
to see from this description that a structurally-subsachplatary matrix reduces to a subsampled
unitary matrix for the case of, = --- = a, = 1 andk = 1. In order to better motivate the use of
structurally subsampled unitary matrices in CS applicetjdnowever, let us revisit the context in
which subsampled unitary matrices arise in the CS liteeatur

Subsampled unitary matrices were originally introducedeHaartially analyzed—in the mod-
ern CS literature in [7]. Initially, the focus in [7] was onrsgng matrices that correspond to sub-
sampled Fourier matrices. Later, the analysis was advdncdsr by Candes and Tao and Rudel-
son and Vershynin in [8] and [12], respectively, where tha&alished—among other things—that
the idea that a small (random) collection of transform-dionsamples suffice to encode a sparse
signal extends well beyond the Fourier domain. Togetherré¢bults of [7, 8, 12] form the basis of

the so-callegrinciple of incoherent measuremengsated as follows.

It is best to acquire samples of a sparse signal in a maxinradiyherent transform
domainU, where the incoherence is measured by the coherence parargetthe

smaller the coherence parameter, the greater the incategren

The statement of Theorem 2.9 makes this principle matheaitprecise by requiring a randomly

subsampled unitary matrix to haxe= Q(u%;S x polylog(p)) rows in order for it to satisfy RIP with

2The coherence parameter gets its name from the fact that wevice ;i1s def VPmax, ; [(ug, e;)|, whereu;

denotes thé-th column ofUH ande; denotes thg-th column ofl,,.
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high probability. Note that sincey = VvPmax; ; |u; ;|, we have that (i) the coherence of a unitary
matrix cannot be smaller than and (ii) unitary matrices with entries of magnitud¢1/,/p) are
maximally incoherent. In other words, transform domairshsas Fourier, composition of Fourier
and wavelet, and Hadamard are all maximally incoherent aedtherefore, particularly well-
suited for acquisition of sparse signals.

It turns out that a number of real-world signal acquisitigatems already adhere to the princi-
ple of incoherent measurements due to various physicabatethnological reasons. For example,
data acquired by magnetic resonance imaging (MRI) scamratsally correspond to Fourier-
domain samples of the object being imaged [88]. Similatarmel measurements collected by a
communications receiver using multicarrier modulatiolneirently correspond to Fourier-domain
samples of the channel being estimated [89]. As such, tlseaeniatural fit between the theory
of subsampled unitary matrices and these two applicatasmsoted in, e.qg., [14, 48]. If the ob-
ject being imaged happens to be sparse in the spatial doh&inaipplying Theorem 2.9 to MRI
can potentially speed up the scan time by reducing the nuoftsamples required for successful
image reconstruction [48]. Similarly, if the (single-amt@) channel being estimated happens to
have a sparse impulse response then applying Theorem 2@umel estimation can potentially
increase the efficiency of the communications system byadieduhe number of measurements
required for successful channel estimation [14].

Contrary to these examples, however, our interest in tieisseis in acquisition systems that—
despite sensing sparse signals in an incoherent domairretaampleindividual coefficients
in the transform domain. This indeed happens in a humberaifwerld systems because of
a multitude of physical constraints and/or technologigaithtions. For example, the impulse
response of a multiple-antenna channel generally livesthree-dimensional (3-D) space but a
communications receiver using multicarrier modulation caly acquire 2-D projections of its
3-D Fourier-domain samples (physical constraint). Sirtyijat is generally desirable to project an
ultrawideband signal with limited spectral content ontanveaer spectral band before sampling
it since random nonuniform sampling to acquire the signalloa very sensitive to timing errors

(technological constraint).
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In the parlance of CS, the sensing matrices in both the ateméoned cases now correspond
to subsampled versions & = RU (instead ofU), whereR is the row-mixing matrix andJ is
the transform domain matrix. In particular, it is easy to #e# the theory of subsampled unitary
matrices is not easily extendable to structurally-subdadwnitary matrices, except for the trivial
case ofR being a diagonal matrix (in other words= 1). As such, the main question we address
in this section is whether structurally-subsampled uyitaatrices generated frofa\,, U) satisfy

RIP for the nontrivial case of > 1 whenA,, is a Rademacher sequence.

3.5.1 Main Result

The main tools that we will be using to establish the claint ¢hstructurally-subsampled uni-
tary matrixA with entries drawn independently from a Rademacher digioh satisfies RIP come
from the classical theory of probability in Banach spacé&g.[Fhe general roadmap for the proof
is similar to [12, Theorem 3.3], which is now a well-estab&d technique in the CS literature for
establishing RIP of subsampled matrices [18,91]. In paldic the proof relies heavily on an up-
per bound on expecteéd’, S)-norm of sum of independent rank-one matrices that was lestiad
in [12, Lemma 3.8]. In the following, we describe the basepsttaken to establish a formal proof
of our stated claim.

First, we assume that the elements of the generating seguene- {a;}”_, are i.i.d. real-
izations of Rademacher random variables taking vatbéswith probability 1/2, and the sens-
ing matrix A is generated fronj.A,, U) according to a Bernoulli sampling model. That is, let
(1, - -, (n be independent Bernoulli random variables taking the valuéth probability n/m,

wherem %</ p/k for some positive integer that dividesp. Then,
QY G =1) (3.38)

and the structurally-subsampled unitary matixs a (normalized)Q2| x p submatrix ofX “I RU
obtained by sampling(?| rows of X corresponding to the indices 2 and renormalizing the
resulting columns by/m/n. Here,R is them x p row-mixing matrix of the form (3.37). Note

that—unlike the uniformly-at-random sampling model—thedinality of(2 in Bernoulli sampling
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model is a random variable with[|2|] = n. We then have the following lemma that shows that

the Gram matrixA™ A = T, in expectation.

Lemma 3.10 Let A be ann x p structurally-subsampled unitary matrix generated fromaddR

macher sequencé, according to a Bernoulli sampling model (as described abdusen,
E[APA] =1, (3.39)

Proof: Leta!' € C? denote the-th row of A. Then it is easy to see that" A can be written

as a sum of rank-one matrices as follows
€] p
AFA =S aal = PN cxx" E[AMA] = E[X"X 3.40
gaaz n;o«x, = E[AMA] = E[X"X] (3.40)

wherex!' denotes the-th row of X. Next, from the definition o, we can write an expression

for x in terms of elements of the generating sequedg@and the rows olJ as follows
k

xH = Z A(i—1)k+e u'&_l)kH, i1=1,...,m (3.41)

(=1
whereu!! denotes the-th row of U. With the help of the above expression, we can further write

the (7, j)-th entry ofX as

Z1k+g’d(21k+g],’izl,...,m,jzl,...7p (342)

M»

whereu; ; denotes thei, j)- th entry ofU. Itis then easy to see from this expression that

E[.T «TZJ ZZE A(i—1)k+q Q(i— 1)k+7"]u(2 Dk+q,j Y(@E—1Dk+r,j’

qg=1 r=1
k

= Uity WDkt 52T = 1D (3.43)

q=1
Finally, define the Gram matris& %/ XHX and note from (3.43) that the expected value of
the (4, j)-th entry of G, g;; = >, 2} ;z¢;, IS given by

m
gw § :Exhxgj § E ue Dk+q,i W(—1)k+q,j

/=1 q=1

= ZUZZ-U&]' @ 52‘]‘, Z,j = 1, Lo, P (344)
/=1

Ed
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where(a) follows from the fact thalU is a unitary matrix. This completes the proof of the lemma
since (3.44) implies th&[G] = I, = E[A"YA] = I, from (3.40). |
Second, we use Lemma 3.10 to establish fidt A —I,||r s cannot be too large in expectation
for large-enough values af. The proof of this result, however, is a little more invohest makes
use of a number of auxiliary lemmas. The most important lertirawe will need in this regard

is the following one, due to Rudelson and Vershynin [12, Len#8].

Lemma 3.11 (Rudelson—-Vershynin)Let z,,...,z,, r < p, be vectors inC? with uniformly
bounded entries|z;|| < K for all i. Further, let{¢;} be i.i.d. Rademacher random variables

taking valuest1 with probability1/2. Then
E [H ;giziz? T’J < B(r) - H ;ziz?

whereB(r) s K+/Slog (S)v/log py/Iog r for some absolute constamnt > 0.

1/2
(3.45)

7,8

In order to make use of Lemma 3.11, however, we require theesrf A to be uniformly
bounded by some numbér. To this end, we will make use of the classical Khintchinegunadity

fori.i.d. Rademacher random variables [90, Lemma 4.1].

Lemma 3.12 (Khintchine Inequality) Let {¢;} be i.i.d. Rademacher random variables taking
values+t1 with probability1/2. For anys € (0, c0), there exist positive finite constants and D;

depending on only such that for any finite sequenge; } of complex numbers

cs(; o?) " < (]| > DR Ds(; i) " (3.46)

In the sequel, we will only be concerned with the upper bourtdhintchine inequality. In that

regard, Haagerup proved in [92] that the best constanh (3.46) for the case of real numbers is

1, if0<s<2,

1/s i
21/2<F((L\/;>/2)> , if 2 <s < oo,

* dif

(3.47)

whereD'(z) & J, - t=te7tdt is the Gamma function. Note thd?; is also a valid constant in

the case of complex numbers, since if the upper bound in thetéhine inequality holds for real
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numbers with some constant then it also holds for complexaanswith the same constant. We are
now ready to prove that the entries of the structurally-anfy@ed unitary matribA cannot be too

large. The technigue used to establish the following lemswaiy similar to that of [18, Lemma 5].

Lemma 3.13 Let A be ann x p structurally-subsampled unitary matrix generated fromaddR
macher sequencé, according to a Bernoulli sampling model (as describederlThen for any

integerp > 2 and anyr € [2,2logp|, we have

(BIIA )" < 2 (EDX ) < f 1252, @.48)

Proof: Note that since\ is just a normalized submatrix &, the first inequality in the lemma
is a trivial consequence of the definition Af The second inequality in the lemma can be estab-
lished by first focusing on thé&, j)-th entry of the matrixXX = RU. It is easy to see from the
definition of z; ; in (3.42) that for any € [2, c0)

Vs (a) k 1/2
(EU%HSD < D:(Z ‘“(i—l)k%j‘z)
/=1

®) D
g%,i:1,...,m7j:1,...,p (3.49)

where(a) follows from the Khintchine inequality (Lemma 3.12) afid follows from the fact that
lu; ;| < pu/y/p Vi, j =1,...,p. Next, we make use of the above inequality and the Holder's

inequality to bound the-th moment of|| X||,,.x. Note that for any < r < s, the following holds

(B0IXI) " < (ExI) "

d
< (mp) e |E[x ]

(mp)"/* D}y

NG

Here, the notatiorEUXH '/* is meant to signify amn x p matrix obtained by taking entry-wise

max

—
INe

(3.50)

s-th absolute moments &. Note that(c) in the above expression is a simple consequence of the
1/s 1/s
Holder’s inequality,(d) follows from the fact tha E[||XanaXD < (ZMEU%F}) , and
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(e) simply follows from (3.49). Now chooseto be the smallest even integer such that it satisfies

s > 2logp > r, then we have from Stirling’s formula

! 1/s (f)
b= <2/287(8/2)') <2V /sfe < 25/*\/logp/e (3.51)

where( f) mainly follows from the fact that, by definition, we have< 2logp + 2 < 4logp for
anyp > 2. Finally, note that sinc@logp < s = (mp)'/* < p** < e. This trivial observation,
combined with (3.50) and (3.51), gives us the second ingégualthe lemma. |

All the pieces are now in place to bouRd||A"A — I, ||| using Lemma 3.11 and techniques

developed in probability in Banach spaces [90].

Lemma 3.14 Let A be ann x p structurally-subsampled unitary matrix generated fromaddR
macher sequencé, according to a Bernoulli sampling model (as described&arlThen for any

integerp > 2 and anye € (0, 1), we have
E[|A"A —T,[[rs] <e (3.52)
providedn > cg e 213, S log® plog® S for some absolute constant > 0.

Proof: To establish this lemma, first defirie </ E[||A"A — L,|I7.s]. Next, we have from

Lemma 3.10 thaE[A" A] = 1. Therefore, it follows from (3.40) that

p
%zgx;xﬁ] (353)
=1

where {¢/} and {x]"'} are independent copies of the Bernoulli random variafle$ and the

L, =Eox

(random) row vector$xi”}, respectively. Consequently, we have from (3.40) and (318

T,S]
T,S]
T,s]

] . (3.54)
T,S

p

3 (!~ Bew[ixix])

i=1

p
m
117
— E (Cin‘X? - inXz'H>
n <
i=1
p

(b) m H 1! H
= E¢ ¢rxxe gE gil Gixix; — (XX,

i=1

m
H
— E €iQ‘Xz‘Xz
n <
=1

E =Ty

(a)
S EC,C’,X,X’

(c)
S 2 Eﬁ,x,a
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Here, {¢;} are i.i.d. Rademacher random variables taking vatiéswvith probability 1/2 that
are independent of all other random variables. Note thatin the above expression follows
from Jensen’s inequality singe- ||r s is @ norm (Lemma 3.1)(b) follows from the fact that
{Qxix ;x;x;H} is a sequence of independent, symmetric (matrix-valuewtjamn variables
and therefore has the same distribution{@(gixix Z’x;x;H)} [90, pp. 150-151], andc)
follows from the triangle inequality (again, singe|r s is @ norm) and the fact that the distributions
of {¢/} and{x"} coincide with the distributions of¢;} and{x!'}, respectively.

We can now once again appeal to (3.40) and WHfE”_, ¢,¢x,x! = 12 ¢,a,al. Therefore,

we have from (3.54) and Lemma 3.11 that
1€2]

2]
Y eaal B(|9) - HZaia?
=1 =1

where B(|Q]) = ¢ || Al|maxV/S log (S)+/Tog py/log [Q]. Next, we can use Cauchy-Schwarz in-

equality and Lemma 3.13 to obtain

12
B(0l) - | S aat|| | < esv/Slog (5) Viogp x
i=1

x \/f (ElIx12]) " (B 10g 1)) ( [HZaz D/ (3.56)

1/2 .
Further, we also have from Lemma 3.13 tfq,a@( [HXHmaX]) </ 16“%% from Jensen’s

inequality thatE[log |Q|} < logn, and from triangle inequality (by adding and subtracting an

identity matrix inside the norm) tht>"12, a;al'||, , < | T2, aa

E <2E.. < 2E, (3.55)

7,8

"' —1,||;. s + 1. Collecting all

these facts together, we can rewrite (3.55) as

8cspu /S log (S) log (p)vTogn
E< NG

which implies that? < e whenevemn > cg e 2u2; Slog® plog? S, where the constant < 256 k.

(E+1)Y2 (3.57)

Here, the last assertion follows from the simple obsematiatz < bv/z+1 = 2z < 20,
wheneveh < 1. This completes the proof of the lemma. |
Finally, we show thaf| A" A — 1,75 concentrates around its mean with high probability. To

establish this fact, however, we need one additional dakssult from the theory of probability in
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Banach spaces. The following result is originally due toduedand Talagrand [90, Theorem 6.17]

and appears in the following form in [12, Theorem 3.10].

Theorem 3.15 (Ledoux—Talagrand)Let 5 = (X, |I-lx) be a Banach space. Further, &t} ,
be independent, symmetric random variable8 isuch thai|Y;||x < B for everyi almost surely.
Finally, definey” %/ | =X, Yi|| . Then for any integers > ¢, any¢ > 0, and some absolute
constant; > 0, Y satisfies
Pr (Y > 8¢E[Y] + 2rB +1t) < (ﬁ)r + 2exp (—L) : (3.58)
q 256¢E[Y]?
We are now ready to establish RIP for structurally-subsadhphitary matrices generated from

(A,, U)whenA, is a Rademacher sequence.

Theorem 3.16 Let the elements of the generating sequedge= {a;}”_, be i.i.d. realizations of
Rademacher random variables taking valttdswith probability 1/2. Further, letR—as defined
in (3.37)—be then x p row-mixing matrix generated by the sequentg wherem = p/k foran
integer parameter € [1 ... p| that dividesp. Choose a subseét of cardinalityn = |2 uniformly
at random from the sdt ...m]. Finally, letU be anyp x p unitary matrix, and letA be the
n X p matrix obtained by sampling rows of X “ RU corresponding to the indices {n and
renormalizing the resulting columns W Then for each integer, S > 2, and for any: > 1

and anyds € (0, 1), there exist absolute constantsandc, such that whenever
n > cszpdSlog® plog? S (3.59)
the matrixA € RIP(S, ds) with probability exceeding — 20 max { exp (—cgd22) ,p_l}.

Proof: We begin by recalling the result established in [7, Secti@®)}, 2vhich states that if it
can be shown that subsampled matrices in a particular dés$/sRIP with probability exceeding
1 — n for the Bernoulli sampling model, then it follows that sulvgded matrices belonging to the
same class satisfy RIP with probability exceeding 27 for the uniformly-at-random sampling
model. As such, we initially assume that the structurallipsampled unitary matriA is generated

from (A, U) according to a Bernoulli sampling model.
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fle]

Next, consider the Banach spaé=/ (C»**, | - |r.s) and define random variablda; }”

and{?i}le that take values i as follows

e 1 <7 e
Y, Y Mexxt — 21, and Y, Y T(Qxixf' - fx'.fo), i=1,....,p  (3.60)
p n

1NN
n

where, as beforq,g-} are the Bernoullirandom variables arising in the Bern@atnpling model,
{x}'} denote the rows X = RU, and{¢/} and{x"} are independent copies §f; } and{x!'},
respectively. In other words, each random variaiiledéf Y, — Y/ is a symmetric version of the
corresponding random variab¥;, whereY denotes an independent copy¥f. In particular,
we have that the random variabJe”_, Y, in B is a symmetric version o§.?_, Y, and, as a

consequence, the following symmetrization inequaliti@sl fior all . > 0 [90, Chapter 6]

E{Hé?i Tvs] < 2E[H§Yi —E[gyi}

} , (3.61)
T,S

P Ld -
pe (|32, > =] 0w, ) o) <2 (300

There are two key observations that can be made here. Fiestaw bound the expected value

of Y | S Yi|lrs using (3.61) and Lemma 3.14 since ) >-7_, Y;] = 0 (Lemma 3.10),

and (i)Y «f 1> Yi|lrs = |A"A — I,||rs. Second, we can obtain a large-deviation bound

> u> . (3.62)
T,S

for Y using (3.62) and Theorem 3.15 since—by constructi@[l’f%f:1 are independent, symmet-
ric random variables i8. Before can use Thereom 3.15 to characterize the tail behafiY,
however, we need to establish thaix; | Y;||z.s < B for someB.

To this end, we first establish thatax; { /2 ||x{'||, \/Z|/x;"||s } cannot be too large with
high probability. Specifically, note from Lemma 3.13 thatave forr = 2logp

Pr <\/§HXHW > \/@) <Pr <HXHW > JE(E[IIXII’”maXDl/r)

= Pr (|[X[},0 > ¢ E[I1X [
@ E[lIX[a] _ (3.63)
- 67“/2 E[HXHT } '

max
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where(a) follows from a simple application of Markov's inequalityeit, define’, el M#
Then we have from (3.63) that

oo ({21l VE Ul - VB S s

whereX’ is comprised of x;"} as its rows (in other word% is an independent copy &), and

(b) follows from a simple union bounding argument. Further, Vee have

_ m H 1! H
mae [¥] = mae | (o = G
(gmax{Hm XZH —i—H— ; QH) }
< max{ \/7HXH||OO + 8 \/7||X/H||oo }
(e)
< S (o IX e+ X0 (3.65)
where(c) mainly follows from triangle inequality,d) is a simple consequence of the definition

def

of (T, 5)-norm, and(e) follows from the fact that| X || = max; |[x"|ls (and in the same

max

et max; ||x/"«). It is then easy to see from (3.63) and (3.65) that we have

s

max; || Y;||r.s < 25B; with probability exceeding — 2p~"
Finally, define the event = { max; ||3~(Z-||T75 < QSBl}. Then, conditioned on this event, we

have from (3.61), Lemma 3.14 and Theorem 3.15 that wheneverg e 22 Slog® plog® S

~ cr T t2
> - Y .
Pr <Y_ 16qe+4rSBl+t\E) < (q) —0—26Xp< 1024q€2) (3.66)

for any integerr > ¢, anyt > 0, and anye € (0,1). Next, choose; = [ecr], t = 32\/qne,
andr = (253 | for somen > 1. Further, define a new constatgt max{e\/a, s} and let

n > cge 2 Slog® plog® S. Note that this choice of ensures > ¢, resulting in

oy fn 2
> —n7). :
Pr <Y > (16q + 96\/6_]77)6‘E) < exp ( 3/~L2 Slogp + 2exp (—n?) (3.67)
We can now get rid of the conditioning in the above expresbipmoting thatPr(E¢) < 2p~!,
which in turn implies

v Vanen 2 -1
> —_ — . .
Pr (Y > (16q + 96\/577)6) < exp ( S Slogp) 2O (=?) +2p (3.68)
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In the end, what remains to be shown is that= || >7_, Yi|lrs = |APA — L |jrs < ds
with high probability. To this end, note thatif > cg e 212 Slog® plog® S thenE[Y] < e from
Lemma 3.14. Consequently, we get from (3.62) and (3.68) that

Pr <Y > (2 + 16¢ + 96\/671)6) < exp [~ YN e (—n?) +4p~.  (3.69)
- 3u;Slogp

Finally, definec; “ (2 + 16¢ + 96,/7) and note thatjn e > (2 + 16 + 96,/gn)e sincen > 1. If

we now choose = % thengu@f:gp > n? and, therefore, (3.69) can be simplified as
] U

Pr (Y > 55) < 10 max { exp (—09(%2) ,p_l} (3.70)

wherec, & 1/cy andz e/ 1/€*. The claim of the theorem now trivially follows from the diss

sion at the start of the proof. |
3.6 Discussion
3.6.1 Toeplitz Matrices

We have established in Section 3.3 of this chapter that fdl @artial Toeplitz matrices gen-

erated from a Rademacher sequengesatisfy RIP. However, note that similar results also hold

in settings where the entries of the generating sequendedependently drawn from either any

bounded zero-mean distribution or certain unbounded mexan distributions, such as the Gaus-

sian distribution [93]. Similarly, it is easy to see that tiesults of Theorem 3.5 and Theorem 3.6

also apply directly to Hankel matrices, which are Toepditmictured matrices whose entries are

constant along anti-diagonals. In addition, the proof méghe utilized to obtain the results of The-
orem 3.6 can also be used to establish RIP for right-shifieteft-shifted)n x p partial circulant

matrices that are generated from a random sequdpder £ = p > n as follows

Qp Ap—1 -+ o ... as a9 aq

aq Qp Qg as a9

A= 0] (3.71)

Ap—1 Ap—2 ... aq ap oo Qpy1 Qp
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It is also instructive to note at this point that using Lemniat8 establish the RIP of a sensing
matrix is not without its limitations. Specifically, for ageraln x p matrix A with unit /;-norm

columns andh < p, it can be verified that [94, Theorem 2.3]

= 1
APA — Dl > 4|~ — 3.72

which would essentially imply—at best—an= (S?) requirement on the number of observa-
tions for A to satisfy RIP, similar to what we obtain in the proof of Theror 3.6. In particular,
Lemma 3.3 in conjunction with (3.72) leads to the requirentieat2(5?) observations are needed
in order for an i.i.d. random matrix to satisfy RIP. On theethand, we know from Theorem 2.8
thatQ2(S log p) observations suffice to guarantee RIP for i.i.d. randomicesr

Therefore, while one might be tempted to conclude that thklfistructured nature of Toeplitz
matrices results in an increase in the number of obsenatiequired for RIP to be guaranteed
(compared to canonical CS matrices), such a conclusion motemllow from the results estab-
lished in Section 3.3. In fact, it is quite possible that Tidepmatrices do satisfy RIP when
k(orn) = Q(S x polylog(p)), but the mathematical tools currently at our disposal asefin
ficient to establish this stronger result. The takeaway awssere is that Lemma 3.3 provides a
relatively straightforward—Dbut possibly suboptimal—apgch to establishing RIP for structured
sensing matrices.

In the end, we conclude the discussion of our results on Taephtrices with a brief overview
of the connections between the results of Section 3.3 anc sefated existing works. To the
best of our knowledge, Toeplitz-structured matrices weteduced in the modern CS literature
by Tropp et al. in [80] in the context ahndom filters (It is worth noting though that Toeplitz
matrices have been considered in the sparse approximégoatlire even before the advent of
CS—see, e.g., [95].) Nevertheless, no theoretical gueeantere provided by the authors in [80]
and the results reported therein relied exclusively on migaksimulations.

The first theoretical results for using Toeplitz-structuneatrices in CS applications were es-
tablished by us in [96]. In particular, using a novel comhbima of existing results on i.i.d. CS
matrices and equitable coloring of graphs, we showed inTB8prem 1] that x p partial Toeplitz

matrices satisfy RIP of orde$ with high probability, provided. = Q2 (S3log p). This sufficient
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condition is of course more restrictive than what we essaleld in Section 3.3, where we reduced
the exponent o% by one order of magnitude.

Finally, the work that is perhaps most closely related tordseilts presented in Section 3.3 is
that of DeVore [97]. Specifically, it has been shown in [9@ttbertain deterministic constructions
of n x p sensing matrices satisfy RIP of ordgy providedn = ¢* andp = ¢"**! for some prime
integerq and some integer € (0, q), andn = Q (5% log p). Among these deterministic construc-
tions is also a special type of a sensing matkixhat has the property that the elements of the

matrix A satisfy

Q1,54+ = Qi 5 (3.73)

for ¢ % p/n, where the arithmetic on the indices is done moduloHowever, note that such

a construction leads tlolock-circulant matricesn which every row corresponds toright cyclic
shifts of the row above it, as opposed to the generalizatidimeorem 3.6 discussed in this section,
which applies to the “traditional” circulant matrices in \wh every row corresponds tosangle

cyclic shift of the row above.

3.6.2 Gabor Matrices

In Section 3.4 of this chapter, we successfully establighatl (underdetermined or overde-
termined) Gabor matrices generated from a Rademacher resgjgatisfy RIP. In particular, we
showed in Theorem 3.9 that Gabor matrices generated frongueseeA, perform as well as
Toeplitz matrices generated from the same sequence (msdule constants), despite the fact that
Gabor matrices tend to have a lot more structure to them. i¥lsismewhat surprising, especially
since the proof of Theorem 3.9 relies heavily on some of traygical techniques developed in
Section 3.3.1 in the context of Toeplitz matrices. Note thetause of this very reason, some of
the previous comments regarding fundamental limits of Titlematrices also apply to Gabor ma-
trices. Specifically, while Theorem 3.9 asserts that 2(S?log p) is sufficient to guarantee RIP
for Gabor matrices, the analysis carried out in SectionsSiddonclusive as far as the necessity of

this condition is concerned.
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Finally, with regards to the connections with CS literajuhee work in Section 3.4 is closely
related to the recent work of Pfander et al. [98], and Hernmrah $trohmer [20]. Both [98] and
[20] study the problem of identifying matrices that have arsp representation in someatrix
dictionary (basis) [98] looks at this problem in an abstract setting, while][@udies it from
a radar perspective. In particular, the authors in [20, 9@&j@ne—as part of their analysis—
some properties of matrix dictionaries comprising of tifreguency shift matrices, which are
nothing but Gabor matrices. Nevertheless, the work in [8Ddgfers from the work presented in
Section 3.4 in three important respects.

First, then x p Gabor matrices studied in [20, 98] are restricted to haventihreber of rows
n = /p, Which corresponds te = L = (2M + 1). Second, both [20, 98] assume that the
columns ofA correspond to downwardlyclic shiftsof A, as opposed to downwaltdear shifts
considered in this work. In other words, thex L Toeplitz matrixT in (3.26) is actually am x n
circulant matrix in [20, 98]. Third, and perhaps this is thesnimportant difference, the emphasis
in [20, 98] is on finding the coherence [66] of Gabor matricgkile we focus on showing that
Gabor matrices satisfy RIP. Consequently, while we havabéished in Section 3.4 that—given
an appropriate generating sequence—Gabor matrices caassfiglly reconstructny sparse or
approximately sparssignal, the results in [20, 98] only guarantee successfidmnstruction of

mostsparse signals supported oreadom sefl”’ C [1...p|.

3.6.3 Structurally-Subsampled Unitary Matrices

In Section 3.5 of this chapter, we introduced and analyzeevaatass of structured CS mat-
rices—termed as structurally-subsampled unitary magriethat can be thought of as a general-
ization of the class of subsampled unitary matrices. Inipagr, we successfully established in
Theorem 3.16 that structurally-subsampled unitary medrgenerated frofA ,, U), with A, be-
ing a Rademacher sequence, perfomarlyas well as subsampled unitary matrices generated from
the same unitary matrikl. Specifically, Theorem 3.16 for structurally-subsampledary matri-
ces differs from Theorem 2.9 for subsampled unitary madrimeonly a factor ofog p. Note that

this difference is primarily a consequence of the fact thathaximum magnitude of the entries in
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a subsampled unitary matrix is trivially given ly;/\/n, whereas we could only bound the maxi-
mum magnitude of the entries in structurally-subsamplethonmatrices byy \/m. How-
ever, it remains to be seen whether this is a fundamentahctaarstic of structurally-subsampled
unitary matrices or just an artifact of the proof techniqueptoyed in Lemma 3.13. It is also
instructive to note at this point that since the results farcurally-subsampled unitary matrices
should coincide with those for subsampled unitary matrioethe case ok = 1, it is heuristically
plausible to conjecture that the performance of strudyisalbsampled unitary matrices should
deviate from that of subsampled unitary matrices by a fattatris a function of (instead ofp).
Such a conclusion, however, does not follow from the resdtablished in Section 3.5.

Finally, we conclude this chapter with a brief discussiothef connections between the results
of Section 3.5 and some existing works. As noted earliemitrd in Section 3.5 is closely related
in terms of the general proof technique to the work of Romi@dd and Tropp et al. [18] in
general, and Rudelson and Vershynin [12] in particularsThprimarily a consequence of the fact
that the arguments used by Rudelson and Vershynin in [1¥wrstantially simpler (and tighter)
than, for instance, the ones used in [8] to establish RIP ln§aunpled matrices.

In terms of the actual problem, however, our work on strdtywsubsampled unitary matrices
is most closely related to the recent work of Tropp et al. [\8jere they propose a sub-Nyquist
sampling architecture—termedndom demodulatesto acquire sparse bandlimited signals. In
particular, it is shown in [18] that the overall action of tedom demodulator on a sparse ban-
dlimited signal can be accurately described in terms of aisgmmatrix, which the authors term as
arandom demodulator matrixHowever, it is easy to see from [18, Section IV-B] that a @&nd
demodulator matrix is just a structurally-subsampledargitnatrix withU being a Fourier matrix
andk = p/n (in other words, no subsampling). In this regard, our worBéttion 3.5 can also be
thought of a generalization of the RIP analysis of a randomathilator matrix carried out in [18].
Based on the preceding discussion, it is perhaps best th d¢iistructurally-subsampled unitary
matrices as filling the void between the two extremes of sulpséad unitary matrices (maximum
subsampling) and random demodulator matrices (no subsaghgiirough the choice of the design

parametek (with k£ ranging froml to p/n).
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3.7 Appendix

3.7.1 Proof of Lemma 3.8

To establish this lemma, first defiisg; » «f 2 Re(z;) andSNI = Z Im(z;). Further, notice

that since|z;| < a;,i = 1,..., N, we equwalently have thaRe(:cZ)\ < a;,i = 1,...,N, and

[Im(z;)| < a;,i=1,...,N. Therefore,

Pr (}SN — E[Sy]| > t) —Pr ((SMR —E[Snr])’ + (Svs —ElSns])” > t2>
(a)

t t
< Pr <‘SN,R - E[SN,RH > ﬁ) + Pr <‘SN,I — E[SN,IH > ﬁ)

@ e A r (3.74)
X —_—— ex —_—— .
=T T @ P\ @

Here, (a) follows from a simple union bounding argument aigl follows from the original Ho-

effding’s inequality. This completes the proof of the lemma |
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Chapter 4
Estimation of Sparse Multipath Channels

4.1 Introduction

Wireless technology has had and continues to have a profioypact on our society. It is ar-
guably one of the leading drivers of the Information Revioluin the 21st century and is expected
to play an increasingly important role in the global econogrowth as the world transitions from
a manufacturing-based economy to an information-basedoecp. Despite having a history of
more than a century of rapid technological advancemengsfi¢td of wireless communications
remains far from mature. A number of key technical challengfél need to be overcome in or-
der to realize our vision of a future with ubiquitous wirede®nnectivity. Foremost among these
challenges is designing wireless systems that not only@tpgiata rates comparable to that of
wired systems, but also enable increased mobility whilentaming constant, reliable connec-
tivity under resource constraints—energy, latency, anwtlbédth constraints being the strictest
among them. Successfully addressing this and similaregds requires significant technical ad-
vances on multiple fronts. One such front is the developroésignal processing techniques for
estimating multipath wireless channels using minimal veses, and this chapter summarizes the

findings of some of our recent efforts in this direction.

4.1.1 Background

In a typical terrestrial environment, a radio signal enditfeom a transmitter is reflected,
diffracted, and scattered from the surrounding objectd, amives at the receiver as a superpo-

sition of multiple attenuated, delayed, and phase- andéguency-shifted copies of the original
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signal. This superposition of multiple copies of the tranged signal, called multipath signal
components, is the defining characteristic of terrestriathess systems, and is both a curse and
a blessing from a communications viewpoint. On the one himsimultipath signal propagation
leads to fading—fluctuations in the received signal stierghat severely impacts the rate and
reliability of communication [21,99]. On the other handsearch in the last decade has shown
that multipath propagation also results in an increaseemtimber of degrees of freedom (DoF)
available for communication, which—if utilized effectiye—can lead to significant gains in the
rate (multiplexing gain) and/or reliability (diversity @ of communication [22,100]. The impact
of fading versus diversity/multiplexing gain on perfornsarcritically depends on the amount of
channel state information (CSI) available to the system.ekample, knowledge of instantaneous
CSI at the receiver (coherent reception) enables explaitaf delay, Doppler, and/or spatial di-
versity to combat fading, while further gains in rate andhtality are possible if (even partial) CSI
is available at the transmitter as well [21].

In practice, CSl is seldom—if ever—available to communaatsystems a priori and the chan-
nel needs to be (periodically) estimated at the receiverderoto reap the benefits of additional
DoF afforded by multipath propagation. As such, two clasgesethods are commonly employed
to estimate multipath channels at the receivertrdming-based channel estimationethods, the
transmitter multiplexes signals that are known to the remefhenceforth referred to as training
signals) with data-carrying signals in time, frequencyjd/an code domain, and CSI is obtained
at the receiver from knowledge of the training and receivgdas. Inblind channel estimation
methods, CSl is acquired at the receiver by making use ofttiestics of data-carrying signals
only. Although theoretically feasible, blind estimatiorethods typically require complex signal
processing at the receiver and often entail inversion gielatata-dependent matrices, which also
makes them highly prone to error propagation in rapidlyyway channels. Training-based meth-
ods, on the other hand, require relatively simple receivecgssing and lead to decoupling of the
data-detection module from the channel-estimation moaluilee receiver, which reduces receiver

complexity even further. As such, training-based methoeswdely prevalent in modern wireless
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systems [23] and we therefore focus exclusively on themersdquel; see [101] for an overview
of blind approaches to channel estimation.

One of the first analytical studies of training-based ediionanethods for multipath channels
was authored by Cavers in 1991 [24]. Since then, there hasdgeowing body of literature de-
voted to the design and analysis of training-based methardsafious classes of channels. These
works often highlight two salient aspects of training-lwhegethods, namelgensingandrecon-
struction Sensing corresponds to the design of training signals bigete transmitter to probe
the channel, while reconstruction is the problem of praogsthe corresponding channel output at
the receiver to recover the CSI. The ability of a trainingddmethod to accurately estimate the
channel depends critically on both the design of trainimgpais and the application of effective
reconstruction strategies. Much of the work in the chansefretion literature is based on the im-
plicit assumption of aich underlying multipath environment in the sense that the remobDoF
in the channel are expected to scale linearly with the sigpate dimension (product of signaling
bandwidth, symbol duration, and minimum of the number afigrait and receive antennas). As a
result, training-based methods proposed in such works anelyrcomprised of linear reconstruc-
tion techniques, which are known to be optimal for rich npath channels, thereby more or less
reducing the problem of channel estimation to that of desmgaptimal training signals for various
channel classes [24-32].

Numerous experimental studies undertaken by various n&s®a in the recent past have
shown though that physical wireless channels encountangdittice tend to exhibg#parsestruc-
tures at high signal space dimension in the sense that nyag@rihe channel DoF end up be-
ing either zero or nearly zero when operating at large badithwiand symbol durations and/or
with large plurality of antennas [33—-37]. However, tramital training-based methods—relying
on linear reconstruction schemes at the receiver—seerpabta of exploiting the inherent low-
dimensionality of such sparse channels, thereby leadingédcoutilization of the key communica-
tion resources of energy, latency, and bandwidth. Recemtiyymber of researchers have tried to
address this problem and proposed training signals anehs&ction strategies that are tailored

to the anticipated characteristics of sparse multipatimeéls [13, 95, 102—-106]. But much of the
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emphasis in these studies has been directed towards skiaglihe feasibility of the proposed
sparse-channel estimation methods numerically ratherahalytically. A major drawback of this
approach is that the methods detailed in the previous ilgagins lack a quantitative theoretical

analysis of their performance in terms of the reconstractioor.

4.1.2 Chapter Outline

By leveraging key ideas from the theory of compressed sgrfsome of which were discussed
in Chapter 2 and Chapter 3), we recently proposed new tigribased estimation methods for var-
ious classes of sparse single- and multiple-antenna clsatinad are provably more effective than
their traditional counterparts [14,15,107]. In particulae analytically showed in [14,15,107] that
the proposed training-based methods achieve a targetsteaotion error using far less energy and,
in many instances, latency and bandwidth than that dictayetie traditional methods. As in the
case of previous research, the exact nature of trainin@sigemployed by our proposed methods
varies with the type of signaling waveforms used for sengng., single- or multi-carrier signaling
waveforms) and the class to which the underlying multipétdinnel belongs (e.g., frequency- or
doubly-selective channel). However, a common theme uyiderill our training-based methods
is the use of sparsity-inducing mixed-norm optimizatiomecia such as the Dantzig selector and
the lasso (or basis pursuit denoising) for reconstructidhereceiver. These criteria, which have
arisen out of recent advances in the theory of compressathgghave been discussed in extensive
detail in Chapter 2 of the dissertation. In the spirit of coegsed sensing, we term this particular
approach to estimating sparse multipath channet®agpressed channel sensi@CS); the anal-
ogy here being that CCS requires far fewer communicatioouregs to estimate sparse channels
than do the traditional training-based methods.

The goal of this chapter is to complement our existing worlsparse-channel estimation by
providing an expanded view of the key ideas underlying tle®y of CCS. In order to accom-
plish this goal, we focus on five specific classes of multigdiannels within the chapter, namely,

frequency- and doubly-selective single-antenna chanaeld nonselective, frequency-selective,
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and doubly-selective multiple-antenna channels. For eatifese five channel classes, the discus-
sion in the chapter focusses on the nature of the trainingsgised for probing a sparse channel,
the reconstruction method used at the receiver for reaoyehie CSI, and quantification of the
reconstruction error in the resulting estimate. In termmoftieling of the sparse channels within
each channel class, we use a virtual representation of gdlysultipath channels that represents
the expansion of the time-frequency response of a chanretnms of multi-dimensional Fourier
basis functions. It is worth noting though that the main glpeesented in the chapter can be
generalized to channel models that make use of a basis tterthe Fourier one, provided the
expansion basis effectively exposes the sparse nature ofiterlying multipath environment and

can be made available to the receiver a priori.

4.2 Multipath Wireless Channel Modeling

Signal propagation in a wireless channel over multipleigpgtdistributed paths gives rise to
a large number of propagation parameters. However, exastlkdge of these parameters is not
critical for reliable communication of data over the chdnRather, from a purely communication-
theoretic perspective, we are only interested in charaatgrtheinteractionbetween the physi-
cal propagation environment and the spatio-temporal sgpace associated with the transmitter
and the receiver. In this section, we review a virtual madgframework for multipath wireless
channels that captures this interaction through Nyquistpdiag of the physical propagation en-
vironment in the angle-delay-Doppler space. As we will iatee, this framework plays a key
role in subsequent developments in the chapter since itmigtaxposes the relationship between
the distribution of physical paths within the angle-deldgppler space and the sparsity of chan-
nel DoF, but also sets the stage for the application of cosgea sensing theory and methods to

sparse-channel estimation.

4.2.1 Physical Characterization of Multipath Wireless Channels

Consider, without loss of generality, a multiple-antenmelgss channel with half-wavelength

spaced uniform linear arrays (ULAS) at the transmitter awkver. LetV; and Ni denote the
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number of transmit and receive antennas, respectively.clistomary to model a multipath wire-
less channeH as a linear, time-varying system [21, 22,99, 108]. The spoading (complex)

baseband transmitted signal and (noiseless) channeltargptelated as

H(x(t)) = / H(t, /)X (f)e>df .)

where’H (x(t)) is the Ng-dimensional channel outpuX (f) is the (element-wise) Fourier trans-
form of the Nr-dimensional transmitted signalt), andH(t, f) is the Ng x Nr time-varying
frequency respongmatrix of the channel. Note that temporal variations of tharmel frequency
response arise due to the relative motion between the titagmeceiver, and the multipath prop-

agation environment.
Channel and Signaling Parameters

Bello did some seminal work on the characterization of lingane-varying systems [108] and
introduced an equivalent representatiodif, f), termed as thdelay-Doppler spreading function
C(v, 1), by exploiting time-frequency duality theory. Specifigait was established in [108] that
the time-varying frequency responBE¢, /) and the delay-Doppler spreading functi@iiv, 7) of

a linear, time-varying system constitute a two-dimendi&oarier transform pair

H(t, f) = //]R2 C(v, 7)™ e " qudr <= C(v,7) = //R2 H(t, f)e 2™ el dtdf. (4.2)

The delay-Doppler spreading function of a wireless chacael be used to define two key

channel parameters:

[1] Thedelay spreawfa channelr,,.., is defined as the range of values-afver whichC(v, 7)

is essentially nonzerdZ (v, 7) = 0 for all 7 & [0, Tinaz]-

[2] The (two-sidedDoppler spreadof a channely,,.., is defined as the range of values:of

over whichC(v, 7) is essentially nonzerdC(v, 7) = 0 for all v &€ [—vinaz /2, Vinaz /2]

Note that sincél(¢, f) is a time-frequency dual o€ (v, 7), the Doppler spread and the delay

spread of a channel are a measure of the variatiolb(aff) in time and frequency. Specifically,
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Table 4.1 Classification of wireless channels on the bastbafnel and signaling parameters

Channel Classification W0z | TVimax

Nonselective Channels <« 1 <1
Frequency-Selective Channels > 1 <1
Time-Selective Channels <« 1 > 1

Doubly-Selective Channels >1 >1

12

the larger the values of,,.. andr,,.., the faster the variations @ (¢, f) in time and frequency,
respectively, and vice versa. The product of the delay shaea the Doppler spread,,.. Vimaz

is termed as thepread factorof the channel. The channel spread factor is a measure of¢he a
of channel’'s (rectangular) support in the delay-Doppleacgpand estimating a channel having
TmazVmaz > 1 Can often be an ill-posed problem, even in the absence of ib®, 110]. Instead,
we limit the discussion in this chapter tmderspread channelsharacterized by, Vine: < 1,
which is fortunately true of most wireless channels [99].

Finally, throughout this chapter we implicitly considegsaling over wireless channels using
symbols of duratior{” and (two-sided) bandwidti/, x(t) = Oy, for all ¢ ¢ [0,7] andX(f) =
On, forall f & [-1//2,W/2], thereby giving rise to &emporal signal spacef dimensionV, =
TW [112]. In addition, we assume th&t>> 7,,., andWW > v,,.., S0 that intersymbol interference
in time and frequency is negligible. Note that the signajiregameterd” and W, together with
the delay spread and the Doppler spread of a channel, canedetaidroadly classify wireless
channels as nonselective, frequency selective, timetsadeor doubly selective; see Table 4.1 for
a definition of each of these channel classes. As noted eaxi@limit ourselves in the sequel
to primarily discussing frequency-selective and douldiestive channels in the single-antenna
setting (Vr = Ny = 1) and to nonselective, frequency-selective, and douligetige channels in

the multiple-antenna setting.

1t is worth mentioning here though that part of the discussiothis chapter is also applicable to underwater
acoustic communication channels, even though they mayenohterspread [111].
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Discrete-Path Physical Model

Due to scattering from objects in the surrounding enviromimenultipath wireless channels
give rise to multiple attenuated, delayed, Doppler- andspfehifted copies of the transmitted
signal at the receiver. This physical reality can be acelyaeflected through the use of a discrete-
path channel model in whicH(¢, f) is expressed in terms of the underlying physical paths as

Np
H(t, f) =Y Boar(Ora)al (0r,)e*™ e 72! (4.3)

n=1
Np

= H(x(t) = Buar(Orn)al(0r,)e”™ ' x(t — 7,) (4.4)

n=1
corresponding to signal propagation from the transmitiethe receiver oveN, physical paths;
here,(, is the complex path gaify ,, the normalized angle of arrival (AoA) at the receivér,,
the normalized angle of departure (AoD) at the transmitteg [0, 7,,...] the (relative) delay, and
Un € [~Vimaz /2, Vmaz/2] the Doppler shift associated with theth path.
The N7 x 1 vectorar(fr) and theNy x 1 vectorag(f) in (4.3) denote the array steering and
response vectors, respectively, for transmitting/réngia signal in the directioi; /0. These

vectors are periodic il with unit period and are given by [113-115]

ef 1 . . T
ar(0r) =4 v [1 e~ i2m0r e‘JQW(NT_l)GT} (4.5)
an(0s) < 1 —j2m6 —j2n(Np—1)0 ! 4.6
r(Or) = N, 1 e R .. e r=1)0r (4.6)

while the normalized AoD and AoA) andéy, are related to the physical (measured with respect

to array broadside) AoD and Ao andgg, as

6, — sm(2¢T) and 0y, sm(2¢R) |

4.7)

respectively, under the assumption of half-wavelengtlrcspdJLAs at the transmitter and re-
ceiver. We further assume maximwngular spreador physical AoDs and A0AS¢p7.,, Pr.n) €
[~7/2.7/2) x [~7/2,7/2), which means thadr.. 0r.) € [~1/2,1/2] x [~1/2,1/2] and that

there is a one-to-one correspondence between the physatéh@ normalized angles.
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4.2.2 Virtual Representation of Multipath Wireless Channds

While the discrete-path channel model (4.3) is an accuediiection of the physical reality, it is
difficult to analyze and estimate owing to itenlineardependence on a potentially large humber
of parameter§ (5., Or.n, O1.n, Tn, vn) }. However, while accurate (nonlinear) estimation of AoAs,
AoDs, delays, and Doppler shifts is critical in radar apgiicns, it is not crucial in a commu-
nications context. Instead, because of the finite (tranamndtreceive) array apertures, signaling
bandwidth, and symbol duratio®] (¢, f) can be well-approximated by a linear (in parameters)
counterpart, known as\rtual channel modelwith the aid of a four-dimensional Fourier series
expansion [108,115-118].

Sampling in Angle-Delay-Doppler

On an abstract level, virtual representation of a multipeitieless channeH provides a dis-
cretized approximation of its time-varying frequency m@sge by uniformly sampling the angle-

delay-Doppler space at the Nyquist rate:

def def def

A NG, M E Ny AT E W, A

1T . (4.8)

Specifically, note that even though the physical time-vagyrequency respondd(¢, /) may ex-
hibit arbitrarily high spectral and temporal variatiortsg receiveeffectivelysees only its restric-
tionto [0, 7] and[—-W/2, W/2] in time and frequency, respectiveli,(t, f)1—w/2,w/2(f)1lpm(t),
because of the finite signaling bandwidth and symbol dumatiurther, the restricted channel re-
sponse(t, f)1_w/2,w/2(f)10,r(t) also admits a four-dimensional Fourier series representat
since it has a finite support in the spatio-spectral-temzpace.
Mathematically speaking, the virtual representatioftfyfgiven by [108,115-118]
AL i k\ ey gt

B> Z ik toman () alt (o) erite i @

i=1 k=1 (=0 m=—
is simply a truncation of the Fourier series expansiobIof, )1y /2,w/2(f)1j0,r(t), where the
truncation is justified on the basis of the fact that the Feruseries coefficient§H, (i, k, ¢, m)}

of H(t, f)1j—w/2,w/2(f)1p0.1(t) are significantly nonvanishing only féf, &, ¢, m) € [1... Ng] x
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[1...Ng]x[0...L—1] x [-M ... M]. As such, the virtual representatibf(z, ) approximates

the channel time-varying frequency respolibg, f) in the sense that

H(x(t) = / H(t, )X () df ~ / H(t, )X(f)e T df . (4.10)

It is interesting to note that due to the fixed angle-delaypier sampling o (¢, f), which
defines the spatio-spectral-temporal Fourier basis fanstin (4.9),ﬁ(t, f) is alinear channel
representation that is completely characterized byitieal channel coefficient§H,, (i, k, ¢, m)}.

These virtual channel coefficients can be computed b f) as

. _ 1 Ty H i k —j2n ¢ j2mt f
Hv(l, k‘,f, m) = m /0 /;% aR (N—R) ]:—I(.l(:7 f) ar (N—T) e € w dtdf (411)

and the total number of these channel coefficients from (4.§ven byD = NrNrL(2M + 1),
where Ng, Np, L def (W Tmae | + 1, and M = [TV /2] represent the maximum number of
resolvableAoAs, AoDs, delays, and (one-sided) Doppler shifts withie ingle-delay-Doppler
spread of the channel, respectivélin the literature,L and M are sometimes also referred to as

thediscretedelay spread and (one-sidadi(creteDoppler spread of the channel, respectively.
Path Partitioning in Angle-Delay-Doppler

An important and insightful property of the virtual repramionﬁ(t, f) is that its coefficients
{H,(i, k,£,m)} partition theN, physical propagation paths into approximately disjoirtisais.
Specifically, define the following subsets of paths, assediaith each coefficient’,, (i, k, ¢, m),

based on the resolution in angle, delay, and Doppler:

Ski Z {n: 0p, € (i/Ng — 1/2Ng,i/Ng + 1/2Ng]},

Stx ™ {n: Or, € (k/Np — 1/2Np, k/Np +1/2N7]},
See S {n € (/W — 120, 0/W + 1/2W]}

Sy & {01 vy, € (m)T —1/2T,m/T + 1/2T]} . (4.12)

2with a slight abuse o€eiling notation, we use the convention here théfr,,,.] = 0 and [Tv,,4./2] = 0 for
WTimar < 1andT vy, < 1, respectively.
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For example S, , denotes the set of all paths whqaseysicaldelays lie within the resolution bin
(¢/W — 1/2W,¢/W + 1/2W] of size AT centered around théth virtual delay 7, «f /W in
(4.9). Then, by substituting the discrete-path physicatleh@4.3) in (4.11), it can be shown that
the virtual channel coefficients in (4.11) are related toghgsical propagation paths as [115,118]

Np
Hy(i,k, 6,m) = Bo g (i/ N = Orn) fry (k) Np — 07, )e 77010
n=1

x sinc(m — Tv,) sinc({ — Wr,) ~ Z B (4.13)

n€Sg NSt kNS7 ¢NSv,m

where a phase and attenuation factor has been absorbed it}'shim (4.13). The smoothing
kernelsfy,(0r) and fy, (67) in (4.13) are the Dirichlet kernels, defined as
def 1R jomio
fn0) = + ;e J (4.14)
while thesinc kernel is defined asinc(z) «f sin(mz)/(mwx). Note that the approximation in (4.13)
is due to the sidelobes of the Dirichlet agidc kernels induced by the finite signaling parameters,
and the approximation gets more accurate with incredasifidy’, Nz, and Nr.

The relation (4.13) signifies that each virtual channelficieht H, (i, k, £, m) is approximately
equal to the sum of the complex gains of all physical pathsselamgles, delays, and Doppler shifts
lie within anangle-delay-Doppler resolution bof sizeAfdr x Afr x AT x Av centered around the
sampling point0.;, 07, 72, ) «f (¢/Ng, k/Nr,¢/W,m/T) in the angle-delay-Doppler space.
In other words, the virtual representatifi(t, f) effectively captures the underlying multipath
environment comprising oV, physical paths througy resolvable paths, thereby reducing the
task of estimating a multipath wireless chanfélto that of reconstructing its virtual channel

coefficients{ H,(i, k, ¢, m)}.
Special Case: Frequency-Selective Single-Antenna Charige

The development in this chapter has so far been carried othdayeneral case of a multipath

wireless channel with arbitrary delay and Doppler spreadd,possibly having multiple antennas
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Figure 4.1 Schematic illustration of the virtual represgion of a frequency-selective single-an-
tenna channel. Each physical propagation path has assbaidth it a complex gairg, (rep-
resented by an impulse of heiglt,| in the delay space) and a delay € [0, 7,,,4.]. The virtual
channel coefficient§H,(¢) } correspond to samples of a smoothed version of the charspeimse
taken at the virtual delaygr, = ¢/} in the delay space (represented:is in the schematic).

at the transmitter and/or receiver. Nevertheless, theepieg discussion and analysis can be easily
specialized to any class of multipath wireless channels.

As an illustration, first consider the special case of a feaqy-selective single-antenna chan-
nel: Np = Ng = 1,We > 1, andTv,,,, < 1. SinceTv,,,. < 1 in this case, there
is negligible temporal variation of the channel frequenegponse over the symbol duration,
H(t,f) ~ H(f), and the physical channel model and its correspondingalirepresentation
reduce to [cf. (4.3), (4.4), (4.9), and (4.10)]

Np L-1 0
H(z(t)) = ; Bax(t —7,) = Y Hy(0)z (t — W) . (4.15)

=0

Further, as illustrated in Figure 4.1, the virtual chanmafticients{ #,,(¢) } in this case are related
to the physical propagation paths as [cf. (4.13)]

Np
Hy(0) =) Busindl —Wr,) ~ Y B,. (4.16)
n=1

TLEST,[

In other words, a frequency-selective single-antennamlaiesolves physical paths in the delay
space only and the total number of the resolvable paths (ehaoefficients) in this case is given
by D =L =W + 1.

Special Case: Nonselective Multiple-Antenna Channels

Next, consider the special case of a nonselective muliptenna channely; and/orNy > 1,

andWr,,.. andT'v,,.. < 1. In this case, there is negligible spectral and tempora&tian of the
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channel frequency response over the signaling bandwidtisymbol durationH(¢, f) ~ H, and

the physical channel model and its corresponding virtyadesentation reduce to

H(x ZﬁnaR On) @ (0r,0)x ZRZTH (i, k)ag < ) (A]fT) x(t). (4.17)

i=1 k=1
The relation (4.17) signifies that a nonselective multgatgenna channel resolves physical paths
in the transmit- and receive-angle space only. The totalbeirof resolvable paths (channel co-
efficients) in this case is given by = Nz N7, while the relationship between the virtual channel

coefficients{ H,(i, k) } and the physical paths is given by

Np
H,(i,k) =Y B fnn(i/Nr = Orn) fon (k/Ne = 0r0) > Bu.  (4.18)
n=1 n€SR,;NST i

4.3 Sparse Multipath Wireless Channels
4.3.1 Modeling

The virtual representation (4.9) of a multipath wirelesaraiel’H signifies that the maximum

number of DoF in the channel is
D = NgNrL(2M + 1) = TiaeVimae Ne NeTW (4.19)

which corresponds to the maximum number of angle-delayp®pesolution bins in the virtual
representation, and reflects the maximum number of reselyatths within the four-dimensional
channel spread. However, the level of diversity and/or ipleiting gain afforded by is governed
by the number of nonvanishing”, (i, k, ¢, m)}. Therefore, theactualnumber of DoF, in the

channel corresponds to the number of nonvanishing virtuahiel coefficients.

Definition 4.1 (Channel Degrees of Freedom) et d «f [{(i,k, ¢, m) : |H,(i,k,¢,m)| > 0}|
denote the number of nonvanishing virtual channel coefftsi¢hat significantly contribute to the

channel power. Theti reflects the actual (or effective) number of DoF in the channe
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Remark 4.2 In a communications context, “nonvanishing” is a relataen that can only be qual-
ified on the basis of the operating received signal-to-n@ite (SNR). For the sake of this exposi-
tion, and because it suffices to illustrate the principlesmake the simplified assumption that all

butd of the virtual channel coefficients are identically zero.

Trivially, we have that the channel DaF < D; also, by virtue of (4.13)d = D if there are
at leastNV, > D physical paths distributed in a way within the channel spreach that each
angle-delay-Doppler resolution bin is populated by attleag path (see Figure 4.2).

Much of the work in the existing channel estimation literatis based on the implicit as-
sumption of a rich scattering environment in which there sarfficiently many paths uniformly
distributed within the angle-delay-Doppler spread of tharmel so thad ~ D for any choice of
the signaling parameters. This assumption can be tracédtbdice seminal works of Bello [108]
and Kennedy [119] on the wide-sense stationary uncorektattering channel model, and more
recently to the independent and identically distributadd() model for multiple-antenna channels
proposed by Telatar [120], and Foschini and Gans [121].

However, numerous past and recent channel measuremenéaiggshave shown that prop-
agation paths in many physical channels tend to be distribas clusters within their respective
channel spreads [33—-37]. These clusters of paths physmaitespond to large-scale objects in
the scattering environment (e.g., buildings and hills imatdoor propagation environment), while
multipath components within a cluster arise as a resultattedng from small-scale structures of
the corresponding large-scale reflector (e.g., windowslmfilaing or trees on a hill). As we vary
the spatio-temporal signaling parameters in such muliqgaister channels by increasing the num-
ber of antennas, signaling bandwidth, and/or symbol doma# point comes wher&fz, Abr, AT,
and/orAv become smaller than the interspacings between the miitghasters, thereby leading
to the situation depicted in Figure 4.2 where not every tagwi bin of sizeAfi x Afpr x AT x Av
contains a physical path. This implies that wireless chisnmigh clustered multipath components
tend to have far fewer tha® nonzero virtual channel coefficients when operated at |aeyel-

widths and symbol durations and/or with large plurality ofemnas. We refer to such wireless
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Figure 4.2 Schematic illustration of the virtual channg@resentation (VCR) and the channel spar-
sity pattern (SP). Each square represents a resolutiorsbotmted with a distinct virtual channel
coefficient. The total number of these squares eglal$he shaded squares represent theSgP,
corresponding to thé < D nonzero channel coefficients, and the dots represent the panh-
tributing to each nonzero coefficient. (a) VCR and SP in d®ayppler: {H,(¢,m)}s,. (b) VCR
and SP in angle{H,(i, k)}s,. (¢) VCR and SP in angle-delay-Doppl€rH, (i, k, ¢, m)}s,. The
paths contributing to a fixed nonzero delay-Doppler coeffitiH,, (¢,, m,), are further resolved in
angle to yield the conditional SP in anghef?, (i, k, o, mo) }s,(00,m0)-



75

channels asparse multipath channetnd formalize this notion of multipath sparsity in the fol-

lowing definition.

Definition 4.3 (Sparse Multipath Wireless Channels)Let d denote the number of DoF of a mul-

tipath wireless channéi{. We say that the channeldssparse if it satisfieg < D.

Sparse multipath channels correspond to a sparse disbntnftresolvable paths in the angle-
delay-Doppler space. Sparsity in angle-delay-Doppletdagacorrelationor coherencen space-
frequency-time due to the duality between the angle-dBlagpler and the space-frequency-time
domains. The nature of this channel correlation in spaces,tand frequency is influenced by the
locationsof the d nonzero channel coefficients within tli resolution bins in the angle-delay-
Doppler space. This information about a multipath wireldsannel can be captured through the

notion of thechannel sparsity pattern

Definition 4.4 (Channel Sparsity Pattern) The setS, = {(i,k,€,m) : |H,(i,k, ¢,m)| >0} is
termed as the channel sparsity pattern dfsparse channel. That iS; is the set of indices of the

d = |S4| nonzero virtual channel coefficients Bf.

Essentially, the sparsity patteff) characterizes thé-dimensional subspace of tliedimensional
channel space that is excited by theonzero virtual channel coefficien{$?, (i, k, ¢, m) }s, rep-
resenting the DoF in the channel (see Figure 4.2). This mibabshe instantaneous CSI of sparse
channels is completely characterized{#y, (i, k, ¢, m)} s,.

Finally, while statistical characterization of a sparsetipath channelH is critical from a
communication-theoretic viewpoint, either Bayesian ¢i@m) or non-Bayesian formulation @{
suffice from the channel estimation perspective. In thigptdra we stick to the non-Bayesian
paradigm and assume that both the channel sparsity p&ennd the corresponding virtual coef-

ficients{H,(i, k, ¢, m)}s, are deterministic but unknown.
Special Case: Delay Sparsity

In order to further motivate the idea of multipath spargeke the simple example of a single-

antenna transmitter-receiver pair communicating at ldayedwidth in a static environment. The
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underlying (frequency-selective) multipath channel irs thetting is best described as a linear,
time-invariant system whose channel response consistsyhdew dominant echoes (due to the

reflections of the transmitted signal from the surroundibgcts such as buildings and hills).

In this case, the channel frequency response is giveW bf) = >.°7, 8,72/ and its
virtual representation can be expressed/dg) = fz‘ol H,(0)e=?"w! Here,H,({) is approx-

imately equal to the sum of gains of all echoes (paths) whetsyd lie within the resolution bin
Bri = (% — 50, & + 557) and there are a total d (= L) = [Wr,,,] + 1 of these virtual
channel coefficients. However, since the channel condisislg a few dominant echoes (or clus-
ters of echoes), a large number of the resolution Bifis,} would contain no echoes under the
assumption of large-enough signaling bandwidth. Theegfiorajority of the channel coefficients
in this case would be zerd,= |{¢ : |H,(¢)| > 0}| < L, and we accordingly term the underlying

multipath channel ag-sparse.

Remark 4.5 It is worth mentioning at this point that sparsity in multipavireless channels is in-
herently tied to the choice of signaling parameters: chisnmigh small-enough values &¥z, N,

T, andWW are bound to havd ~ D. Consider, for example, the case of the so-called Brazil
B channel [122]—a digital television channel with six dowlam echoes and a delay spread of
12.7 us—as an illustration of this fact. Figure 4.3(b) and Figw&(@) compare two virtual repre-
sentations of a particular realization of the Brazil B chelrjgee Figure 4.3(a)] under the signaling
bandwidths of25 MHz and5 MHz, respectively. For the sake of this illustration, we @éas-
sumed an operating received SNR30fdB and shown only the channel coefficients in the two
representations that are above the corresponding noige flocan be easily seen from the two
figures that while onlyi 4% of the virtual channel coefficients are nonvanishingjat= 25 MHz,

this number increases @% when the signaling bandwidth is reducedstMHz. Nevertheless,
the trend in modern wireless systems is to operate at higiosigenporal signal space dimension
(defined asN, = min{ Ny, Ng} TW'). As such, sparse channels are becoming more and more

ubiquitous in today’s communications landscape.
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Figure 4.3 Sparsity comparisons of the virtual represemtatof Brazil B channel [122] under
two different signaling bandwidths (only real parts of tremplex gains are shown). (a) Real-
ization of the physical response of Brazil B channel in thiaglspacem, = 0 us, 7o = 0.3 us,
T3 = 3.5 us, 7y = 4.4 us, s = 9.5 us, andrg = 12.7 us). (b) Virtual channel representation
corresponding tdl = 25 MHz. (c) Virtual channel representation correspondingte= 5 MHz.
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4.3.2 Sensing

In wireless systems that rely on training-based methodsHannel estimation, the transmis-

sion of a symbol takes the form
x(t) = X4y (1) + Xdara(t), 0 <t ST (4.20)

wherex,,.(t) andxg.,(t) represent the training signal and data-carrying signapeetively. Be-
cause of the linearity o, and under the assumption =f.(¢) being orthogonally multiplexed
with x4, (t) in time, frequency, and/or code domain, the resulting digh¢éhe receiver can be
partitioned into two noninterfering components: one cgpanding tax,. () and the other corre-
sponding tax ..., (t). In order to estimat@t, training-based methods ignore the received data and

focus only on the training component of the received sigmiaén by
ytr<t) = H<Xt7‘(t>) + ZtT(t) ) 0 S t S T + Tmazx (421)

wherez,,.(t) is an Nr-dimensional complex additive white Gaussian noise (AWGighal intro-
duced by the receiver circuitry.

As a first step towards estimatirf, the (noisy) received training signg},.(¢) is matched
filtered with the transmitted waveforms at the receiver ttamban equivalent discrete-time repre-
sentation of (4.21). The exact form of this representatigmethds on a multitude of factors such as
selectivity of the channel (nonselective, frequency salecetc.), type of the signaling waveform
used for sensing (single- or multi-carrier), and numberanh$mit and receive antennas. While
this gives rise to a large number of possible scenarios tox@mmed, each one corresponding to
a different combination of these factors, it is shown in #ec#.5 and Section 4.6 that algebraic
manipulations of the matched-filtered output in each caseltrén the following general linear

form at the receiver

yr ... YNR}: NiTX[h”’l hv,NRi|+|:Z1 zNR]. (4.22)

. /
~~ -~ -~

Y H”U Z

The quantity€ here denotes the total transmit energy budget for trainimggses, defined as

e /0 THXtr(t)szt (4.23)
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while £/Nr is defined as thaveragetraining energy budggter transmit antennaFurther, the
vectorsh, ;,i = 1,..., Ng, in (4.22) areNy L(2M + 1)-dimensional complex vectors comprising
of the channel coefficientsH, (i, k, ¢, m) }, and we let the AWGN matriZ have zero-mean, unit-
variance, independent complex-Gaussian entries. In ethais, £ is taken to be a measure of
the training SNR at each receive antenna. Finally,stresing matrixXX in (4.22) is a complex-
valued matrix havingD /N = NpL(2M + 1) columns that are normalized in a way such that
|X||% = D/Ng. The exact form and dimensionsXf(and hence the dimensions¥fandZ) are
completely determined hy,..(¢) and the class to which{ belongs; concrete representationof
corresponding to the various training signals and charodigurations studied in the chapter can

be found in Section 4.5 and Section 4.6.

Example 4.6 (Sensing of Frequency-Selective Single-Antea Channels) In order to further il-
lustrate the ideas presented in this section, considen déigaicase of a frequency-selective single-

antenna channel. The general linear form (4.22) in this casée expressed as
y = VEXh, +7 (4.24)

whereh, is an L-dimensional complex vector consisting of the channelfadehts{ H,(¢)}. In
addition, due to the linear, time-invariant nature of tharahel, it is easy to see that if single-carrier
waveforms are used for signaling in this setting tBemas a Toeplitz form. On the other hand,
if multi-carrier waveforms are used for signaling thEncorresponds to a (scaled) submatrix of
an N, x N, unitary discrete Fourier transform (DFT) matrix. The twgrsling scenarios are

discussed further in extensive details in Section 4.5.1.

4.3.3 Reconstruction

As noted in Section 4.1.1, training-based channel estomatiethods are characterized by the
two distinct—but highly intertwined—operations of sergsisnd reconstruction. The reconstruc-
tion aspect of a training-based method involves designithgea linear or a nonlinear procedure

that produces an estimateHf, at the receiver from the knowledge X, andY:

Hest Y geste X, Y) (4.25)
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where the notation is meant to signify the dependencEI$t on £, X, andY. The resulting
estimate also has associated with it a reconstruction given byE [|[H, — H"||2], whereE
denotes the expectation with respect to the distributio#.ofThe corresponding sensing com-
ponent at the transmitter involves probing the channel withaining signal that minimizes this
reconstruction errdr

x2P(t) = arxg r(rtl)inE (A (H™)] (4.26)

where we have used the shorthand notatiqi) «f |H, — HJ|% in the above equation. As

a measure of its spectral efficiency, the resulting trairgsiggal also has associated with it the

concept otemporal training dimensionslefined as

Ny, = # {temporal signal space dimensions occupieckﬂt/(t)} .

Since each one of th&, = T'W temporal signal space dimensions utilized for training msea
one less dimension available for communication, the affeness of a particular training-based
method for a fixed training SNR is measured in terms of both the (temporal) training din@msi
N,., dedicated ta?"(#) and the ensuing reconstruction er&jr\ (He (x27))].

Traditional training-based methods, such as those in [2}-+&ve been developed under the
implicit assumption that the number of DaF,in ‘H is roughly the same as the maximyossible
number of its DoFd ~ D. One direct consequence of this assumption has been tleatr lin
procedures have become the de-facto standard for recotistrin much of the existing channel
estimation literature. In particular, with a few excepsosuch as [13, 95, 102—-106], nearly all
training-based methods proposed in the past make use ofithemam least squares (LS) error
criterion—or its Bayesian counterpart, the minimum meawased error criterion, for a Bayesian

formulation of H—to obtain an estimate @i, fromY

Y — iXH

N (4.27)

H.®° = arg min
H

F

3Recall thatH®s' depends on the training signal, () throughX.
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This is a well-known problem in the statistical estimatideriature (see, e.g., [123, Chapter 8])

and its closed-form solution is given by

N
HS = 4/ 5T Xty (4.28)

whereX' is the Moore—Penrose pseudoinvers&ofin order to ensure that (4.27) returns a physi-
cally meaningful estimate—in the sense thBf returnsH,, in the noiseless case—reconstruction
methods based on the LS error criterion further require ttiatsensing matriX has at least as

many rows as)/Ng, resulting in the following form foiH:®

HS = ,/% (XHX) ' x"Y (4.29)

where it is assumed that the training sigral(¢) is such thatX has full column rank. The re-
construction error of a LS-based channel estimation meiidus case can be lower bounded in

terms of the following theorem.

Theorem 4.7 Given the general linear form (4.22), and under the assamiytiat the sensing

matrix X has full column rank, the reconstruction errotf® is lower bounded as

E[A (HS)] > D 'gNT (4.30)
with equality if and only ifX has orthonormal columns.
Proof: To establish this theorem, substitute (4.22) in (4.29) aotd that
E[A HLS _ NT XH le
@ N 7 -E [trace ((X"X)~ 1X'*ZZ'*X(XHX)—l)}
O NrNE race (XMX) ) . (4.31)

Here,(a) is simply the definition of the Frobenius norm afid follows from (a) since the inner

product of any two rows;}' andz'' of the AWGN matrixZ is zero in expectatior(z}'z;| = Nyd;;.
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Next, note that the Gram matriX" X is positive definite under the assumptionobeing full
column rank and lef)\;} denote the collection ab /Ny, (strictly positive) eigenvalues oXHX.

Since it is assumed thdX |2 = D/Ng, we have from the definition of Frobenius norm that

D/Ng
D
; N (4.32)
Then, from elementary linear algebra, we have
D/Ng .
D/Ng W
1 D —1 Ai
trace ((X"X)™") = —=— |-
=1 )\Z NR N_R
(©) =
9D N @D (4.33)
NR D/NR NR
> A

where(c) follows from the arithmetic-harmonic means inequality4],2vhile (d) is a consequence

of (4.32). Substituting (4.33) in (4.31) yields the desineequality in (4.30). Finally, from the

arithmetic-harmonic means inequality, the equalitydnin (4.33) holds if and only if\; = Ay =

-+ = Ap/ny [124], resulting in the condition thaX must have orthonormal columns for the

equality to hold in (4.30). This completes the proof of thedtem. |
Note that an immediate consequence of Theorem 4.7 is thastamad training signak®™ ()

for LS-based estimation methods is the one that leadis' i = In,Lm+1)- As such, much of the

emphasis in the previously proposed channel estimatiohadsthas been on designing training

signals that are spectrally efficient and that result in isgn®atrices having either orthonormal or

nearly-orthonormal columns [24-32].

4.4 Compressed Channel Sensing: Main Results

The preceding discussion brings forth several salientagtaristics of traditional training-
based methods. Below, we recount three specific ones thaemeipe to be the most relevant

to our discussion in the sequel:
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[1] Traditional training-based methods more or less rely orbaSed linear reconstruction strat-

egies, such as the one in (4.29), at the receiver to obtaistanate ofH,.

[2] Because of their reliance on linear reconstruction proeegjuthe training signals used in
traditional methods must be such that the resulting sensiatyix X has at leastD /Ny
rows. As noted in Table 4.2, depending upon the type of siggalaveforms used for
training and the channel class to whithbelongs, this requirement often translates into the
condition that the number of temporal training dimensioadidated tox,,.(¢) must be at
least as large as the maximum number of DoF per receive amtarii: N;, = () (N%>;

see Section 4.5 and Section 4.6 for further details on thmslition.

[3] Finally, regardless of the eventual choice of training algnthe reconstruction error in tra-

ditional methods is given biE[A(HSS)] = Q (257,

In the light of the above observations, a natural questioasto is: how good is the per-
formance of traditional training-based methoddf fact, if one assumes th& is not sparse

(in other words¢d = D) then it is easy to argue the optimality of these methods:

[1] In the case of nonsparse channels, the LS estiHgteis also the maximum-likelihood

estimate ofH, (see, e.g., [123, Chapter 8]).

[2] The reconstruction error lower bound (4.30) in this caselss #he Cramer—Rao lower
bound [123, Chapter 3], which—as noted in Theorem 4.7—canadbgeved in most in-

stances through an appropriate choice of the training kigna

However, it is arguable whether LS-based channel estimatiethods are also optimal for the
case wher is d-sparse. In particular, note that sparse channels are etehptharacterized by
2d parameters—corresponding to the locations and valuesrddemno virtual channel coefficients.
Our estimation theory intuition therefore suggests thah@esE[A(H®)] = Q (£47) and, for
signaling and channel configurations that reqiNfe= 2 (N%> in the case of LS-based estimation

methods /N, = (2 (%R) are the actual fundamental limits in sparse-channel esbma



Table 4.2 Summary and comparison of CCS results for the kignand channel configurations studied in Chapter 4

ch | Classificati Sianall Traditional Methods Compressed Channel Sensing
annel Classification ignaling
Recon. Erron Condition| Recon. Error Condition®
Frequency-Selective Single-Antenna Single-Carrier| = 2 — =< ¢-logD N, = d* -log D
(D =1L) Multi-Carrier » D N, =D | =%.logD | N, =d-log’N,
Doubly-Selective Single-Antenna | Single-Carrierl = 2 — =<<.logD N, = d*-log D
(D=L(2M +1)) Multi-Carrier - D Ny =D | =<%.logD | N, »=d-log’N,
Nonselective Multiple-Antenna DN D AN p
(D = NaNy) - = =t NtrEN—R < =t logD NtrEN—R‘IOgNT
Frequency-Selective Multiple-Antenna . . , ,
(D = NpNpL) Multi-Carrier - Dl Ny = = | 2 4T Jog D | Ny = NiR -log® N,
Doubly-Selective Multiple-Antenna , , DN D d-N d 6
(D = NpNpL(2M + 1)) Multi-Carrier = =T Ny = N | S5 ‘log D | Ny = yi log” N,

2 The last three conditions are for the case when the conditgparsity of each AoA equals the average AoA sparsity.

¥8
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In Section 4.5 and Section 4.6, we present new trainingebast#mation methods for seven
particular signaling and channel configurations (see Tal#¢ and show that our intuition is in-
deed correct (modulo polylogarithmic factors). In paridecua key feature of our approach to
estimating sparse multipath channels—originally prodaedg14] for frequency-selective single-
antenna channels and later generalized in [15, 107] to sdrtteewther channel classes—is the
use of a sparsity-inducing mixed-norm optimization crderfor reconstruction at the receiver that
is based on recent advances in the theory of compresseagdosiChapter 2). This makes our
approach—termed as compressed channel sensing (CCS)anfientally different from the tradi-
tional training-based methods: the former relies on a meali reconstruction procedure while the
latter utilizes linear reconstruction techniques. Not thnumber of researchers in the recent past
have also proposed various training-based methods fosepaultipath channels that are based on
nonlinear reconstruction techniques [13, 95, 102-106¢ thimg that distinguishes CCS from the
prior work is that the CCS framework is highly amenable tolygsia.

Specifically, in order to give a summary of the results to codedine theconditionalsparsity
pattern associated with thieth resolvable AoA to be&s, (i) et (i,k, 0,m) = (i,k,0,m) € Sz}

Then it is shown in the sequel that:

[R1] The performance of CCS in terms of the reconstruction esgrovably better than the
traditional methods. The training signals and reconsmagbrocedures specified by CCS
for the signaling and channel configurations studied in tihiapter ensure that the CCS

reconstruction errof\(HS®) = O (£ - log D) with high probability.

[R2] CCS is provably more spectrally efficient than the trad@lomethods. Assume that the
conditional sparsity of each resolvable AoA is equal to therage AOA sparsity; in other
words,|S,(7)| = NiR,i = 1,..., Ng. Then while traditional methods require that the number
of training dimensionsv;, = Q (N%> for certain signaling and channel configurations, CCS

only requires thatv,, = (2 (NiR x polylog factor) for the same configurations.



86

Conversely[R1] and[R2] together imply that CCS achieves a target reconstructimor esing
far less energy and, in many instances, latency and banidh that dictated by the traditional
training-based methods.

Table 4.2 provides a compact summary of the CCS results ppéntin to the seven signaling
and channel configurations studied in this chapter and coespgaem to the corresponding results
for traditional training-based methods. One thing to point in this table is the CCS condition
N, = Q(d?* - log D) when using single-carrier signaling waveforms for estintasingle-antenna
channels. This conditioseemgo be nonexistent for traditional methods. Note, howevet in
order to make the columns & as close to orthonormal as possible—a necessary conddion f
the LS-based reconstruction to achieve the lower bound.80)4-traditional methods implicitly
require that the temporal signal space dimensions be as désrgossiblelV, " co. As such, the
CCS condition is in fact a relaxation of this implicit regeinent for traditional methods.

As is evident from the preceding discussion and analysespérformance of CCS is a signifi-
cant improvement over that of traditional training-basesthds when it comes to sparse-channel
estimation. And while we have purposely avoided providingarete details of the CCS frame-
work up to this point so as not to clutter the presentatiomrést of the chapter is primarily devoted
to discussing the exact form of training signals and recanson procedures used by CCS for the
configurations listed in Table 4.2. However, since CCS Isuild top of the theoretical framework
provided by compressed sensing, the reader may want totravtkis point Chapter 2 in general

and Chapter 3 in particular before proceeding further.

4.5 Compressed Channel Sensing: Single-Antenna Channels
4.5.1 Estimating Sparse Frequency-Selective Channels

For a single-antenna channel that is frequency-seledige,(see Special Case: Frequency-

Selective Single-Antenna Chanrigl¢éhe virtual representation (4.9) of the channel reduoes

~
—_

) =S Hy()e > w! (4.34)

~
Il
o
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and the corresponding received training signal is giverchy(4.21)]
L-1
Yir(t) = Y Hy (O (t = £/W) + 20 (), 0 <t < T+ Typga (4.35)
=0

In general, two types of signaling waveforms are commonlyleged to communicate over a
frequency-selective channel, namely, (single-cargprgad spectrur{SS) waveforms and (multi-

carrier)orthogonal frequency division multiplexif@FDM) waveforms. We begin our discussion
of the CCS framework for sparse frequency-selective chHarimefocusing first on SS signaling

and then on OFDM signaling.
Spread Spectrum Signaling

In the case of SS signaling, the training signal¢) can be represented as

No—1

r(t) =VE Y wagt—nT,), 0<t<T (4.36)
n=0

whereg(t) is the chip waveformhaving unit energy( [ |g(¢)|?dt = 1), T. ~ 1/W is the chip
duration, and{xn € C} is the N,-dimensional spreading code associated with the traingrepl
also having unit energ§> " |z,|*> = 1). In this case, chip-matched filtering the received training

signal (4.35) yields an equivalent discrete-time repregem [22]

L—-1
Yo =VE DY Hy()xn_y+ 2y, n=0,1,...,N,—1 (4.37)
/=0

where{zn} is a zero-mean, unit-variance, complex AWGN sequence]%n(éﬁ (N, + L —1).

This input-output relation can also be expressed as a ratgtor product

- Yo - - Zo 0 | ] ) - 2o -
Y1 ) H,(0) 2
e o B (4.38)
LTN,—1 1 : :
. DU N A B
| YNo-1 ] 0 TNo-1 | | “No—1 ]

y
y=VEXh,+z
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whereh, € C represents the vector of channel coefficiefis, (¢) }, X denotes amV, x L full
Toeplitz (convolutional) matrix generated by the spregdjode{xn}, andz is an AWGN vector
that is distributed a6N (05 , I ).

Note that (4.38) is the single-antenna version of the stahftam (4.22). Therefore, from
(4.30), the reconstruction error of LS-based training md¢hin this case is simply given by
E[A(hL®)] = Q(L/E). We now describe the CCS approach to estimating frequesiegts/e
channels using SS signaling, and show that#sparse channels it leads to an improvement of a

factor of aboutZ /d in the reconstruction error (modulo a logarithmic factor).

[CCS-1] — SS Training and Reconstruction

Training: Pick the spreading codézn}ivo_

=0

Rademacher random variables taking valués./ N, or —1/4/N, with probability1/2 each.

" associated withe,,.(t) to be a sequence of i.i.d.

Reconstruction: Fix anya > 0 and pickA = \/2£(1 + a) log L. The CCS estimate df, is then

given as a solution to the Dantzig selector

he®® = arg min HhH1 subject to H\/EXH (y — \/EXh) H <. (4.39)
heCL o

We now summarize the performance[ﬁTCS 1] in terms of the reconstruction error.

Theorem 4.8 Suppose that the number of temporal signal space dimen8igns 4c, d*log L.
Then for anys,; € (0, 0.3], the CCS estimate df, satisfies

A (h&) < ¢ - g log L (4.40)

with probability exceeding — 2 max {2(71’(1 +a)log L - Lza)_l/z, exp(—%)}. Here, the con-

stantsc; > 0 andc, > 0 are the same as in Theorem 3With J,, in place ofdg), while the

constanty = 44/2(1 +a)/(1 — 3624).

Proof: The proof of this theorem is a trivial consequence of Theo?2el3 and Theorem 3.5.

Specifically, fix somey; € (0,0.3] and note that the frequency-selective channel béisparse



89

means that/h,||[, < d < L. Therefore, we have from Theorem 2.13 that the reconstnucti
error satisfies (4.40) with probability exceeding 2 <\/m : La) _1, provided the full
Toeplitz matrixX € RIP(2d,054). On the other hand, Theorem 3.5 guarantees that the matrix
X € RIP(2d,6,4) with probability exceeding — exp(—<%22), providedN, > 4c, d*log L. The
claim of the theorem therefore follows by taking a union biowrer the twdailure events. |

OFDM Signaling

If OFDM signaling is used instead of SS signaling for traghend communication purposes

then the training signal takes the form

Ty (t) = ,/]\‘Z > gty 0<t<T (4.41)

" neSi

whereg(t) is a prototype pulse having unit enerdy, C S = [0...N, — 1] is the set of indices

of pilot tonesused for training, andV,,—the number of temporal training dimensions—denotes

the total number of pilot tonesy,, = |Ser

, and is a measure of the spectral efficiency oft).

In this case, matched filtering the received training sigha5) with the OFDM basis waveforms
{g(t)emrt} ; yields [22]

Yn = VEH, + 2, n € Sy (4.42)

Where{zn} again is a zero-mean, unit-variance, complex AWGN sequenbéde the OFDM
channel coefficient§ H,,} are given by [cf. (4.34)]
1 = 1
H,~—H n =
VNtr (f)}f:? \/Ntr

Here, similar to the case of SS signalig, € C” is the vector of channel coefficien{d7,(¢) },

u'h,, n€S,. (4.43)

d . . . .
whereasu! e [e—JOWn,NU 6—J(L—1>Wn.,No] denotes the collection af samples of a discrete

sinusoid with frequencw,, v, = 2n5E.n € S Itis then easy to see from (4.42) and (4.43)
that stacking the received training de[t%}st into an NV,,.-dimensional vectoy again yields the

standard linear form

y = VEXh, +z. (4.44)
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The main difference here being that the sensing marixnow an/V,, x L matrix that is comprised
of {\/%ul ‘n e S”} as its rows, while the AWGN vecteris distributed a€N (O, , Iy, ).

The important thing to note from (4.44) is that the formXfin the case of OFDM signal-
ing imposes the condition tha(,, > L for X to have full column rank. In order to estimate a
frequency-selective channel using OFDM signaling, tradédl methods—such as [25]—therefore
require thatV,. = Q(L) and, from (4.30), at best yield[A(hL®)] = Q(L/E). In contrast, we now
outline the CCS approach to this problem and quantify itsaathge over traditional methods for
sparse channels. Note that an implicit assumption we withbking in the sequel is thaf, > L,

which follows from the fact that a basic premise in OFDM systas thatl” >> 7,,.. [21].

[CCS-2] — OFDM Training and Reconstruction

Training: PickS;,—the set of indices of pilot tones—to be a sef\gf indices sampled uniformly

at random (without replacement) from the et [0... N, — 1].

Reconstruction: Fix anya > 0 and pickA = \/2£(1 + a) log L. The CCS estimate df, is then

given as a solution to the Dantzig selector

b = argmin [, subjectto |VEXH(y — VEXh)|| <. (4.45)
heCL >

Below, we summarize the performance[@fCS 2} in terms of both the spectral efficiency and the

reconstruction error.

Theorem 4.9 Suppose thaV,, d > 2, and let the number of pilot tonés, > 2¢;dlog® N,. Then
for anyd,, € (0,0.3], the CCS estimate df, satisfies

A (hSs) < (2. g log L (4.46)

with probability exceeding — 2 max {2 (7r(1+a) log L-L2a)_1/2, 1ONJC45§d}. Here, the constants
c3 > 0ande, > 0 are the same as in Theorem 2.9, while the constart4./2(1 + a)/(1—3624).
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Proof: The proof of this theorem is a consequence of Theorem 2.9 hadrém 2.13. Specif-
ically, fix somedy; € (0,0.3] and note that since we are assumifig,|j, < d < L, Theo-
rem 2.13 asserts that the reconstruction error trivialtisBas (4.46) with probability exceeding
1-2 (Jm : La) _1, provided the sensing matriX € RIP(2d,d,4). On the other
hand, observe th& in this case simply corresponds to &p x L column submatrinfan N, x N,
(randomly) subsampled unitary matix generated from aiv, x N, unitary (Fourier) matrixXJ

that consists of

1
R e—j(Nu—l)wn,No] n=0,1,...,N, -1
A

as its rows. Therefore, by takirtgdif log N, (and sinceuy = 1 in this case), Theorem 2.9
guarantees thah € RIP(2d, dy4) with probability exceeding — 10N, 6465‘1, provided we have
N, > 2¢3dlog” N,. Finally, note from the definition of RIP that sindgis a column submatrix of
A, A € RIP(2d,094) implies thatX € RIP(2d,d,4). The claimed probability bound therefore

trivially follows by taking a union bound over the two faikievents. |

4.5.2 Estimating Sparse Doubly-Selective Channels

In the case of a single-antenna channel that is doubly sedetite virtual representation of the

channel reduces to [cf. (4.9)]

L1
Z Z o (0, m)e 2w f ei2m it (4.47)

(=0 m=—M

and the corresponding received training signal can beemrds

Yer(t Z Z m)e* Ty (t = /W) + 2 (t), 0 <t < T + Tynaa (4.48)

(=0 m=—M
Signaling waveforms that are often used to communicate awmubly-selective channel can be
broadly categorized as (single-carrier) SS waveforms andti-carrier)short-time Fourie(STF)
waveforms—a generalization of OFDM waveforms for doul#jestive channels [125, 126]. Be-
low, we discuss the specifics of the CCS framework for spacablg-selective channels as it

pertains to both SS and STF signaling waveforms.
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Spread Spectrum Signaling

The SS training signat,,(t) in the case of a doubly-selective channel has exactly the sam
form as given in (4.36). The difference here is that the chgdehed-filtered output in this case
looks different from the one in (4.37). Specifically, defirgmim N, el N, + L — 1. Then chip-
matched filtering the received training signal (4.48) ysdlti3]

L-1 M
Yo = VE Z Z Hy (0, m)e’*™ Nz 4 2,, n=0,1,...,N, — 1. (4.49)

=0 m=—M
Now, in order to represent this received training data ihtodtandard form (4.22), first define an

N,-length sequence of vectofs,, € C*} comprising of the spreading code,, } as follows

=9
~

e

X;l; = |:‘,'UTL xn_l xn—(L—l):| 5 n = 0717"‘7NO— 1 (450)

where the notational understanding is ﬂmafif 0 forany: # [0... N, — 1]. Next, define

Hy(0,—M)  Hy(0,~M+1) ...  Hy/(0,M)
e | =, =M Hy(1,-M+1) ... H,(1,M
i 4! ( | ) ( | ) (. ) (4.51)
HU(L—l,—M) HU(L—l,—M—l—l) HU(L—l,M)

to be theL x (2M +1) matrix of channel coefficients. Note that each column of¢hasnnel matrix
represents the impulse response of the doubly-selectareneth corresponding tofexed Doppler

shift. Finally, Iet{un € CW“} denote anV,-length sequence @hodulation vectorgiven by

ul g [e_jMWn,No 6_j(M_1)Wn,NU . e-jMw"TNo 5 n = 07 17 ey NO - 1 (4.52)
where we again have, v, el 2r<-. Then itis easy to see that the seque{lg,e} in (4.49) can

also be expressed as
Yo = VEXIHu, + 2, @ Ve (u), ®x7) vec(H) + z,

:\/E(ul@)xl)hvjtzn,n:O,l,...,NO—l (4.53)
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whereh, % vec(H) € CE@M+D) js the vector of virtual channel coefficients, afd simply

follows from the basic identity that relates thec-function with the Kronecker product [44]:
vec(ABC) = (C" @ A)vec(B) for arbitrary (complex- or real-valued) matricAs B, andC.
The expression (4.53) suggests that the input-outpuioalé4.49) can also be expressed as a

matrix-vector product by stacking the received trainingac{@n} as follows

T T

Yo u, ¥ X r T 20
° ° Hv(07 _M>

- u X Hy(1, —M) .

=VE : o + : (4.54)
T T :
Y _ u: X 2R, —
No—2 vauz vauz Hy(L -1, M) No—2
L yNo—l 1 L uNo—l ®XNO_1 1 B B i ZNO—I 1
y—\/é_;)r(hv—i-z

where the sensing matriX has dimensionsV, x L(2M + 1), while the AWGN vecto is dis-
tributed asCN (05 , Iy, ). Note that under the assumption that the doubly-selectiammel is
underspreadr, o, Vimee < 1), we have thal' W > 7peoVmaTW = N, > L(2M + 1). This
fact—combined with the form aK—ensures that the sensing matrix in this case has full column
rank and training-based methods can use the LS criteri@7)4vithout further conditions, re-
sulting inE[A(hL®)] = Q(L(2M + 1)/€). Below, we describe the CCS approach to estimating
doubly-selective channels using SS signaling, which iskeiy similar to[CCS -1], and provide

an upper bound on the corresponding reconstruction erdr$parse channels that is significantly
better thar)(L(2M + 1)/€).

[CCS -3 — SS Training and Reconstruction

Training: Same as in the case PECS-1].

Reconstruction: Fix anya > 0 and pick\ = \/2E(1 + a)log L(2M + 1). The CCS estimate of

h, is then given as a solution to the Dantzig selector

hS = argmin ||h||, subjectto H\/EXH(y—\/EXh)H <A (4.55)

heCL(2M+1)
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Theorem 4.10 Suppose that the number of temporal signal space dimensaiisfies the con-
straintN, > 4cy d*log L(2M + 1). Then for anyd,, € (0,0.3], the CCS estimate df, satisfies

A (h®®) < c3 - % log L(2M + 1) (4.56)

4d?

o\ —1/2
with probability> 1 — 2 max {2<7r(1 +a)log L(2M +1) - (L(2M + 1))2 ) ,exp(—c3N°)}
Here, the constants > 0 andc, > 0 are the same as in Theorem 3vith J,, in place ofdy),
while the constant, = 41/2(1 + a)/(1 — 3624).

Proof: The key ingredient in the proof of this theorem is the obsowathat the sensing
matrix X in (4.54) is in fact an overdetermined Gabor matrix (withgmaetersL. and M) that
is generated from the spreading coﬁfn} (cf. Section 3.4). The statement of the theorem then
follows trivially from Theorem 2.13 and Theorem 3.9 usingwanents similar to those made in

the proof of Theorem 4.8. |
STF Signaling

In the case of STF signaling, which is a generalization of ®Ffignaling to counteract the

time selectivity of doubly-selective channels [125, 126§ training signak;, (¢) is of the form

T (t) = 4/ ]\i Z gt —rT,)e*™Wot 0 <t <T (4.57)
"

7,8)EStr

whereg(t) is again a prototype pulse having unit eneigly,C S «f 0...N;—1]x[0...Ny—1]

is the set of indices of STF pilot tones used for training, ahgd—a measure of the spectral
efficiency ofz,,.(t)—denotes the total number of pilot tones;, = |Si-|. Here, the parameters
To € [Tmaz, 1/Vimaz) @NAW, € [Vpas, 1/Tmaz| COrrespond to the time and frequency separation
of the STF basis waveform%g(t — rTo)eﬂ”WOt}S in the N,-dimensional time-frequency plane,
respectively, and are chosen so thdt’, = 1 (which gives rise to an orthogonal STF basis [126]).
Note that the total number of STF basis waveforms availabtecbmmunication and training

purposes in this case '$, Ny = N,, whereN, def T/T, and Ny = W/W,.4

“Note that signaling over an orthogonal STF basis can be titamigs block OFDM signaling with OFDM symbol
durationT, and block lengthV, = T'/T,,.
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One of the main advantages of signaling over doubly-setectiannels using STF waveforms
is that the basis functior%g(t—rTo)eﬂ”WOt} serve as approximate eigenfunctions for sufficiently
underspread channels [126]. Specifically, matched filgetive received training signal (4.48) in
this case with the STF basis waveforr{*@(t - TTo)ej%FSWOt}Str yields [126]

Yrs = \/EHT,S + Zr,s (Ta S) € Str (458)

Where{zr,s} is a zero-mean, unit-variance, complex AWGN sequence,enthie STF channel

coefficients{ H, , } are given by [cf. (4.47)]

1 ~ o
Hr,s ~ N, H(t, f)}(t,f)z(rTo,sWO) - \/?tr uﬁsHUt,r

-3

(uZT ® u}s) vec(ﬁ) =

1
N Vo (u/, ® u},s) h,, (r,s) € Sy (4.59)
tr tr

whereH is the L x (2M + 1) channel matrixefined earlier in (4.51}, < vec(H) € CE@M+D) s
the vector of virtual channel coefficients, and the vectgrse C*"*" anduj, € C* are defined
asuf, < [e‘jM“7'=Nt ejM“7'=Nt] anduj o [e‘jo““*”f e_j(L_l)wS*Nf}, respectively.
It can now be seen from (4.58) and (4.59) that stacking theived training datgy.,} in this

case into anV,,.-dimensional vectoy yields the standard linear form
y =VEXh, +z (4.60)

where the AWGN vector is distributed a€ N (Oy,,, Iy,,), while the Ny, x L(2M + 1) sensing
matrix X is comprised of{ﬁ (ul, ®ul,): (rs) € Str} as its rows. Consequently, traditional
methods impose the conditiak,, = Q(L(2M + 1)) in order to satisfy the requirement thxt

has full column rank in this setting and yield—at be$tA (ht®)] = Q(L(2M + 1)/E). We now
describe the CCS approach to estimatirgparse doubly-selective channels using STF signaling,
which not only has a lower reconstruction error than the BSeldl approach but is also spectrally

more efficient.

°Itis instructive to remind the reader at this point tdate [7,naz, 1/Vimaz] @AW, € [Vimaz, 1/Tmaz] imply here
thatV; > 2M + 1 and Ny > L, respectively.
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[CCS-4] — STF Training and Reconstruction

Training: Pick S;,,—the set of indices of pilot tones—to be a set/gf ordered pairs sampled

uniformly at random (without replacement) from theSet [0... N, — 1] x [0... Ny —1].

Reconstruction: Fix anya > 0 and pickA = \/2£(1 + a) log L(2M + 1). The CCS estimate of

h, is then given as a solution to the Dantzig selector

he®® = argmin HhHl subject to H\/EXH(y—\/EXh)H <. (4.61)

heCL(2M+1)

Theorem 4.11 Suppose thaiV,,d > 2, and let the number of pilot ton€s,. > 2c¢3dlog® N,.
Then for anysy, € (0, 0.3], the CCS estimate df, satisfies

A (h®®) < 3 - g log L(2M + 1) (4.62)

-1

/2 10NO_C45§d}'

Here, the constant = 41/2(1 + a)/(1 — 3d24), While the constantg; > 0 andc, > 0 are the

with probability > 1 — 2 max {2<7r(1 +a)log L(2M +1) - (L(2M + 1))2“)

same as in Theorem 2.9.

Proof: To begin with, consider afv; x N, unitary (Fourier) matriXJ, that consists of

1 [ , .
e IMwrny eJ(Nt—M—Dwr,Nt] cr=0,1,..., N, — 1}
W
as its rows. In a similar fashion, consider anothgrx N unitary matrixU ; that consists of
1 —j0 —j(Ng—1
— [e Owsny Ny wa} L s=0,1,...,N;— 1
VN

as its rows. Next, leU = U, ® Uy be the Kronecker product of these two unitary matrices.
The key thing to note here is that since the Kronecker prodiisto unitary matrices is a unitary
matrix [44], theN, x N, matrix U is also a unitary matrix (recall that;, N, = N,). Itis then
easy to see from (4.59) and (4.60) tBain this case simply corresponds to Ap. x L(2M + 1)

column submatrix of anv;, x N, (randomly) subsampled unitary matrix generated from the
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N, x N, unitary matrixU. The statement of the theorem then follows trivially fromedhem 2.9
and Theorem 2.13 using arguments similar to those made jportieé of Theorem 4.9. |
This concludes our discussion of the CCS framework for siagitenna channels; see Table 4.2

for a summary of the results presented in this section.

4.6 Compressed Channel Sensing: Multiple-Antenna Channgl
4.6.1 Estimating Sparse Nonselective Channels

For a multiple-antenna (MIMO) channel that is nonselectalso, see Special Case: Nonse-
lective Multiple-Antenna Channéjsthe virtual representation (4.9) of the channel reduoces
H = fﬁ %T:H (i, k)ag (L) alf <i> — AzHTA! (4.63)
i=1 k=1 o N ) ™" \ Ny e .

Here,Ar andA; are N x Ny and Ny x Ny unitary (Fourier) matrices that are defined as

def

d
Ap ™ ef

an(s) ar(2) - ar(V)] AT |ar(sh) ar(2) ... ar(1)] (469)

whereadd, = |:hv,l hv,NR} is anNy x Ny matrix of virtual channel coefficients in which
thei-th columnh,; € C*7 consists of all channel coeﬁicien{s’{v(z’, k;)} that are associated with
the:-th resolvable AoA.

Generally speaking, the vector-valued training signatldsg@robe a nonselective MIMO chan-

nel can be written as

~ n Ny,
— i R <t < .
Xy (1) X, g (t ) ,0<t< (4.65)

whereg(t) is a prototype pulse having unit energﬁn € CNT} is the (vector-valued) training se-
quence having enerdy’, ||x,||? = Nr, andN,,—the number of temporal training dimensions—
denotes the total number of time slots dedicated to traimrgis setting. Trivially, matched fil-
tering the received training signgl,-(t) = ﬁxtr(t) + z,,(t) in this case with time-shifted versions

of the prototype pulse yields

Vi = N%ﬁscﬁzn,n:o,...,zvﬁq (4.66)
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where{y, € C"r} is the (vector-valued) received training sequence and tWE&N vectors{z, }
are independently distributed €8/ (0x,., Iy, ). Next, the received training vecto{Srn} can be

row-wise stacked into arv;, x Nz matrix to obtain the following system of equations

X0 Zg
~T ~T =T
& X Z
A - I+ o AsHAL+ | (4.67)
_S’}rvt'r_l_ i}rvt'r_l Z}—Vtr_l

Y= [ RApH, AL Z
Finally, post-multiplying theV,, x Ny matrix 'Y with A7, yields the standard linear form (4.22)

y=,/5xH 1z (4.68)
Nr

Here,Y %/ YA;, X L XA, andZ wf ZA*,. Further, note that sinca’, is a unitary matrix,
the entries of the matri¥ are still independently distributed 4/(0, 1).

It is easy to see from the structure of the sensing m&ri the above expression that the
number of rows ofX is exactly equal to the number of temporal training dimensjav,,.. In
order to estimate nonselective MIMO channels, traditidraihing-based methods such as those
in [29, 30] therefore require thdl,, = Q(Nr) so as to ensure th& has full column rank and
produce an estimate that satisfiel\ (H-%)] = Q(NzN2/E). In contrast, we now describe the
CCS approach to this problem fdrsparse channels and quantify its performance in termseof th
reconstruction error and spectral efficiency. Before pedogy further, however, it is instructive
to recall that the conditional sparsity pattern associatgld the i-th resolvable AoA is defined
asS,(i) et {(i, k) : (i,k) € S4}, while themaximumconditional AoA sparsity is accordingly

defined asl < max; |Sa(1)].

[CCS -5 — Training and Reconstruction

Training: Pick the training sequene{a?cn,n =0,...,N, — 1} associated withx,,.(¢) to be a
sequence of i.i.d. Rademacher random vectors in which e#@ch ieadependently takes the value

+1/v/ Ny or —1/+/ Ny, with probability 1 /2 each.
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Reconstruction: Fix anya > 0 and pickA = 1/2&(1 + a)(log NrN7)/Nz. Next, define

[€ g .
' N—TX (yz— N—TXh)HOOS)\,Z—]_,,NR

wherey, ¢ C denotes the-th column of the matrixy’. The CCS estimate &, is then simply

hy% = arg min HhHl subject to
heCNT

. Jyces ccs ccs
given as followsH¢ —[hv,l hv,NR]'

Theorem 4.12 Suppose that the number of training time slots (temporalitrg dimensions) sat-

isfies N;, > 2codlog Np. Then for anyd,; € (0, 0.3], the CCS estimate dfl,, satisfies

d-N
A (HS) < 2. TT -log Np Ny (4.69)

—1/2
with probability exceeding — 2 max {2<7r(1 + a)log NgNr - (NRNT)2“> ,eXp(—C1Ntr)}.
Here, the constants > 0 andc, > 0 are the same as in Theorem 2u@ith 4,; in place ofdy),

while the constant, = 41/2(1 + a)/(1 — 36,53).

Proof: The claims of this theorem can be established using Theor@rar@l a slight modifi-
cation of the proof of Theorem 2.13 in [68]. To begin with, fonsed,; € (0,0.3] and note that
since theN,, x Ng matrix X in (4.67) consists of the training vecto{s}n} as its row, the condi-
tion N, > 2codlog Ny implies that the i.i.d. (binary) matriX € RIP(2d, 6,;) with probability
exceedingl — exp(—c; V) (cf. Theorem 2.8). This, in turn, implies that the matkx= }NCA*R
also satisfied:1 P(2d, §,5) with the same probability, sinc} is a unitary matrix [11].

Next, notice that the-th column of the matriXY’ can be expressed as [cf. (4.67), (4.68)]

Yi: Nithﬂ-—l—zi, Zzl,,NR (470)
T

whereh, ; is thei-th column ofH,, while the vectoz; ~ CA(Oy,,,Iy,.) denotes thé-th column
of the AWGN matrixZ. It is also instructive to note here that—by definition—wed#he con-
straints||h, ;|lo < d,i = 1,..., Ng. We now revisit a technical detail in the proof of Theoren®.1
in [68, Section 3]. Specifically, define(h) % H o XM (yi - \/NZTXh)H ,i=1,...,Ng.
Then it follows from the preceding discussion and [68, Sec8] that h

> |huillo - Nr

|hS% — h, ;|5 < 5 -log Ny Np (4.71)
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providede;(h, ;) < \,i = 1,..., Ng. Therefore, sincé\ (H®) = "% [h$% — h,,||3 and also

since>_~" ||h, |lo = d, it is easy to conclude from this analysis i satisfies the reconstruc-

tion error bound (4.69) with probability exceeding

1 Pr ({ G {a(h,) > (X ¢ RIP(d, 5267)}). (4.72)

Finally, since we already have tht(X ¢ RIP(2d,d,7)) < exp(—c1 N,,.), the only remaining
thing is to upperbound the probability of the evejﬁif‘l {c,-(hw) > )\}. To this end, first define

W def (zi,xj), i=1,...,Ng, j=1,...,Nr (4.73)

wherex; € C"r denote thej-th column ofX. Note that thew, ;'s are identically (but not inde-
pendently) distributed a@N (0, 1), which follows from the fact that; ~ CN'(Oy,,, Iy, ) and the

columns ofX have—by construction—unit-norms. Next, observe that(h, ;) > X if and only

if |X"z;]|loc > +/2(1 + a) log Nz N7 and, therefore, we have

Pr (Lj {ci(h,;) > A}) — Pr <m2ax XMzl > v2(1 + a) logNRNT>

i=1

=Pr (max lwi ;| > v/2(1 + a) log NRNT)
Z?]

(@)
< 9NgNy - Pr (\Re(wl,l)\ > V(1 a) logNRNT>

(v) % -1/2
<9 <7r(1 +a)log NpNy - (NgNy) ) (4.74)

where(a) follows from a simple union bounding argument (applied &yjavhile (b) mainly fol-

lows from the fact thaPr(|z| > u) < -2 exp (—3u?) for z ~ N(0,1) andu > 0 [77]. The

claimed probability bound in the theorem now follows by takia final union bound over the
eventd J'% {¢;(h,;) > A} and{X ¢ RIP(2d,0,)}. ]

Remark 4.13 It is worth mentioning here that the statement of Theorerg deinains unchanged
if the training sequencgx,,,n = 0, ..., N;,,—1} described ifCCS - 5 probes the MIMO channel
in the so-calledeamspacénstead of in thentenna spade {X, = Arx,,n =0,..., N, — 1},

where now the beamspace vectars ¢ CV7 are i.i.d. Rademacher random vectors in which
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each entry independently takes the value/\/N,, or —1/1/N,,. with probability 1/2 each. In
addition, we can also describe a variant[@’CS 5] in which a completely different (non-binary)
training sequence is used without significantly alteriregstatement of Theorem 4.12. Specifically,
let S, be a (sorted) set aV,, = 2c3dlog® Ny indices sampled uniformly at random (without
replacement) from the sét ... Nr], and define theV,, vectors in the training sequence to be
{fcn =e; :1€ StT}. Here, the constant > 0 is the same as in Theorem 2.9, whilgis used
to denote thé-th column ofIy,.. Then it can be shown that the reconstruction error bouré9j4.
still holds in this case—the only difference here being thatsecond term in theax expression

—C 2— . . .
in Theorem 4.12 changes 10N, 452‘1, where the constami > 0 is given in Theorem 2.9.

Finally, before concluding this discussion, it is worth lenging the minimum number of tem-
poral training dimensions required for the CCS approachuteeed in the case of sparse nonse-
lective MIMO channels. From the structure of the trainingsence in[CCS-S] and the state-
ment of Theorem 4.12, we have that CCS requires the numbeaiafrtg dimensions to satisfy
N, = Q(dlog Nr), which—modulo the logarithmic factor—is never worse thgn = Q(Ny)
for traditional methods. In fact, for the case when the scaity geometry is such that the condi-
tional AoA sparsity is equal to the average AoA sparsity= d/Ny), we have that CCS requires

the number of training dimensions to satisfy, = 2 <NiR -log NT).

4.6.2 Estimating Sparse Frequency-Selective Channels

In the case of a MIMO channel that is frequency selective vilteal representation of the

channel can be written as [cf. (4.9)]

L-1

H(f) =Y AgH(0)Afle72mw! (4.75)
=0
whereH, (¢) = h,1(0) ... thR(g)} , 0 =0,...,L -1, areNy x Nip matrices in which

thei-th columnh, ;(¢) € C*7 consists of the coefﬁcient@Hv(i, k, 6)}, while A andA 7 are the
unitary (Fourier) matrices defined in (4.64).
As in the case of single-antenna channels, both SS and OFDMfarans can be used to

communicate over a frequency-selective MIMO channel. Reisiike of this exposition, however,
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we limit ourselves to OFDM signaling only. Paralleling th€@M formulation for single-antenna
channels, the corresponding training signal in the caselbf®ichannels can be expressed as
X (t ,/ an )Tt 0 <t<T (4.76)
HESt'r
wherelV,, here again denotes the total number of pilot tones (equittg)éhe number of temporal

training dimensions)S,, ¢ S </ 0.

.. N, — 1] is the corresponding set of indices of pilot tones
used for training|S;.| = Ny), and{fcn € CNr} is the (vector-valued) training sequence having
energyy s [IX.ll3 = Nr. Matched filtering the received training signal (t) = H(x.(t)) +

z,,(t) with the OFDM basis waveformg(t)e/>"7'} . yields in this case [21]

Vi = @/i H,x, +z,, n € S 4.77)
Nr

where the AWGN vector$z, } are independently distributed @8/ (0, I, ), while the (matrix-
valued) OFDM channel coefficien{d,, } are given by [cf. (4.75)]

L-1

H,~H ZARHT (O)AHe %" e S,. (4.78)

Pl =

Next, in order to represent the received training data i@ the standard form (4.22), define

row vectors{yn = ynA*R}S and note from (4.77) and (4.78) that

L—-1
V=R Y B v e s, (479)
T =0

where entries of the transformed noise vect{cﬁ = ZTA}}} s, are still (mutually) independently
distributed a&€’ \V/(0, 1) due to the unitary nature d€%. Now lety,(i),i = 1, ..., Ng, denote the
i-th entry ofy], then it can be seen from (4.79) that

i) = £ ~TATZhM T ()

=\ ¢ A’k TH, u, + 2,(7) @ i (ul Q ilAi})VEC(HU i)+ 20 (1)
T ’ Nr ’

£
(:,/NT (! @ Ay 4+ 2,()), i=1,...,Ng neS,. (4.80)

=
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Here, z, (i) denotes the-th entry ofzT, the matrixH,,; </ [hm(o) h,;(1) ... hy(L— 1)]

is an Ny x L matrix that consists of all channel coefficier{tﬁ[v(z’,k,ﬁ)} that are associated
with the i-th resolvable AoAu! el [6—j0wn,wo e_j(L—l)Wn,Noi| denotes the collection df
samples of a discrete sinusoid with frequengyy, def QwNio, andh, def vec(H,;) is just a
vectorized version oH,, ;. Finally, note thata) in (4.80) follows from the identityec(ABC) =
(CT ® A)vec(B), while (b) follows from the identity A ® B)(C @ D) = AC ® BD [44].

It can now be easily seen from (4.79) and (4.80) that stadkieagows vectors{yl} s.. into an

N x Nr matrixY yields the standard linear form

vy-./f xHu 17 (4.81)
Nr
whereH,, = [hv,l o hvaR] is the Ny L x Ny channel matrix whosgth columnh,,; € CN7&

consists of all channel coefficien{s7, (i, k, ¢) } that are associated with tfieh resolvable AoA,
while the matrixX is an N, x NyL matrix comprising of{ x| (u} ® A%): n € S, } as its rows.
The key things to note here are that (i) the form of the sensiatyix X here once again dictates
that N,, = Q(NrL) for the traditional methods such as those in [31, 32] to ob&ameaningful
estimate offl,, and (ii) we have from (4.30) th@[A(H®)] = Q(NgN2ZL/E) in that case. In
contrast, we now provide the CCS approach to estimatisgarse frequency-selective MIMO
channels using OFDM signaling and quantify its performaacbeantage over traditional methods.
The following discussion once again makes use of the definagf maximum conditional sparsity

within the AoA spread of the channel:™ max; {(3,k,0) : (i, k,0) € Sa}|.

[CCS - 6] — OFDM Training and Reconstruction

Training: Pick S;,—the set of indices of pilot tones—to be a set/éf. indices sampled uni-
formly at random (without replacement) from the set= [0... N, — 1]. Further, define the
corresponding sequence of training vect{)fza, n e SW} associated witk,,.(¢) to be a sequence
of i.i.d. Rademacher random vectors in which each entrypgeddently takes the valuel //N,,
or —1/+/N,, with probability1/2 each.
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Reconstruction: Fix anya > 0 and pickA = 1/2&(1 + a)(log Ngk Nz L) /Nr. Next, define

'\/NZTXH(yZ- — \/NETXh)

wherey; € CV denotes the-th column of the matrixy’. The CCS estimate dfl,, is then simply

h$% = argmin ||h||, subjectto
he (CN L

' S)\,izl,...,NR

i Jyccs
given as follows HS = [hgﬁs h‘é‘fh]-

Theorem 4.14 Suppose tha¥,, d > 2, and let the number of pilot toné§, > (2cs/ce)dlog® N,.

Then for anys,; € (0,0.3], the CCS estimate df, satisfies

amE) < L

(4.82)

—1/2 62
with probability exceeding—4 max { <7T(1+CL) log NRNTL~(NRNTL)2“) , 10N, 6§d}. Here,
the constantss, ¢y > 0 are the same as in Theorem 3.16, whije= 4,/2(1 + a)/(1 — 30,3).

Proof: To begin with, consider afV, x N, unitary (Fourier) matriXU; that consists of

1
€_j0w"*N" . 6_j(No_1)w7L’N0] -n= 07 17 ey No —1
il

as its rows. Next, leU = U; ® A’ be the Kronecker product of the two unitary matrices
U; andA’. Note thatU itself is a unitary matrix since it is the Kronecker produttwo uni-
tary matrices. Now the key thing to observe here is that timsisg matrixX comprising of
{x7(u} ® A%):n €S, } as its rows is just atV,, x Ny L column submatrix of aiV,. x NyN,
structurally-subsampled unitary matr (with parametergs = Ny andn = N,,) that is gener-
ated from theN- N, x Nr N, unitary matrixU and a Rademacher sequence (cf. Section 3.5). The
statement of the theorem then follows from Theorem 3.16 asligjlat modification of the proof of
Theorem 2.13 in [68] using arguments similar to those madledmproof of Theorem 4.12. &
One key observation from the description of the trainingnalgn [CCS-G] is that CCS re-
quiresN,. = Q(d - log® N,) for d-sparse frequency-selective MIMO channels. In particutar
the case of conditional AoA sparsity being equal to the ayeoA sparsity, this implies that
CCS requiresV,, = Q( -log® N,) in this setting as opposed 1§, = Q(Ny L) for traditional
methods—a significant |mprovement in terms of the trainipecsral efficiency when operating at

large bandwidths and with large plurality of antennas sibgedefinition,d < Np L.
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4.6.3 Estimating Sparse Doubly-Selective Channels

In the most general case of a MIMO channel that is doubly se&edhe virtual representation

of the channel can be written as [cf. (4.9) and Figure 4.2(c)]

L-1 M
H(t, f) =Y > AgHI((,m)Ale/> #te 2w/ (4.83)
=0 m=—M
whereH, (¢, m) = [hv’l(fjm) hu,NR(f,m)} A =0,....L—1, m=—-M,...,M, are

Nr x Ng matrices in which thé-th columnh, ;(¢,m) € CN* consists of the channel coefficients
{Hv(i, k, 0, m)}, while Az and A+ are the unitary (Fourier) matrices defined in (4.64).

As in the case of frequency-selective MIMO channels, wetloar discussion in this section
to multi-carrier signaling only, even though both singladanulti-carrier waveforms can be used
to communicate over doubly-selective MIMO channels. Irtipalar, paralleling the multi-carrier
formulation for single-antenna channels, tNe-dimensional STF training signal in the case of

MIMO channels can be expressed as

E .
X (1) = 4/ > Xeagt—rT)e” W 0<t<T (4.84)
t

" (r,5)€Str
wherelV,, here again denotes the total number of STF pilot tones uséxhining, the correspond-
ingsetS,, ¢ S [0... N,—1]x[0... N;—1] is the set of indices of the pilot tonéss,, | = N,,),
and{x,, € C"} is the (vector-valued) training sequence having endryy [|%..,||3 = Nr. Fi-
nally, as in Section 4.5.2, the STF basis parametgrs [7,.4z, 1/Vimaz] @NAW, € [Vimazs 1/ Tmaz]
are chosen here so thBfIW, = 1, resulting in a total ofV,N; = N, STF basis functions, where
N, “ 7/, andN; € ww,

Next, under the assumption that the doubly-selective MIM@mmel is sufficiently underspread
so that the STF basis functions serve as approximate eigetidas of the channel, the received
training signaly, (t) = H (x4 (t)) + z-(t) can be matched filtered Wit{lg(t — rTo)eﬂ”Wot} to
yield [126]

&
yr,s = AT Hr,sir,s + 27",37 (Ta S) S Str (485)
Nr
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where the AWGN vector§z, ,} are independently distributed d4/(0y,,, Iy,), while the STF
channel coefficient§H, , } are given by [cf. (4.83)]

L-1 M ot
Ho 2 BN o = O 3 ArHI(m) AR R0 (r5) €5, (4.86)

(=0 m=—M

Now define row vector§ym = yrsA* }, and note from (4.85) and (4.86) that

S ,/ ATZ Z m)e>R NS gt (r,5) € S (4.87)

=0 m=—M
>

r' s
H,

where the entries of the transformed noise vec{ar,’% = z) AT } s, are again independently
distributed a€ /' (0, 1) due to the unitary nature &,.

In order to represent the received training data (4.87) tinéostandard form (4.22), we first
focus on theNr x Nx matrix H* defined in (4.87). Specifically, if we 16t *(k, i) denote the

orm . —j2r-tg o
k-th entry of thei-th column ofH’* ©S H (0, m) e R 27N then it is easy to see that
lm

L-1 M

B (ki) = >0 S Hy(ik £m)e e Ny

{=0 m=—M

= u}—,sHMLk‘ut,T’ - (uz—,r ® u}s) VEC(vak)

= (), ®uj, )by, k=1,...,Np,i=1,...,Ng, (r,s) € Sy (4.88)
where the vectora], € C***! anduj}, € C* are defined as], wf [e—jMwnNt . ejM“nNt]
andul, = [e‘jo“’S»Nf e‘j(L‘l)“’S»Nf], respectively, the matri¥l,, ;, is anL x (2M + 1)

matrix that consists of all channel coefficiert#/, (i, k, ¢, m)} that are associated with thieth

resolvable AoA and-th resolvable AoD

H,(i, k,0,—M) Ho(i,k,0,—M +1) ...  Hy(i,k,0,M)

| H G k1, —M Hy(i k1, ~M+1) ...  Hy(ik1,M
H,,, ( | ) ( | ) ( | ) (4.89)

Hy(i,k,L—1,—M) H,(i,k,L—1,—-M+1) ... H,(i,k,L—1,M)
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andhmk = vec(Hw-,k) € CLM+) js just a vectorized version &, ; .. Therefore, if we use

h;; € C"* to denote the-th column of the matri¥I}*, then it follows from (4.88) that

V,1

W= | (w, @uy,) (4.90)

where theN; x L(2M + 1) matrix H, ; defined in the above expression consists of all channel
coefficients{ 1, (i, k, ¢, m) } that are associated with tfi¢h resolvable AoA
Finally, if we lety, (i),i = 1,..., Ng, denote the-th entry of the row vectoy] , then it can

be see from (4.87) and (4.90) that

. | € . .
yT,S(l) — N— XISA—TH’UJ (utﬂ“ ® uf75) —|— ZT’,S(,L)
T
& 3 . -
VN, ((utTﬂ" ® u},s) ® XI,SAT) vec(H, ;) + z.(7)
T
a E _
< \/N: X, (0], ®up, ® A7) by +2,.4(1),  (rs) € S (4.91)
T

=

Here,z, (i) denotes the-th entry ofz] , while h,; = vec(H, ;) € CNrL(M+1) s just a vector-
ized version oftL, ;. Note that(a) in (4.91) mainly follows from the identityA @ B)(C ® D) =
AC ® BD and the fact that the Kronecker product is associative [#4]Jan now be easily seen
from (4.87) and (4.91) that stacking the row vect{)y;{ 8} Sor in this case into aV,,. x N matrix

Y again yields the standard linear form

v /5 xH,+z (4.92)
Nr

whereH, = |h,; ... hv,NR} is the Ny L(2M + 1) x Ny channel matrix whoséth column

h,; € CNTLEMHD) consists of all channel coefficients?, (i, k, £, m) } that are associated with the

6The reader can easily verify from the definition@fthat the operation of transposition is distributive over th
Kronecker product [44](A @ B)' = AT @ BT.
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i-th resolvable AoA, while the sensing matXis anNV,, x NpL(2M + 1) matrix comprising of
{x],(u/, ®u}, ® A7) : (r,s) € S;r } as its rows.

Note that, similar to the case of nonselective and frequaetgctive MIMO channels, the
expression (4.92) requires thilt. = Q(NrL(2M + 1)) for the traditional methods to reliably use
the LS criterion (4.27) in the case of doubly-selective MIMBannels. Further, even when this
condition is satisfied, we have from (4.30) ta\ (H'%)] = Q(NgNZL(2M + 1)/€) at the very
best. Instead, we now provide the CCS approach to estimaitspgarse doubly-selective MIMO
channels using STF signaling and quantify its performantb@tage over traditional methods
in terms of both the spectral efficiency and the reconswuctirror. Before proceeding further,
however, recall that the maximum conditional sparsity witthe AoA spread of the channel is
defined asl ! max, |{(i, k, £,m) : (i, k, £, m) € S;}.

[CCS-7] — STF Training and Reconstruction

Training: Pick S;,,—the set of indices of pilot tones—to be a set/gf ordered pairs sampled
uniformly at random (without replacement) frafh= [0... N, — 1] x [0... Ny — 1]. Further,
define the corresponding sequence of training vec{tﬁyg, (r,s) € StT} associated witk;,.(¢) to
be a sequence of i.i.d. Rademacher random vectors in whathesary independently takes the
value+1/v/N,,. or —1/+/ N, with probability1/2 each.

Reconstruction: Fix somea > 0 and pick\ = /2€(1 + a)(log NeNrL(2M + 1))/Nr. Further,

defineNr L(2M + 1)-dimensional vectors

[ . [E -
N—TX <YZ_ N—TXh)HOOS)\,Z—l,,NR

wherey; € C" denotes the-th column of the matri®’. The CCS estimate of the MIMO channel

hS® = argmin |/h||, subjectto
’ heCNTL(2M+1)

matrix H, is then simply given as follows$* = [hgﬁs L hgf]SVR}.

Theorem 4.15 Suppose tha¥,, d > 2, and let the number of pilot toné§, > (2cs/cq)d log® N,.

Then for anys,; € (0,0.3], the CCS estimate df, satisfies

INCESE et
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o\ —1/2
with probability > 1 — 4max{<7r(1 + a)log NpNpL(2M + 1) - (NpNrL(2M + 1)) ) ,

_52_
10N, 52d}. Here, the constantg > 0 andcy > 0 are the same as in Theorem 3.16, while the

constanty = 44/2(1 4+ a)/(1 — 365g).

Proof: To begin with, consider afv, x N, unitary (Fourier) matriXJ, that consists of

1 [ _ ,
e~ JMwrng eJ(Nt_M_l)wTth] : T:O,l,...,Nt— 1}
o
as its rows. In a similar fashion, consider anothgrx N unitary matrixU ; that consists of
1 —j0 —j(Ng—1
—|:6]wS’Nf ej(f )wsny:|:S:0717---7Nf_1
VN

as its rows. Next, leU = U, ® U; ® A% be the Kronecker product of the unitary matrices
U,, U, andA’.. Note thatU is also a unitary matrix since it is the Kronecker productiote
unitary matrices. Now, similar to the proof of Theorem 4.th% key thing to observe here is that
the sensing matriX comprising of{x], (uf, ® u} ® A%) : (r,s) € S, } as its rows is just an
Ny x NpL(2M + 1) column submatrix of atv,,. x Nr N, structurally-subsampled unitary matrix
A (with parameters = Ny andn = N,,) that is generated from th&; N, x Ny N, unitary
matrix U and a Rademacher sequence (cf. Section 3.5). The stateftleatloeorem then follows
from Theorem 3.16 and a slight modification of the proof of diteen 2.13 in [68] using arguments
similar to those made in the proof of Theorem 4.12. |
This concludes our discussion of the CCS framework for MIM@armnels; see Table 4.2 for a

summary of the results presented in this section.

4.7 Discussion

There is a large body of physical evidence that suggestsribHipath signal components in
many wireless channels tend to be distributed as clustemsnatheir respective channel spreads.
Consequently, as the world transitions from single-ardetommunication systems operating at
small bandwidths (typically in the megahertz range) to ipldtantenna ones operating at large

bandwidths (possibly in the gigahertz range), the reptasen of such channels in appropriate
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bases starts to look sparse. This has obvious implicatmmthé design and implementation of
training-based channel estimation methods. Since—byitiefir-the intrinsic dimensiony, of
sparse multipath channels tends to be much smaller tharettteinsic dimension), one expects
to estimate them using far fewer communication resouraesttiat dictated by traditional methods
based on the LS criterion. Equally importantly, howevearsily of multipath channels also has
implications for the design and implementation of the comioation aspects of a wireless system
that is equipped with a limited-rate feedback channel.tHifshe channel-estimation module at
the receiver yields a sparse estimate of the channel (samgetthich LS-based reconstruction
fails to accomplish) then—even at a low rate—that estimateaiso be reliably fed back to the
transmitter. Second, this reliable knowledge of the chbspersity structure at both the transmitter
and the receiver can be exploited by agile transceiver$) aadhe ones in [127], for improved
communication performance.

In this chapter, we have described a new approach to estignatilltipath channels that have a
sparse representation in the Fourier basis. Our approdetsésl on some of the recent advances in
the theory of compressed sensing and is accordingly tersiedmpressed channel sensing (CCS).
Ignoring polylogarithmic factors, two distinct featurelSQCS are: (i) it has a reconstruction error
that scales liké&(d) as opposed t@ (D) for traditional methods, and (ii) it requires the number of
temporal training dimensions\;,, to scale likeN;. = 2(d/Ng) for certain signaling and channel
configurations as opposed g, = Q(D/Ng) for traditional methods.

Before concluding our discussion, it is also worth comnrantin some theoretical and prac-
tical aspects of CCS that have not been addressed earlieisiohapter. First, while there is no
discussion of the optimality of CCS in here, we have esthbtisn [14, 15] that its performance
for single-antenna sparse channels comes within a (pglgithmic factor of an (unrealizable)
training-based method that clairvoyantly knows the chhgparsity pattern (also, see the accom-
panying numerical simulations in [14, 15]). Somewhat samdrguments can be made to argue
the near-optimal nature of CCS for multiple-antenna spetns@nels also. Second, the main ideas
underlying the theory of CCS can be easily generalized tomdlarepresentations that make use

of a basis other than the Fourier one and to other applicatieas such as high-resolution radar
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imaging. Third, one expects the representation of realdvmultipath channels in certain bases
to be often approximately sparse because of the so-dakd@geeffect. While our primary focus

in this chapter has been on characterizing the performahGC8 for exactly sparse channels,
it works equally well for approximately sparse channelsisato the near-optimal nature of the
Dantzig selector; see, e.g., Theorem 2.13. Finally, ankgmer most importantly for the success of
the envisioned wireless systems, we believe that CCS cavbealged to design efficient training-
based methods for estimating spamséworkchannels—a critical component of the emerging area
of cognitive radio in which wireless transceivers sense athpt to the wireless environment for

enhanced spectral efficiency and interference managei28it [
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Chapter 5
Estimation of Sparse Networked Data

5.1 Introduction

Sensor networking is an emerging technology that promisesprecedented ability to moni-
tor the physical world via a spatially distributed netwoflsmall and inexpensive wireless devices
that have the ability to self-organize into a well-conndatetwork. A typical wireless sensor net-
work (WSN), as shown in Figure 5.1, consists of a large nurobetireless sensor nodes, spatially
distributed over a region of interest, that can sense (atehgially actuate) the physical environ-
ment in a variety of modalities, including acoustic, seisnthermal, and infrared [38]. A wide
range of applications of sensor networks are being envesiam a number of areas, including ge-
ographical monitoring (e.g., habitat monitoring, premmsagriculture), industrial control (e.g., ina
power plant or a submarine), business management (e.gntomy tracking with radio frequency
identification tags), homeland security (e.g., tracking alassifying moving targets) and health
care (e.g., patient monitoring, personalized drug defivi&9].

The essential task in many such applications of sensor migws to extract relevant infor-
mation about the sensed data—which we ocaliworked datao emphasize both the distributed
nature of the data and the fact that the data may be sharedr@venderlying communications
infrastructure of the network—and deliver it with a desifetelity to a (usually) distant desti-
nation, termed as the fusion center (FC). The overall go#héndesign of sensor networks is to
execute this task with least consumption of network resssireenergy and bandwidth being the
most limited resources, typically. In this regard, the vald metrics of interest are: (i) the average

total network power consumptidfy for estimating the networked data, (ii) the distortionn the
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High-power FC-to-network broadcast channel

Sensor Network
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Fusion Center

Low-power network-to-FC MAC

Figure 5.1 Sensor network with a fusion center (FC). Blacts dienote sensor nodes. FC can
communicate to the network over a high-power broadcastrefidut the multiple-access channel
(MAC) from the network to the FC is power constrained.

estimate, and (iii) the latendy incurred in obtaining the estimate (which is defined as thalmer
of network-to-FC channel uses per estimate). It is alsogdéigeecognized that jointly optimizing
the operations of sensing, processing, and communicasioroften lead to very energy efficient
operation of sensor networks.

In this chapter, we propose a distributed joint source-nehoommunication architecture for
energy efficient estimation of sensor field data at the FC.ddnuld assumptions on thepatial
smoothnessf the signal field (cf. Section 5.2), we analyze the corresiiag relationships be-
tween power, distortion, and latency as well as their sgdhi@havior with the number of sensor
nodes. Our approach is inspired by recent results in wselesnmunications [40,42,43] and rep-
resents a new, non-traditional attack on the problem ofisgngrocessing, and communication in
distributed wireless sensing systems. Rather than digéatoding and transmitting samples from
individual sensors, we consider an alternate encodingdgarabased on the projections of sam-
ples from many sensors onto appropriate spatial basisifunscte.g., local polynomials, wavelets).
The joint source-channel communication architectureeahtrart of our approach is an energy effi-
cient method for communicating such projections to the FRe-grojections are communicated in
a phase-coherent fashion over the network-to-FC mulagleess channel (MAC). This architec-
ture was first proposed and analyzed by us in [43] in the cowfespatially homogeneous signal
fields. In this chapter, we generalize that approach to aderoalass of signals classified as either

compressibl®r sparse(see Section 5.2).
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The power of our proposed approach is that, in principle, carechoose to acquire samples
in the domain of any basis that is particularly well-suitedtlie spatial structure of the signal
field being sensed (e.g., smooth signals tend to be welleappated in the Fourier basis and
wavelet bases tend to be well-suited for the approximatiopiecewise smooth signals [129]).
Thus, if one has reasonable prior knowledge about the s{gral spatial statistics or smoothness
characteristics of the sensed field), then each sensingtopemaximizes the potential gain in
information per sample. More generally, however, we mayeHdtte prior knowledge about the
sensed field. And, in some applications, the physical phemam of interest may contain time-
varying spatial edges or boundaries that separate vesreéift physical behaviors in the measured
signal field (e.g., an oceanic oil spill, limited spatialtdisutions of hazardous biochemical agents).
To handle such scenarios, we introduce the concepbmipressive wireless sensi(@@ws) in the
later part of the chapter that is inspired by results in theoti of compressed sensing and fits
perfectly into our proposed source-channel communicatiohitecture.

The key idea in CWS is that neither the sensor nodes nor thede@ to know/specify the
optimal basis elements in advance, and rests on the faca tteddtively small number of random
projections of a compressible or sparse signal contain wiois$ salient information. Thus, in
essence, CWS is a universal scheme based on deliveringngodgections of the networked data
to the FC in an efficient manner. Under the right conditions,KC can recover a good approxima-
tion of the data from these random projections. Nevertisetbssuniversalitycomes at the cost of
a less favorable power-distortion-latency relationshgt ts a direct consequence of not exploiting
prior knowledge of the signal field in the choice of projengdhat are communicated to the FC.

This trade-off between universality and prior knowledg€WS is quantified in Section 5.6.

5.1.1 Chapter Outline

The rest of this chapter is organized as follows. In Secti@yWwe describe the system model
and associated assumptions on the networked data and timewwocation channel. In particular,
in Section 5.2.1, we formalize the notions of compressiblg sparse signals. In Section 5.3, we

review the optimal distortion scaling benchmarks for coesgible and sparse signals under the



115

assumption that the sensor measurements are available E€Ctlvithout any added cost or noise
due to communications. In Section 5.4, we develop the basidibg block in our source-channel
communication architecture for computing and communigpgirojections of the networked data
to the FC. Using this basic building block, we describe aralya® an energy efficient distributed
estimation scheme in Section 5.5 that achieves the digtositaling benchmarks of Section 5.3
for both compressible and sparse signals under the assaamgbtsufficient prior knowledge about
the compressing (and sparse) basis. In Section 5.6, welirdesthe concept of CWS for the case
when sufficient prior knowledge about the compressingssgphasis is not available and analyze
the associated power-distortion-latency scaling laws.taJfhis point, we operate under the as-
sumptions that the network is fully synchronized and traissians from the sensor nodes do not
undergo fading. We relax these assumptions in Section Si&amy the impact of fading and
imperfect phase synchronization on the scaling laws obthim Sections 5.4, 5.5, and 5.6. Finally,
we present some simulation results in Section 5.8 to istthe proposed methodologies and

concluding remarks are provided in Section 5.9.

5.2 System Model and Assumptions

We begin by considering a WSN withnodes observing some physical phenomenon in space

and discrete-time where each node takes a noisy sample at time ikdzxhe form

x?:s?—kwf,j:l,...,n,kEN (51)

and the noiseless sampl{as?, ke N} at each sensor correspond to a determinkatcunknown
sequence ifR. We further assume thatf| < B (Vj = 1,...,n, k € N) for some known constant
B > 0 that is determined by the sensing range of the sensors, andehsurement erro{m;f}
are zero-mean (real-valued) Gaussian random variablasmitancer2 that are independent and
identically distributed (i.i.d.) across space and time.

Note that the observed dafa’ = s* + wf}?zl at timek can be considered as a vectére R

such that® = s* + w*, wheres® € R" is the noiseless networked data antl ~ N (0,,,021L,)

ny Yw

IThe discrete-time model is an abstraction of the fact thafitid is being temporally sampled at some rat& of
seconds that depends upon the physics of the observed peanom
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is the measurement noise vector. Therefore, the physi@ighenon under observation can be

characterized by the deterministic but unknown sequeneediimensional vectors
def
S = {Sk}keN:{Sl,S2,...}. (5.2)

Furthermore, we assume no dependence between differemtstiapshots of the physical phe-
nomenon. Note that if we were to modelas a stochastic signal, this would be equivalent to

saying thas is a discrete (vector-valued) memoryless source.

5.2.1 Networked Data Model

It is a well-known fact in the field of transform coding thaakevorld signals can often be effi-
ciently approximated and encoded in terms of Fourier, we\al other related transform represen-
tations [130—134]. For example, smooth signals can be atagyrapproximated using a truncated
Fourier or wavelet series, and signals and images of bouwalegtion can be represented very
well in terms of a relatively small number of wavelet coeéiuis [10, 129, 135]. Indeed, features
such as smoothness and bounded variation are found in imnédes, audio, and various other
types of data, as evident from the success of familiar cosspwa standards such as JPEG, MPEG
and MP3 that are based on Fourier and wavelet transforms.

We take the transform coding point of view in modeling thensigobserved by the sensor
nodes. Specifically, we assume that the physical phenomeeseribed byS is (deterministic
and) spatially compressible in the sense that each nossshepshaot® is well-approximated by a
linear combination ofn vectors taken from an orthonormal basigRdf. We formalize this notion

in the following definition.

Definition 5.1 (Compressible Signals)Let ¥ = {4,}"_, be an orthonormal basis &". Denote
the coefficients o§* in this basis (inner products betweghand the basis vectors,) by writing
ok L o

such that

Tk = >t ijs. Re-index these coefficients ¢ff and the corresponding basis vectors

)

0] > 165] > --- > |65]. (5.3)
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Thebestm-term approximatiorf s* in terms of® is given by
st Z N gy, (5.4)
i=1

and we say thd is a-compressible iw (or that® is thea-compressing basis &) if the average
squared-errotbehaves like
— ||s* =m0, Z(j 55 )
J=1

< C,m™2% keN (5.5)

for some constants, > 0 anda > 1/2, where the parametergoverns the degree to whichis

compressible with respect tb.

In addition, we will also consider the special case whersggiad of being merely compressible,
S is spatially sparse in the sense that each noiseless tehspanples” can be fully described by

a fewWw-coefficients. We formalize this notion as follows.

Definition 5.2 (Sparse Signals)We say thaB is M-sparse in? (or that¥ is the M -sparse basis
of S) if the following holds
= > 6, keN (5.6)
1Lk
whereZ* C [1...n], k € N, andmax |Z%] < M < n, i.e., each networked data vectdrhas at

mostM < n nonzero coefficients corresponding to some bé#sef R™.

Remark 5.3 An equivalent definition of compressibility or sparsity mag defined by assuming
that, for somé) < p < 1 and somek = R(n) > 0, thew-coefficients ok* belong to ary, ball of
radiusR [8, 10, 136], i.e.,

n 1/p
(Zwﬂp) < R, keN. (5.7)
j=1

To see that this is indeed an equivalent definition, first tiede(5.7) can hold only if the cardinality
of the set{#* : |¢¥] > 1/N, N € N, j = 1,2,...,n} is upper bounded by N'/# [136, 137].
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Hence, the, constraint of (5.7) in turn requires that theh largest (and re-indexed according to
magnitude) coefficierﬂf is smaller than or equal t8 j~'/7, resulting in
m 2 .
Is" =5, = > 1651
j=m+1

< C,R*m'™??  LkeN (5.8)

for some constant’, that depends only op [8, 10, 136]. Thus, our definition of compressible
signals is equivalent to assuming that the orda¥ecbefficients of each networked data veatbr

exhibit a power law decay
0¥ <Rj7VP j=1,....n, keN (5.9)

wherel/p = a+ 1/2andR = % in our case [cf. (5.5), (5.8)]. Indeed, power law decays like
this arise quite commonly in nature and we refer the readej®, 10, 131, 137] for some of those
instances. Finally, with regard to the notion of sparsitterthat the/,, constraint of (5.7) simply
reduces to measuring the number of nonzBrooefficients ap — 0 and thus, corresponds to our

definition of sparse signals with = 1/ .2

Remark 5.4 The above networked data model can be relaxed to allow teahgependence be-
tween time snapshots of the physical phenomenon by assispat®-temporatompressibility
(or sparsity) of the source signal in an appropriate space-basis. While a detailed analysis of
this setup is beyond the scope of this chapter, some of thaitpees presented in this chapter can

be extended to incorporate this scenario.

Remark 5.5 Note that while we are not concerned in this chapter with $sae of sensor place-
ment (sampling) in the signal field, the choice of a good casging basis is inherently coupled
with the sensors’ locations within the WSN. For example,levRiourier basis would suffice as a
compressing basis for a sensor network observing a smaptaldield in which sensors are placed
on a uniform grid, random (irregular) placement of sensdtsimthe same field may warrant the

use of an irregular wavelet transform as the appropriatepcessing basis [138].

2For anM -sparse signal, no particular decay structure is assumeddd/ nonzero coefficients af* in &.
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5.2.2 Communication Setup

Given the observation vectet* at timek, the aim of the sensor nodes (and the network as a
whole) is to communicate a reliable-enough estirgatef the networked data vectst to a distant
FC, where the reliability is measured in terms of the mearasged error (MSE). Before proceeding
further, however, we shall make the following assumptiomscerning communications between

the sensor nodes and the FC:

[1] Each sensor and the FC are equipped with a single omni-dinattantenna and sensors
communicate to the FC over a narrowband additive white Ganis®ise (AWGN) multiple-
access channel (MAC), where each channel use is charactdryztransmission over a pe-
riod of T, seconds. Furthermore, the FC can communicate to the seodes rover an

essentially noise-free broadcast channel.

[2] Transmissions from the sensor nodes to the FC do not suffefadimg [139-141], which
would indeed be the case in many remote sensing applicasach as desert border mon-
itoring, with little or no scatterers in the surrounding Bomment and static sensor nodes

having a strong line-of-sight connection to the FC [21].

[3] Each sensor knows its distance from the FC and thus, canlatdhe channel path gain
V/hj given by [139-141]

def 1 ‘
\/hj = W,]:1,2,...,7’L (510)

wherel < d; < d, < oo is the distance between the sensor at locafiand the FC, and
¢ > 2 is the path-loss exponent [21, 142]. In principle, even witendistances and/or path
loss exponent are unknown, these channel gains could Ineasstl at the FC using received

signal strength and communicated back to the sensors dueimgrk initialization.

[4] The network is fully synchronized with the FC in the followisense [140, 141]: (iCar-
rier SynchronizationAll sensors have a local oscillator synchronized to theixess carrier
frequency; (ii) Time SynchronizationFor each channel use, the relative timing error be-

tween sensors’ transmissions is much smaller than the ehaymbol duratiory.. ; and (iii)
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Figure 5.2 L-channel use snapshot of the sensor network per sourcevabear The superscript
corresponding to the time index has been dropped in the figusinplify notation.

Phase SynchronizatiorSensors’ transmissions arrive at the FC in a phase cohtzrgmt
ion, which can be achieved by employing the distributed prgsichronization schemes
described in [143, 144].

[5] Sensor transmissions are constrained to a sum transmit pdvireper channel use. Specif-

ically, lety; be the transmission of senspm any channel use. Then, it is required that
Y Elyl’] < P (5.11)
j=1

[6] The network is allowed. network-to-FC channel uses per source observation, wheeh w
term as the latency of the system. If, for example, thesbannel uses were to be employed
using time division multiple access (TDMA) then this wouddjuire that the temporal sam-
pling timeT, > LT.; hence, the term latency. In a system with no bandwidth caims,

this could also be interpreted as the effective bandwidth@hetwork-to-FC MAC.

Given this communication setup, an estimation scheme sporeds to designing source-
channel encoder&F'y, . . ., F,,)—one for each sensor node, and the decd&dor the FC such
that at each time instait given the observation%‘ac;}i:1 up to timek at nodej, the encoders
generate anL-tupIeyf = F; <{x§”}izl) = [yjfl yf’Lr corresponding td.-channel uses
per source observation (that also satisfy the power canswé (5.11)). And at the end of the
L-th channel use, the decodéf produces an estimai of the networked data vectsf given

bys" ¥ @ ({r“}i:1>, wherer® = Y% | \/h;y% + z" andz® ~ N(0;,021,) is the MAC
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AWGN vector corresponding to thie-channel uses at time instan{see Figure 5.2), and the goal
of the sensor network is to minimize (i) the average totalvoek power consumption per source

observation

L n

K
P @ é@m_ZZZE [PARE (5.12)

k=1 ¢=1 j=1

(ii) the mean-squared error distortion measure

K—oo K

D™ lim —ZE {_H Fgt)) ] (5.13)

and (iii) the latencyL (# of channel uses per source observation) of the systérhus, for a
fixed number of sensor nodesthe performance of any estimation scheme is characteliyg ¢ue
triplet (Pot(n), D(n), L(n)) and rather than obtaining an exact expression for thisetripur goal
would be to analyze how do these three quantities scalewiftr a given scheme. Moreover,
minimization of all three quantities in the triplet is somats a conflicting requirement and there
is often a trade-off involved between minimiziiy;, D andL, and we shall also be analyzing this

power-distortion-latency trade-off as a functionof

Remark 5.6 Notice that implicit in this formulation is the fact that nolaboration among the
sensor nodes is allowed for the purposes of signal estimaté, encodef’'; does not have access

to the inputs of any sensor other than sensor

Remark 5.7 Note that while stating the performance metrics of power latehcy, we have ig-
nored the cost of initializing the sensor network (primadbrresponding to the cost of channel
gain estimation/phase synchronization algorithms untgerctirrent communication setup and the
cost of initial route/topology discovery algorithms undlee more traditional multi-hop commu-
nication setups). This is because the average cost of ihisization (over time) tends to zero as
k—the time scale of the network operation—tends to infinity.cQurse, in practice, a one-time

initialization may not suffice and these procedures may babe repeated from time to time, but

3Notice that with the distortion metric as defined in (5.18Bg MSE of any arbitrary length signal can at worst be
a constant sincelim Ly [1 ||sk||2} < B?
k=1 2|1 = .
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we will assume that the corresponding costs are negligitsepared to the routine sensing and

communication operations.

5.3 Optimal Distortion Scaling in a Centralized System

In this section, we consider a system in which the sensor mmea&ants{xf}?zl at each time
instantk are assumed to be available at the FC with no added cost @& désto communications,
and we review the corresponding classical estimation yh@sults (see, e.g., [123,131,145]). Note
that such a system corresponds to a sensor network withe-fresnetwork-to-FC MAC and thus,
the optimal distortion scaling achievable under teatralizedsetting serves as a benchmark for

assessing the distortion related performance of any schedwer the original setup.

5.3.1 Compressible Signals

Given the observation vectaf at the FC, an optimal centralized estimator foranompress-
ible signal can be easily constructed by projectifigpnto them basis vectors o corresponding
to m largest (in the absolute sensk)coefficients ok” (see, e.g., [131]), i.e., #F is then x m
matrix of those basis vectors, where the supersgriptlicates that the re-indexing in (5.3) may be

a function of the time indek, thens”* can be estimated as
g gk (wf,ka) — g gk (wfnTw’f) (5.14)
which results in

1 e et | A CEAS o IEED

< Cym 2 4 (%) o2 . (5.16)

w

Furthermore, from (5.15), we also have the trivial lower hdof

skl > Cuflen (W] - (D)t eam

and combining the upper and lower bounds of (5.16) and (5w pbtain

(Z) ot < B[ st~ st < Com+ (2) 2. (518)

n
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From this expression, we see that the choiceidffects the classic bias-variance trade-off [145]:
increasingn causes the bound, m~* on the approximation erro¥ ||s* — s H2 (the squared

“bias”) to decrease, but causes the stochastic componéme efror due to the measurement noise
1E [HW’:,L (u'/fnTw’“> Hj = () 62 (the “variance”) to increase. The upper bound is tight, in
the sense that there exist signals for which the upper basiadhieved, and in such cases the
upper bound is minimized (by choice of) by making the approximation error and the stochastic

component of the error scale at the same rate, i.e.,

—2a

m =

M s = /et (5.19)
n

resulting in the following expression for optimal distortiscaling of anv-compressible signal in

a centralized systehn

=

* . 1 1 —2x «
Dign = Jim — > E {g — Stenl, } 2o/, (5.20)

5.3.2 Sparse Signals

Similar to a compressible signal, an optimal centralizearedor for an)/-sparse signal cor-
responds to projecting the observation vector ontoMhbasis vectors o corresponding ta//
nonzero®-coefficients ofs* (see, e.g., [123)), i.e., W%, is then x M matrix of those basis

vectors, thes” can be estimated as
Sten Wl (h%0) = s+ 0 (2w (5.21)
which results in the usual parametric rate

E[%\\s’“—@’éen\}i] = %EU)% (24 w) 2] = (%) o (5.22)

resulting in the following expression for optimal distorti scaling of an)\/-sparse signal in a

centralized system

. M M

4% in Dg,, refers to the fact that this is theptimalcentralized distortion scaling.
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Note that it might very well be that/—the number of degrees of freedom (DoF) of ERsparse
signal—scales with the number of node# the network. For example, two-dimensional piece-
wise constant fields with one-dimensional boundaries s#ipgr constant regions can be com-
pressed using the discrete wavelet transform and have n'/2log(n) nonzero wavelet coeffi-
cients [146]. Therefore, we modéf asM = n*, where0 < i < 1 and hence, the inclusion of

M in the scaling relation in (5.23).

Remark 5.8 Note that the optimal distortion scaling relations of (5.2ad (5.23) for compress-
ible and sparse signals have been obtained under the assnnigit the FC has precise knowledge
of the ordering of coefficients af in the compressing basis (indices of nonzero coefficiens$ of
in the sparse basis). This is not necessarily a problem im@adzed setting and in cases where
this information is not available, coefficient thresholylimethods can be used to automatically
select the appropriate basis elements from the noisy daththeese methods obey error bounds

that are within a constant or logarithmic factor of the onesigabove (see, e.g., [147,148]).

5.4 Distributed Projections in Wireless Sensor Networks

In this section, we develop the basic communication archite that acts as a building block of
our proposed estimation scheme. As evident from the predeation, each DoF of a compressible
or sparse signal corresponds to projection of networkea diatio an»-dimensional vector ifR"
and at the heart of our approach is a distributed method ofraamitating such projections to the
FC in a power efficient manner by exploiting the spatial agerginherent in an AWGN MAC.

To begin, assume that the goal of the sensor network is toroéateestimate of the projection
of networked data, corresponding to each observation gbllysical phenomenon, onto a vector
in R™ at the FC. That is, let us suppose that at each time ingtamé are interested in obtaining

an estimat@* of
E def Tk . k
vt = st = Zgojsj (5.24)
j=1

wherep € R"™. One possibility for realizing this goal is to nominate astkrhead in the net-

work and then, assuming all the sensor nodes know their cégpe;'s and have constructed
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routes which form a spanning tree through the network to lhsterhead, each sensor node can
locally computecpj:cf = goj(sf + wf) and these values can be aggregated up the tree to obtain
o* = 37" p;af at the clusterhead, which can then encode and transmitstifeate to the FC.
However, even if we ignore the communication cost of delhgr* from the clusterhead to the
FC, it is easy to check that such a scheme requires atiheaahsmissions. For a similar reason,
gossip algorithms such as the ones described in [149, 150l Wnown for their robustness in

the face of changing network topology, might not be the saeat first choice for these types of
applications.

Another, more promising, alternative is to exploit recesguits concerning uncoded (analog)
coherent transmission schemes in WSNs [40—-43]. The prdpdis&ibuted joint source-channel
communication architecture requires only one channel essqurce observatiorl( = 1) and is
based on the notion of so-called “matched source-chanmetmication” [42, 43]: the structure
of the network communication architecture should “matdt€ structure of the optimal estimator.
Under the current setup, this essentially involves phaserent, low-power, analog transmission
of appropriately weighted sample values directly from tbdes in the network to the FC via the
AWGN network-to-FC MAC and the required projection is ingitiy computed at the FC as a
result of the spatial averaging in the MAC. In light of the aommication setup of Section 5.2, full
characterization of this architecture essentially estdiaracterization of the correspondsuglar-
output source-channel encodef$], ..., F,,) at the sensor nodes and thealar-inputdecoder
G at the FC, where scalar nature of the encoders and the deisodeing to the fact that (by
construction)L,, = 1 in this scenario.

To begin with, each sensor encodgrin this architecture corresponds to simply multiplying
the sensor measuremerjtwith (\/hzjgoj) to obtairt

def w1k P .
yf = Fj<{xj}f€:1> = ‘/h—japjxf, j=1,...,n (5.25)

wherep > 0 is a scaling factor used to satisfy sensors’ sum transmiepaenstraint”, and all

the nodes coherently transmit their respecy'ys in an analog fashion over the network-to-FC

®Practical schemes of how each sensor encoder might getsaodésrespective; is discussed in Section 5.5.3.
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MAC. Under the synchronization assumption of Section 52 the additive nature of an AWGN

MAC, the corresponding received signal at the FC is given by
rk = Z\/hjyijzk = /P Zgojx?—i-zk
j=1 j=1

= Jpvh (\/ﬁ o W+ zk> (5.26)

wherez* ~ N (0, 02) is the MAC AWGN at timek (independent ofv*). In essence, the encoders
(F,..., F,) correspond to delivering to the FC a noisy projectios’obnto ¢ that is scaled by
V/p [cf. (5.26)]. Givenr*, the decode€ corresponds to a simple re-scaling of the received signal
k
~k def Kk _
v = G <{T }H=1> - \/ﬁ

k
= o+ oTwh + % . (5.27)

We are now ready to characterize the power-distortiomtateriplet (Pt , D, , L,,) of the pro-
posed joint source-channel communication architecturedmputing distributed projections of

networked daté.

Theorem 5.9 Let p € R” and letv* = ¢"s*. Given the sensor network model of Section 5.2, the
joint source-channel communication scheme describedéwiticoders in (5.25) and the decoder
in (5.27) can achieve the following end-to-end distortignemploying only one channel use per

source observation
def L /\k 2
b= g ZEU“ i

02d,* (B> +02)
= oillel} + (=TT o (528

wheret* is the estimate of* at the FC?2 is the measurement noise varianegjs the channel

d, 1S the bound on the maximum distance between the

sensor nodes and the FCis the path-loss exponen®, is the sum transmit power constraint per

6(Potw , Dy , Ly) triplet here corresponds to power, distortion, and latesftiie projection coefficient as opposed
to (Pot, D, L) in Section 5.2 that corresponds to power, distortion, atehlzy required to estimate the entire signal.
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channel use, and = A(n) € (0, 1] is a design parameter used to control total network power
consumption. Moreover, the total network power consunmptier source observation associated
with achieving this distortion is given by

2

AP <m) < Poy ® lim ZZEWH < AP (5.29)

k=1 j=1

Proof: To establish this theorem, first observe that (5.27) impghesv & € N

[\U ‘Ulﬂ =B ‘¢ka+z—k2
\/ﬁ
2
— 2 |||l + % (5.30)

resulting in the following expression for the projectiorefficient MSE
2

o
D, = o, el + f- (5.31)

As for obtaining an expression fét,, , note that (5.25) implies thatk € N,

poiiw < ZE[\% ’
— ZE{ s +w) |<p]|2}

< pdS (B*+07) ) losl (5.32)
j=1
and, therefore,
p =P ( ! ) (5.33)
d,* (B*+a2) ||l '

would suffice to satisfy the sum transmit power constrain(soi1), wherex = A(n) € (0,1]
is a power scaling factor to be used by the designer of a WShmiral total network power
consumption. This in turn results in the following expressior total network power consumption

per source observation

AP (%) < Powo < AP. (5.34)
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Finally, substituting the value gffrom (5.33) in (5.31) yields (5.28), thereby completing neof
of the theorem. |
Notice that the projection coefficient distortidn, achieved by the proposed joint source-
channel communication architecture has been expressentnrs tof two separate contributions
[cf. (5.28), (5.31)], the first of which is independent of fir@posed communication scheme. This
term is solely due to the noisy observation process £ 0) and scales liké|{||3. The second
contribution is primarily due to the noisy communicatioranhel and scales likgp||2/\. More-
over, given the observation model of Section 5.2, it is easghieck thatD? =< ||¢||3 is the best
that any (centralized or distributed) scheme can hope teaeln terms of an order relation for
distortion scaling [123]. Therefore, for optimal distorti scaling, it is sufficient that the second

term in (5.31) also scales likgp||2 and hence) = O(1) would suffice to ensure that
D, = |pl? = D;. (5.35)

Consequently, the total network power consumption asttiaith achieving this optimal distor-

tion scaling would be given b, = O (1) [cf. (5.34)]. We summarize this insight as follows.

Corollary 5.10 Let ¢ € R" and letv* = ¢'s*. Given the sensor network model of Section 5.2
and assuming that the system parametBrs2, 02, d,,, ¢, P) do not vary with the number of nodes
n in the network, the joint source-channel communicatioreswd described by the encoders in
(5.25) and the decoder in (5.27) can obtain an estifitate v* at the FC, such thdd, = ||¢||3 <
Dz, by employing only one channel use per source observalioss 1, and using a fixed amount

of total network powerP, = O (1).

Observation 1 While the original problem has been setup undéxedsum transmit power con-
straint P, one of the significant implications of the preceding analys that even if one allows
P to grow with the number of nodes in the network—say, ely5 O(n)—one cannot improve
on the distortion scaling law ad (||¢]|3). In other words, when it comes to estimating a single
projection coefficient in the presence of noise, using mioaa & fixed amount of total power per
channel use is wasteful as the distortion due to the measmtemoise (first term in (5.31)) is the

limiting factor in the overall distortion scaling.
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Observation 2 Even though the joint source-channel communication achite described in
this section is meant to be a building block for the signainestion scheme, the architecture is
important in its own right too. Often times, for example het than obtaining an estimate of the
networked data at the FC, the designer of a WSN is merelydasted in obtaining the estimates of
a few of its linear summary statistics. And, given that amgdr summary statistic is nothing but
the projection of networked data onto a vectoRih preceding analysis implies that one can obtain
such linear summary statistics at the FC with minimal digtar(and latency) and consumption of

only a small amount of total network power.

Example 5.11 (Networked Data Average)To illustrate this idea further, consider a specific case

where the designer of a WSN is interested in obtaining ames of the averagé = ;. >, s

of networked data at each time instant This would correspond to the projection vector being
T

givenbyp = |1/n ... 1/n| andthus, using the communication architecture describéus

section, an estimate af can be obtained at the FC such thiat < 1/n < D: (the parametric

rate),L; = 1,andPg s = O (1).

5.5 Distributed Estimation from Noisy Projections: Known Subspace

In this section, we build upon the joint source-channel camication architecture of Sec-
tion 5.4 and using it as a basic building block, present a detaly decentralized scheme for
efficient estimation of networked data at the FC. The anslysthis section is carried out under
the assumption that the designer of the WSN has completel&dge of the basis in whicB
is compressible (or sparse) as well as precise knowleddeeadridering of its coefficients in the
compressing basis (indices of nonzero coefficients in tlhesgpbasis) at each time instantWe
refer to this scenario as theown subspacease and, under this assumption, analyze the corre-
sponding power-distortion-latency scaling laws of thepmsed scheme as a function of number
of sensor nodes in the network. As to the question of whetfekhown subspace assumption is
a reasonable one, the answer depends entirely on the uindgslyysical phenomenon. For exam-
ple, if the signal is smooth or bandlimited, then the Fouoiewavelet coefficients can be ordered

(or partially ordered) from low frequency/resolution tghifrequency/resolution. Alternatively, if
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the physical phenomenon under observation happened tcabialgpHolder smooth at each time
instantk, then it would be quite reasonable to treat the resulting/okted data under the known

subspace category (see, e.g., [43,151]).

5.5.1 Estimation of Compressible Signals

To begin with, let = {4,}_, be the compressing basis $fsuch that! ||s* — S’““’”Hi =
O(m™2*)V k € N. In Section 5.4, we showed that using the communicationrsehdescribed
by the encoders in (5.25) and the decoder in (5.27), onegirojeper snapshot can be efficiently
communicated to the FC by employing only one channel ise< 1). By a simple extension of
the encoders/decoder structure of Section 5.4, howewengtwork can equally well communicate
L (> 1) projections per snapshot i consecutive channel uses (one channelpeseprojection
per snapshot). Essentially, at each time instarthe L-tuples generated by the encodéts are

given by (cf. Section 5.2, Figure 5.2)

yf = F; <{xf}i:1> - [yfl ny]T
_ \/hzj[wljx? ¢ij§r, i=1....n (5.36)

wherep = (AP)/(d,*(B?+ 2)), and at the end of the-th channel use, the received signal at the
input of the decode€ is given by

n

=) Vhyy 2t

J=1

T
n n k
= \/ﬁ |:Zj:1 ¢1j JZ‘? .. Zj:l ¢Lj .I‘;{| + z

Vool + (Vpwiwt + o) (5.37)

where®" is then x L matrix of the basis vectors correspondingltdargest (in magnitudey-

T
coefficients ofs*, 6 [9’1‘? eg] — wh sk andzt ~ N(0g,021,) is the MAC AWGN
vector (independent of*). Thus, at the end of the-th channel use, the decoder has acceds to

scaled, noisy projections ef onto L distinct elements o and, using these noisy projections, it
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produces an estimate of the networked data vedtgiven by

e (tr) - v ()

ok gk
= gh) 4 'P’Z (!Illszk> + \L/ﬁz

Notice the intuitively pleasing similarity betweghands~, [cf. (5.14), (5.38)]: the first two terms

(5.38)

in the above expression correspond identically to the abméd estimate of a compressible signal
(with m replaced byL) and the last term is introduced due to the noisy MAC commatioa. In

particular, this results in the following expression fostdrtion of a compressible signal at the FC

2 ¢ 2 2
n n AP

+ <§) o2 + (%) <Uz du’ (ABP? +U§”)) . (5.39)

Finally, simple manipulations along the lines of the one&ettion 5.4 result in the following

expression for total network power consumption

0.2

NP ———2—— ) < Py < ALP. 5.40
<du<<32+ag>) < P < (5.40)

The above two expressions essentially govern the intelaweenP,, D, andL of the proposed

distributed estimation scheme and we shall analyze thespiay in further details in the sequel.
Minimum Power and Latency for Optimal Distortion Scaling

Similar to the case of distortion scaling in the centraligetting, (5.39) shows that the choice
of number of projections per snapshot in the distributetirgetalso results in a bias-variance
trade-off: increasing. causes the bound, L=>* on the approximation errof ||s* — s’f’(L)Hz
to decrease, but causes the stochastic components of tiredele to the measurement noise
1E {H!Il’z <!17’2ka) Hj = (£) 02 and the communication noiseE [H!I/’Z zk/\/ﬁHﬂ = (%)-

oz duC(B2+0'E})

Ve to increase. Consequently, the tightest upper bound scali(b.39) is attained

by making the approximation error, the measurement noisg, eand the communication noise
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error scale (as a function of) at the same rate. That is, assuming that the system paramete
(C,, B,02, 0% d,, ¢, P)do not depend on,

L L
72 = 2 = = (5.41)
n An

implying thatZ, must be chosen, independently)gfas
L = nl/Ge+l) (5.42)

which in turn requires that = O(1), resulting in the following expression for optimal disfort

scaling
D = L—2a — n—2a/(2a+1) (543)

that has the same scaling behavior as thadgf [cf. (5.20)]. Moreover, the total network power

consumption associated with achieving this optimal digiarscaling is given by [see (5.40)]
Pot = L = n!/Cth, (5.44)

Combining (5.42), (5.43), and (5.44), we can also compatthracterize the relationship between
optimal distortion scaling and the associated power arahtat requirements in terms of the fol-

lowing expression
D* ~ P 2® ~ L7, (5.45)

Note that this expression does not mean that a WSN with fixexbeu of sensor nodes using
more power and/or latency can provide better accuracy. eRaffower, distortion, and latency
are functions of the number of nodes and the above relatiioates how the three performance

metrics behave with respect to each other as the densitydefsniocreases.

Remark 5.12 Equation (5.44) shows that the total network power requéranof our proposed
scheme for optimal distortion scalirfi@* =< n=2%/?e+1)) js given by Py < n'/*+) A natural
guestion is:How good is this scheme in terms of power scaling/hile a comparison with all

conceivable schemes does not seem possible, in order t@agiidea of the performance of our
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proposed scheme we compare it to a setup where all the notles metwork noiselessly commu-
nicate their measurements to a designated clustér<ofn < n nodes. Each node in the cluster
computes the requirel projections of the measurement data for each snapshot ancaththe

n nodes coherently transmit these (identical) projectianthé FC over the MAC; in this case,
then x 1 MAC is effectively transformed into a point-to-point AWGNannel with ann-fold
power-pooling (beamforming) gain. One extreme~= 1, corresponds to a single clusterhead
(no beamforming gain), whereas the other extreine; n, corresponds to maximum beamform-
ing gain. Note that in our proposed scheme, nodes transiéreatly (and hence benefit from
power-pooling) but there is no data exchange between thenexAct comparison of our scheme
with the above setup involving in-network data exchangeeigond the scope of this exposition
since quantifying the cost of required in-network commatia@n is challenging and requires mak-
ing additional assumptions. Thus, we ignore the cost ofetwork communication and provide a
comparison just based on the cost of communicating the girojes to the FC—though, in general,
we expect the in-network cost to increase with the sipéthe cluster. Under this assumption, the
analysis in Section 5.10.1 shows that our scheme requisssclemmunication power compared
to then = 1 case, whereas it requires more power compared ta.then case. In particular,
the power scaling achieved by our proposed scheme (for aeptimstortion scaling) is identical

to that in the case when there are= 2 =< n?*/(22+1) nodes in the designated cluster to coher-

I
ently communicate the required =< n'/>*1) projection coefficients to the FC. Note that since
n2e/(2et+1) 2 p for highly compressible signalg: > 1), the performance of our proposed esti-
mation scheme in this case approaches that ofithen extreme, without incurring any overhead

of in-network communication.
Power-Distortion-Latency Scaling Laws for Consistent Egtnation

Preceding analysis shows that in order to achieve the optieraralized distortion scaling
n~20/(e+1) " the network must expend powét, and incur latencyl that scale (withn) at a
sublinear rate of'/>*1) This may pose a bottleneck in deploying dense WSNs foricetpes

of applications that might require extended battery liféaster temporal sampling of the physical
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phenomenon. Cursory analysis of (5.39) and (5.40), howebews that it is possible to lower
these power and latency requirements at the expensebebptimaldistortion scaling, and in the
sequel, we shall be analyzing these power-distortiomatscaling regimes.

Notice that under the assumption of system paramétéssB, o2, 02, d,, ¢, P) not varying
with n, L and\ are the only two quantities that bear upon the required mitpower and achiev-
able distortion of the estimation scheme [see (5.39), |p.40herefore, we begin by treating
(effective number of projections per snapshot) as an inudg@ variable and model its scaling
behavior as.. < n® for 3 € (0, 1), while we model the scaling behavior afas\ =< n~? for
§ € [0,00) (recall,0 < XA < 1).” Note thatg = * = 1/(2ac + 1) has already been solved
previously (resulting i = §* = 0) and corresponds to the optimal distortion scaling of (.43

Bias-Limited Regime. Recall thatL = n'/(*+1) is the critical scaling of the number of pro-
jections at which point the distortion component due to thgraximation error scales at the same
rate as the distortion component due to the measuremeret jobig5.41), (5.42)]. If, however, we
let L (< n”) scale at a rate such that< 3*, then the first term in the upper bound in (5.39) that
is due to the approximation error (bias term) starts to dateithe second term that is due to the

measurement noise and, ignoring constants, the resulStaytion at the FC scales as

n—1+5+5 < D < n—2aﬁ + n—1+,3+5 (546)

and the corresponding choiceaftimal is given by
d =1-Q2a+1)p (5.47)

where optimal here refers to the fact that(ix 1— (2a+ 1) is wasteful of power since distortion
component due to the approximation error (first term in thpeugpound in (5.46)) in that case
decays slower than the distortion component to the comratioitnoise (second term in the upper
bound in (5.46)), and (ii) > 1—(2a+ 1) is wasteful of projections (i.e., latency) since distartio

component due to the approximation error in that case ddaatex than the distortion component

"There is nothing particular about choosib@s the independent variable except that it makes the asaljgitly
easier. Nevertheless, we might as well start off by trealirgg the independent variable and reach exactly the same
conclusions.
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due to the communication noise. With this balancind.@nd )\, distortion goes to zero at the rate
D = p~%# (5.48)

as long as the chose¢he (0, 1/(2a+ 1)), and the corresponding total network power consumption
is given by [cf. (5.40)]

Pyt = nl2et2)8-1 (5.49)

resulting in the following expression for power-distortiatency scaling relationship in the bias-

limited regime
—2a8
D ~ Po@057T ~ L7 (5.50)

Variance-Limited Regime. On the other hand, if we let scale at a rate such that> g*,
then the second term in the upper bound in (5.39) that is dtleetoneasurement noise (variance

term) starts to dominate the bias term and the resultinguigh at the FC scales as
D = n 1t 4 poH6H (5.51)

and the corresponding choice of optinaak given byd = 0 (= 6*). This implies that as long as

the chosers € (1/(2« + 1), 1), distortion in the variance-limited regime goes to zerdnatriate
D = n tP (5.52)
and the corresponding total network power consumptiorvisrgby
Pt = n” (5.53)

resulting in the following expression for the power-disimm-latency scaling relationship in the

variance-limited regime
D ~ Bo 5t' ~ L5t (5.54)

Notice that ag? — (*, both (5.50) and (5.54) collapse to the power-distortiatescy scaling

relationship of (5.45), indicating that the optimal diston scalingD* corresponds to the transition
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point between the bias-limited and variance-limited reggmThus, (5.50) and (5.54) completely
characterize the power-distortion-latency scaling refeship of the proposed distributed estima-
tion scheme for a compressible signal in the known subspasse @ his scaling relationship is also
illustrated in Figure 5.3, where the scaling exponent&gfand D are plotted against € (0, 1)

(the chosen scaling exponentiof for different values ofv.

Observation 3 Analysis of (5.50), (5.54), and Figure 5.3 shows that (i) alstortion scaling
that is achievable in the variance-limited regime is alsbi@@ble in the bias-limited regime,
and (ii) scaling ofP; in the variance-limited regime is uniformly worse than i thias-limited
regime. This implies that any WSN observing @arcompressible signal in the known subspace
case should be operated only either in the bias-limitedwegir at the optimal distortion scaling
point, i.e.,5 € (0,1/(2a + 1)]. Thus, givena and a target distortion scaling @ =< n~7,

0 < v < 2a/(2a + 1), the number of projections computed by the WSN per snapstrerisito
be scaled ag =< n”, where = ~v/2a [cf. (5.50)], and the corresponding total network power
consumption would be given by (5.49). Alternatively, theidaeer of a WSN could also reverse the
roles of D and L by specifying a target latency scaling and obtaining theesponding distortion

(and power) scaling expression.

Observation 4 Another implication of the analysis carried out in this sactis that the more
compressible a signal is in a particular basis (i.e., thédrighe value oty), the easier it is to
estimate that signal in the bias-limited regime/at theroptidistortion scaling point (easier in
terms of an improved power-distortion-latency relatiapgh On the other hand, note that the
power-distortion-latency scaling in the variance-linditegime is completely independent of the

parametery [cf. (5.54)].

Observation 5 One of the most significant implication of the preceding gsial is that, while
operating in the bias-limited regime,fis chosen to be such that< 1/(2a + 2) then the scaling
exponent ofP,,; would be negative (cf. (5.49), Figure 5.3). This is remal&aince it shows that,
in principle, consistent signal estimation is possilile™(, 0 asn — oo) even if the total network

power consumptior,,; goes to zero!
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Power-Density Trade-off

Viewed in a different way, Observation 5 also reveals a réatale power-density trade-off
inherent in our approacltncreasing the sensor density, while keeping the latergpyirements the
same, reduces the total network power consumption requiredhieve a target distortion level
This essentially follows from the fact that the power-distm scaling law in the bias-limited
regime (including the optimal distortion scaling point)lésvs a conservation relation given by
[cf. (5.48), (5.49)]

PotD = n*71. (5.55)

Specifically, lets, < (; denote two latency scalings in the bias-limited regime ated > n;
denote the corresponding number of nodes needed to achiaxgeadistortion leveD(ny, 51) =
D(ng, B2) = D,. Then, we have from (5.48) that

D(ny,B1) = D(ng, B5) = ny 27 =ny (5.56)

and therefore, the corresponding latency requirementsa#irer trivially related to each other as

Lo(ng, B2) ny
Lyi(n, 51) nfl

Moreover, it follows from (5.55) that the total network pawsnsumptions in the two cases are

= 1. (5.57)

related by

28,1
Pot(na, f2) ";ﬁ = m (5.58)
Pot(n, 1) nyt n2

where we have used the fact that (5.56) implies trkfgt = n§ﬁ2. Relations (5.57) and (5.58)
show that increasing the sensor density by a factay ofvhile keeping the number of projections
(per snapshot) communicated by the network to the FC the,gachéces the total network power
required to attain a given target distortion by a factoNof

This power-density trade-off is also illustrated in Figbrd, where various power and distor-
tion scaling curves (corresponding to different valuegpére plotted on a log-log scale against

the number of nodes far = 1. For the sake of illustration, these plots assume that thsetaats of
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proportionality in the scaling relations are unity. In ardeillustrate the power-density trade-off,
suppose that we want to attain a target distortiobgf= 0.02. With optimal distortion scaling
(solid curve in Figure 5.4(a) correspondingidp = 3* = 1/3), the desired distortion can be at-
tained withn; ~ 353 nodes, consuming a total network pow&g(n, 3;) ~ 7.07, as calculated
from the solid curve in Figure 5.4(b). On the other hand, hexdf we operate on a sub-optimal
distortion scaling curve (say, e.g., the third dotted fiel@scurve from the bottom in Figure 5.4(a)
corresponding t@, = 8/33), we would attain the desired distortion Bf, = 0.02 with ny, ~ 3192
nodes—roughly a factor of 9 increase in sensor density—butavonly consume a total network
power of Py(na, , 32) ~ 0.78, as calculated from the third dotted feasible curve fromtépein
Figure 5.4(b). Thus, as predicted, increasing the senswityeroughly by a factor of 9 reduces
the total network power consumption by a factor of 9, whilke lditency requirements stay exactly

the samén)' = n?).

5.5.2 Estimation of Sparse Signals

The analysis for the estimation of ar-sparse signal in the known subspace case using the
joint source-channel communication architecture of $&dhi.4 can be carried out along almost the
same lines as for compressible signals in Section 5.5.h,thé only obvious difference being that
S now lies exactly in anl/-dimensional subspace &" and therefore[ has to be taken exactly
equal to)M, i.e., is no longer a variable parameter in the hands of tisggder of a WSN. This
results in the following expressions for the end-to-endadisn at the FC and the corresponding

total network power consumption and system latency

M M 2d,° (B? + o2
D= (M) o (M) (2B F0u)) (5.59)
n n AP
2
AMP <"—w) < Poy < AMP, (5.60)
4, (B? + 02)
L = M. (5.61)

Next, recall that while the scaling behavior 6f is modeled as\/ =< »n*, 0 < u < 1, the
choice ofy is not in our hands in this case and, instead, depends upamtterlying physical

phenomenon. Essentially, here plays the role analogous to thatroin the compressible case.
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Therefore, unlike the compressible signal case, the ontyrotlable parameter in this case is the
power scaling factol, modeled as\ < n~ for § € [0, c0), and in the sequel, we analyze the
effect of various scaling behaviors &fon the power-distortion-latency scaling relationshipta t

proposed estimation scheme.
Power-Distortion-Latency Scaling Laws for Consistent Estnation

We start out by first analyzing the optimal distortion scglihat is achievable for ai/-sparse
signal. Notice that for fastest distortion reduction, thistfierm (due to the measurement noise) in
(5.59) should scale at the same rate as the second term (theed¢ommunication noise). This in
turn requires thah = O(1) (oré = 6* = 0), resulting in the following expression for optimal
distortion scaling

M
DY <= —
n

= polte (5.62)

which has the same scaling behavior as thd?gf, [cf. (5.23)]. Moreover, the total network power

consumption associated with achieving this optimal diginrscaling is given by
PtOt = L =M x< n”. (563)

Equations (5.61), (5.62) and (5.63) can also be combineathegfor. € (0, 1) to express the rela-
tionship between optimal distortion scaling and the cqoesling power and latency requirements

in terms of the following expression
D* ~ Po #h ~ Lutl, (5.64)

Notice that the above relationship has the same form astk@ata!) (the power-distortion-latency
relationship of a compressible signal in the variancetlohregime) which is precisely what one

would expect since there is no bias related distortion camapbfor a sparse signal [cf. (5.59)].

Remark 5.13 Equations (5.61), (5.62), and (5.63) show that for the cage00, i.e.,M = O(1),
optimal distortion scaling?* =< n~! can be obtained by consuming only a fixed amount of total

network power and incurring a fixed latency, i.8 = L = O(1). This result is similar in spirit
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to the one obtained in [42] that primarily studies the casdagous to that of a sparse signal with
non-scaling Dok A = O(1)), albeit assuming Gaussian sources and multiple FCs (sesdihe

and Theorem 3 therein).

Power-limited Regime.On the other hand, if we take> 0 then the distortion component due
to the communication noise (second term in (5.59)) stadgtoinate the distortion component due
to the measurement noise (first term in (5.59)) and, igndhegonstant parameters, the resulting

distortion at the FC scales as
D = p7lHe+o (5.65)

in the power-limited regime. This implies that as longdas (0,1 — p), distortion can still be
driven to zero, albeit at a slowesub-optimalrate ofn =+ (= D*). In particular, this means
that D can be asymptotically driven to zero even if the total nekwmower P, (< n*~°) scales
just a little faster tham?*~* [cf. (5.60)]. This observation is similar in spirit to the@made for
compressible signals since it shows that, in principlestsiant signal estimation is possible in the
limit of a large number of nodes far € [0,1/2] (i.e., the number of DoR/ scaling at most as
fast as,/n) even if the total network power,,; goes to zero. Finally, this power-distortion-latency

scaling relationship in the power-limited regime can beregped as

—1+u+é —1+6
I +1

D~ P #5 ~ L (5.66)

Discussion

While quite similar in spirit, there are still some key diéeaces between the power-distortion-
latency scaling laws of the proposed estimation schemediompecessible and sparse signals. To
begin with, unlike for compressible signals, the laten@lisg requirements for sparse signals are
dictated by the underlying physical phenomerién= M = n*) and cannot be traded-off for
power and/or distortion without making further assumpgion the decay characteristics of the
nonzero coefficients d. Secondly, the scenario of consistent signal estimati@pafse signals

with decaying total network power consumption exists if anty if the number of DoRV/ scales
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at a rate less than or equal{o, i.e.,u < 1/2 (see Figure 5.5.And finally, as a flip side to this
observation, the power-density trade-off for sparse $gmésts only whed < ;i < 1/2, happens

to be a function of:, and is not as pronounced for< p < 1/2. Specifically, for an increase in
the sensor density by a factor of, the total network power consumption requirements can only
be reduced by a factor af'—2#, 0 < u < 1/2, in order to attain the same target distortion for a

sparse signal [cf. (5.65)].

5.5.3 Communicating the Projection Vectors to the Network

Recall that an implicit requirement for employing the preed distributed estimation scheme
in the known subspace case is that the sensor encoders haeas do the respective projection
vectors’ elements at each time instanfcf. (5.36)]. In this subsection, we address the issue of
how one might communicate this information to the sensoeso@ne viable option in this regard
could be the pre-storage of relevant information in eacls@enode. However, pre-storage of the
entire compressing (sparse) bagior a subset of it{1/;i}f:1, wherel < L < n, in each sensor
node is not feasible in large-scale WSNs since this wouldirecpt least: storage elements per

sensor node. Instead, a better alternative is to store belgarrespondingonzeroelements of

L
i=1"

the L projection vectors{t;; : ¢;; # 0} in the j-th sensor node. In the context of [43], for
example, this would mean having orl}(1) storage elements per sensor node, since the structure
of the proposed projection vectors in [43] is such that thelioality of the set{«);; : v;; # O}Z.L:1
is identically equal to on& j = 1,...,n. Other instances when pre-storage might be a feasible
option could be, for example, when the projection vectotshneents come from an analytical
expression. Pre-storage, however, suffers from the drektbat sensor nodes pre-stored with one
compressing (sparse) basis vectors might not be readilpykgge in signal fields compressible
(sparse) in some other basis.

Another more feasible, but not always practical, approadhé communication of projection

vectors to the network could be that the FC transmits thisrmétion over the FC-to-network

8Recall that for compressible signals, this observatiod$itiue for all.
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broadcast channel at either the start of the estimationegsoor at the start of each network-to-
FC channel use. For baals whose vectors have some sort of spatial regularity in thgaictire
such that they do not require addressing each sensor nog@irally (e.g., vectors describable
by a few parameters such as in [43]), this could be readilpm@tished by broadcasting a few
command signals from the FC to the network. One could alsease the addressing resolution of
the FC by equipping it with multiple transmit antennas anidgisome of the techniques described
in [152]. However, depending upon the structure of the casging (sparse) basis, this approach
may require the FC to be able to address each sensor nodalirally which may or may not be
practical in large-scale dense WSNs. We will show in Sectlid)) however, that one benefit of

compressive wireless sensiisga straightforward treatment of this issue.

5.6 Distributed Estimation from Noisy Projections: Unknown Subspace

In Section 5.5, we proposed an efficient distributed estonacheme that achieves the optimal
centralized distortion scalin®;,, for both compressible and sparse signals under the assampti
that the WSN has complete knowledge of the basis in wHihcompressible or sparse. Generally
speaking, however, even if the basis in whi&ls compressible (sparse) is known, itis quite likely
that the precise ordering of its coefficients (indices ohiszero coefficients) in that basis at each
time instantt might not be known ahead of time—a scenario that we refer tth@asnknown
subspacer adaptive subspacease. As an example, consider the following simple casep&e
S is very sparse in some basls = {,}_, such that each temporal sampfehas only one
nonzero coefficient of amplitudgn B corresponding tesomeelementy, of ¥ and: is drawn at
random from the s€t . .. n|. This is an example of the case where we know the basis in which
is sparse but do not know the indices of its nonzero coeffisigrnthat basis.

One naive approach to this problem would be to use the lliséd estimation scheme de-
scribed in Section 5.5. However, since the network doesane h precise knowledge of the index
of the true basis vector, it would need to be determined lay amd error (e.g., deterministically
or randomly selecting basis vectors in some fashion). Adlastiation, consider a randomized

selection process: the network computes the projectioneoéénsor data onto, and: is selected
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L times uniformly at random (without replacement) from the[$e. . n|. Ignoring the distortion
due to the measurement and communication noise, the sqdiatedion error would be 0 at the
FC if the spike in thaZ domain corresponds to one of the uniformly pickgds and B? otherwise,
and the probability of not finding the spike Intrials is[]/,' (1 — -L-). If n is large enough and
L < n, we can approximate the resulting distortion By~ (1 — %)L B?~ et/ B? - B?as
n — oo, i.e., equivalent to the MSE that is achievable even witlaoytinformation.

Another more general, and perhaps relevant, example igaisih in which the signal field is
spatially piecewise smooth. Signals of this type do lie iove-tlimensional subspace of the wavelet
domain, but precisely which subspace depends on the losaticthe change points in the signal,
which of course are unlikely to be known a priori. Broadly akiag, any signal that is generally
spatially smooth apart from some localized sharp changeslges will essentially lie in a low-
dimensional subspace of a multiresolution basis such asletavor curvelets, but the subspace
will be a function of the time indeX and thus, will preclude the use of methods like the one in
Section 5.5 that require prior specification of the basisorsdo be used in the projection process.
This is where thauniversalityof compressive wireless sensing (CWS) scheme, presentédsin
section, comes into play. As we shall see, CWS provides usavitonsistent estimation scheme
(D\,0 as node density increases), even if little or no prior knogkabout the networked data is

assumed, whilé&’,, and L grow at most sub-linearly with the number of nodes in the oetw

5.6.1 Compressive Wireless Sensing

Recall that ifo* = ¢Ts* = 377 | ;5" is the projection o" onto a vectorp € R" then,
using the communication architecture described in Se&idrand consuming onlg (1) amount

of power, the FC can obtain an estimate,6fin one channel use that is given by
oF = o w2 (5.67)

wherez* ~ N(0,02%/p) is the scaled MAC AWGN [cf. (5.27)]. The basic idea behind CWS
that instead of projecting the sensor network data onto aefud§ a deterministic basis &, the

FC tries to reconstruat® from random projection®f the sensor network data. Specifically, let
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{¢; € R"}L, be an i.i.d. sequence of (normalized) Rademacher randotargece. ,{¢;;}}_; =
+1/4/n, each with probabilityl /2, and the FC tries to reconstrugt by projectingx” onto L of
these random vectoPsBecause the entries of each projection vedtpare generated at random,

observations of this form are called random projectionfiefdignal.

Remark 5.14 An important consequence of using Rademacher random gdotgorojection pur-
poses is that each sensor can locally draw the elements g@irthection vectorg¢,}~ , in an
efficient manner by simply using its network address as tleel ¢ a pseudo-random number
generator (see, e.g., [153]). Moreover, given these seleevand the number of nodes in the
network, the FC can also easily reconstruct the vecfarg’ ,. Therefore, in addition to being
a universal estimation scheme, CWS has an added advanttgsotlextended information con-
cerning the projection vectors needs to be communicatedrtst¢red inside) the sensor nodes
(cf. Section 5.5.3).

After employingZ random (Rademacher) projections, the correspondinggirojeestimates

at the FC are simply given by
oF = Pt Wi i=1,...,L (5.68)

T
wherew" = [w’f wﬂ , and{w}}"_, and{zf}~, arei.i.d. zero-mean Gaussian random
variables, independent of each other dugl }, with variancess2 anda?/p, respectively. The re-

construction process can be described as followsS;ldenote a countable collection of candidate

reconstruction vectors such that
S, C{yeR": |ly;|<B,j=1,...,n} (5.69)
and define a CWS estimaik as

s¥ = argmin {E(s) + M} : (5.70)
s€S, €

9The L Rademacher vectors are to be generated independently latigsec instantk. However, we omit the
superscript corresponding to the time index to simplifyrilogation.
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The first term in the objective function is the empirical ridkefined as

def

L
Ris) € =3 (@ - ¢Ts)” (5.71)

i=1

I

which measures the average (Euclidean) distance betweesbtiervationgo*}~ , and the pro-
jections of a given candidate vectoonto the corresponding Rademacher vecf{abs}- ,. The
quantity ¢(s) in the second term is a non-negative number assigned to eaxctidate vector in
S, such thatzsesq 2-¢¢) < 1, and is designed to penalize candidate vectors propottioraeir
complexity [see (5.76)]. Finally > 0 is a constant (independent 6fandn) that controls the
relative contribution of the complexity term to the objeetfunction. In the context of [67, Theo-
rem 1],02 = 0 and soe depends only the sample bouBdand the noise varianceg /p.

In order to apply the results of [67] to the observation m@8ed8), the effect of therojected
noiseterms{ ¢, w*}~_, needs to be determined. First, suppose that the projectictors{ ¢, } - ,
were mutually orthogonal. In that case, it is easy to seetliggprojected noises are equivalent (in
distribution) to i.i.d. zero-mean Gaussian noises witharareos?. In addition, note thaf¢; w*}
and{¢;;} are independent. To see this, notice that for any fixed vecterR", the joint charac-
teristic function ofg, w* and¢, g can be factored into the product of the individual charastier

functions, i.e.,
E eju1¢{wk+ju2¢zg] _E [emdwk] E [emdﬁg], (5.72)

and takingg to be a vector that has one at locatighand zero at all other locations establishes

the independence dip; w*} and{¢,;}. In this case, if we pick

P

_ 5.73
d,* (B2 + 02) ( )

p =
then the observations in (5.68) would be equivalent (irridbistion) to observations of the form

@Zk = ¢Z.Tsk—|—77f, 1=1,...,L, (5.74)

where{n¥}L | are i.i.d. zero-mean Gaussian random variabliestlependenof {¢;; }—with vari-

ances? = 02 + 02d,* (B? + 02) /P, and the results of [67, Theorem 1] can be applied directly.
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On the other hand, our model only assumes that the ve¢ttg | are mutually orthogonal
in expectation; hence, the projected noise is colored®-i§ the L x n matrix whose rows are
{p] L | then, given®, the projected noise vectdrw” is a zero-mean Gaussian vector with co-
variance matrixp® o2, Without loss of generality, however, we can assume thaptbgcted
noise{¢, w"}~ , behaves approximately like white Gaussian noise and coesly, use the ob-
servation model of (5.74) for further analysis. This apjmmation is motivated by the asymptotic
results presented in [8, Section I1V-B] which show that thereere eigenvalues cb®" are al-
most surely (a.s.) contained in the inter\%(a] — o), (1+ \/6)2] in the limit asL, n — oo with
L/n — c. Since we assumk grows sublinearly witm so L /n — 0 in our case and consequently,
all the eigenvalues ob®" tend tol a.s. In other words{¢,}~ , become mutually orthogonal
asymptotically, and the degree of coloring becomes ndgédor large values of. (this approxi-
mation is also shown to work well in practice—see Section.5.8

Explicit bounds on the reconstruction error using the CW8rege of (5.70) can then be ob-
tained by first assuming that we can find a b&sgt the FC in which the sign8lis a-compressible
and then, using this compressing basis in the reconstruptiocess by defining, andc(s) in

terms of®. Specifically, let
o, Y {0 € R": |(¥0),] < B, 6, uniformly quantized to? levels j =1, ... ,n} (5.75)

be a set of quantized candidate solutions in the transfommagio®, so thatS, = {s € R" : s =

v, 0 c ©,}. Furthermore, let the penalty ter(s) = ¢(0) be
e(8) = (1+q)log(n)[0]lo (5.76)

Then, the optimization problem (5.70) essentially reduoesolving the problem

~ N 2 1 log(2)1
9 = arg min{ Hvlz — @E!POH + (1 -+ q)log(2) log(n) ||0||0} (5.77)
0co, 2 €
T
whereg" %/ [5{6 . fﬂ , @, is then x L matrix of Rademacher projection vectdis, } - ,,

~k . . . . . ~. de ~k
and@ is the estimate of the representationsbin the compressing basi, i.e.,s" “'pg" . As
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shown in [67], for am-compressiblé, such an estimate would satisty

[\ /ot
= :
= (1oa) (578)
while, for anM-sparse signal, this would result in
I -1
< | — . :
D = (31000 &79)

5.6.2 Power-Distortion-Latency Scaling Laws

Recall that in order to achieve the distortion scaling o¥8.and (5.79), the network had to
employL network-to-FC MAC uses per source observation, each omesmmonding to a projection
of s* onto a random Rademacher vector. And while the projectiatovs in this case happened
to be random as opposed to the analysis carried out in Segdgit is a simple exercise to show
that with the scaling factas as given in (5.73), each projection of the noisy networked dato
a (random) Rademacher vector still consumes @nly) amount of power. Therefore, power-
distortion-latency scaling relationship of the CWS schéonehe case wheSs is a-compressible

can be given by

Py —2a/(2a+1) I —2a/(20+1)
D ~ ~ 5.80
(log<n>) Tog () (5.80)

while for an M-sparse signal withl/ and L scaling asM =< n*, 0 < pu < 1, andL =< n”,

0 < B < 1, itcan be given by
D ~ log(n) Pot ™5 ~ log(n) L7'5. (5.81)

Comparison of these power-distortion-latency relatigoshvith the ones achievable in Sec-
tion 5.5 yields an interesting insight: regardless of thepressibility (sparsity) o8, if there is
enough prior knowledge about the underlying physical phesmwn, the distortion achievable un-

der CWS would always be greater than the one achievable knihven subspace case, when using

10The stated results hold for ajl > 1; the explicit dependencies of the leading constants on tletigation
parametey are derived in [67].
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the same amount of power and lateaoyd identical reconstruction basis. As an example, whereas
one can obtain a distortion scaling bf < n~2*/2+1) gy employing( Py =<)L = n'/?**+1 pro-
jections for the estimation of amm-compressible signal in the known subspace case, the titistor
scaling in the unknown subspace case, when using the samigenwiprojections can only be
given by D < n~2¢/2e+1)*__g significantly slower decay [cf. (5.45), (5.80)].

On the other hand, by virtue of a toy example, we have already at the start of this section
what could happen to the distortion scaling in the known pabe case if the known subspace
assumption s false and that is where the universality of @éf8es into play: given sufficient prior
knowledge about the underlying signal field, CWS can be tanfoptimal but under circumstances
where there idittle or no knowledge available about the signal field, CWS should bestiheme

of choice for estimating compressible or sparse networleta. d

5.7 Impact of Fading and Imperfect Phase Synchronization

The joint source-channel communication architecturegresl in Section 5.4 for computing
distributed projections in WSNs (and extended to estimatib compressible/sparse signals in
Sections 5.5 and 5.6) is analyzed under the assumptionshihattetwork is fully synchronized
and transmissions from the sensor nodes do not underggfafiimis assumption may not hold in
practice for sensor network deployments in scatteringrenments and due to drifts in phases of
sensor oscillators. Therefore, we relax these assumpiticimés section and study the impact of
fading and imperfect phase synchronization on the prelyaistained scaling laws. In particular,
we establish that (i) the power-distortion-latency lawssettions 5.4 and 5.5 continue to hold as
long as the random channel gains of received signals at thel&&to fading and phase synchro-
nization errors) have a nonzero mean, and (ii) the CWS ggédins continue to hold as long as

the mean of these random channel gains is not too small.

5.7.1 Distributed Projections in Wireless Sensor Networks

We begin by analyzing the impact of fading and imperfect ptsysmchronization on the power-

distortion-latency scaling law of the proposed commuimicascheme for computing distributed
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projections (cf. Theorem 5.9). This is accomplished by assg that the communication scheme
is still described by the encoders in (5.25) but, as a regutacowband fading and phase syn-
chronization errors, each sensor’s transmitted signaddsived at the FC after multiplication by
a random channel gairf e g5 cos(A%), j = 1,2,...,n, where the random variabldg} and
{Af} arei.i.d. (across sensors), which are also assumed to &ggndent of each other [21,142].
Note that{gf} are non-negative valued random variables—typically mediels Rayleigh, Rician
or log-normal distributed—and correspond to random fadingelopes of received signals at the
FC, whereas{A?} model the combined effect of random phase-shifts due toipatit scattering
and imperfect phase synchronization between the sensotharC. We assume that the precise
values and distributions of these random variables arevaolahle to the sensors or the FC, but
their means are known at the FC.

Consequently, as a result of fading and imperfect phasehsgnization, the FC receives
j=1 j=1
= Vpe (Vosh)+ <\/ﬁ o' (v owk) + zk> (5.82)

where~* wf [’yf’ %’;’T, © represents a Hadamard product (element-wise multipdiogti
andp is still given by the expression in (5.33). Clearly, thisramdes with the received signal in
(5.26) if and only ify* = 1,,, wherel,, denotes am-dimensional vector of all ones. However, by
a slight modification of the decoder in (5.27), it can be shdlat the scaling law established in
Theorem 5.10 is still achievable as long as the distributiclandom channel gains is such that the
network remains at least “barely synchronized” in the sehaEiE[%’?] = 7 # 0. This condition
would be satisfied, e.g., k¥ ~ unif—7 + ¢, 7 — €] for anye > 0. The modified decodef in

this scenario is given by

Ak:Gk:
=G =

3

Sk
+ N
!1Recall that we are doing real-signaling; the random chagagls are, therefore, given W = gf cos(Af)
instead ofy} = gfejA?.

_ SOT (,f)v/k 0 Sk) + QOT(;)V/k ® sz) (583)
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aT
where?* =) [? 7—75] , and the achievable distortion using this modified decoder e

characterized by the following result.

Theorem 5.15 Let p € R™ and letv* = ¢"s*. Suppose that the random channel ga[mg'”s} due

to fading and imperfect phase synchronization are i.i.@gesensors and have a nonzero mean
(E[v}] =7 # 0).*> Then, given the sensor network model of Section 5.2, the fminrce-channel
communication scheme described by the encoders in (5.2bjrenmodified decoder in (5.83)
can achieve the following end-to-end distortion by empigyonly one channel use per source

observation

ai§+32(§—72) o? d,* (B? +02)
l%§< - el + (0 ) el e

whered* is the estimate of* at the FC andy = «f E[|7%°] < 1 (mainly because of the law of

conservation of energy).

Proof: To establish this theorem, note that (5.83) implies thate N

E[‘Uk—vk‘] = E

VP
(@) _ 2 oa ol
9 g [ler(3 - 1) 0[] + 2Ll +
Y y
n k 2 = 2
2 Y; 2 Ow 0
- Z (¢;s5)°E <TJ - 1) + 2 el + =
j=1 K !
®) BX(F -7 i o’
< —= el + el + =~ (5.85)
o 7P

where(a) essentially follows from the fact that the random channéi gactor~* is independent
of the zero-mean measurement noise veetbrand zero-mean communication noige and(b)
primarily follows from the fact thats§| < B. Finally, to complete the proof of the theorem, we

substitute in (5.85) the value pffrom (5.33) and take the limit ik to obtain (5.84). |

12t the expense of some extra notation, the scaling lawsdstatéis section can be obtained even Wi{efgﬁ} are
not identically distributed (as long as they are indepehdeross sensors and have nonzero means). For the sake of
this exposition, however, and because it suffices to ilstthe principles, we focus only on the i.i.d. case.
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Remark 5.16 A corresponding lower bound on the projection coefficiestaltion D,, under the
modified decoder of (5.83) is given by (5.28). This followsitlly from (a) in (5.85) and the fact
thaty? <5 < 1.

Remark 5.17 Since the structure of source-channel encodéis. .., F,,) remains unchanged
under fading and imperfect phase synchronization, thénetavork power consumption associated

with achieving the distortion in (5.84) is still given by 88).

Notice that even under the effects of fading and imperfestbyonization, the projection co-
efficient distortionD,, achieved by the proposed joint source-channel commuaicatichitecture
(using the modified decoder of (5.83)) is given by a sum of tejgesate terms, the first of which
scales like||p||2, while the second term that is primarily due to the noisy camivation channel
scales like||¢l|3/\ (cf. (5.84), Remark 5.16). Comparing this observation wfité scaling law
established in Section 5.4 shows that Theorem 5.15 desdhlesame distortion scaling behavior
as Theorem 5.9, with the only difference being that the sgatonstants are now different (they
depend upon the second-order statistics of channel goingarticular,L, = 1 and Py, = O (1)
is still sufficient to ensure thdD,, < ||¢||3 < D}, as long ag # 0 (cf. Corollary 5.10).

5.7.2 Distributed Estimation from Noisy Projections: Known Subspace

Similar to the case of estimation of a single projection fioeint under the effects of fading
and imperfect phase synchronization, it is a simple exetcishow that by using the joint source-
channel communication scheme described by the encodess3i) @nd under a slightly modified

decodelG given by
k
s —aih) Y wk( ! ) (5.86)
) < w2

the end-to-end distortion of ancompressible signal at the FC in the presence of fading hadep

synchronization errors can be upper bounded by

25 1 B2(7 — 72 29 ¢(R2 2
D<oy () (@It BE=T)) | (L) (2di B 4ol (5.87)
n 5 n Y- P
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and lower bounded by the expression in the lower bound o®f5.8s long as{+}} are i.i.d.
across sensors and# 0. Ignoring constants, this implies that the resulting disba of ana-

compressible signal in this scenario still scales as

(g) N (%) D=Ly (g) ; (%) (5.88)

i.e., has the same scaling behavior as thabah (5.39). Similarly, it can be shown that using
the modified decoder of (5.86) (with replaced by)/), the end-to-end distortion of alf-sparse

signal in this scenario would scale as [cf. (5.59)]

D = (%) + (%) (5.89)

Moreover, given that the structure of source-channel eersgdy, . . ., F',,) remains unchanged
under fading and imperfect phase synchronization, théretavork power consumption per source
observation associated with achieving these distortiahrsgs for compressible and sparse signals
would still be given by (5.40) and (5.60), respectively. Gamson of these results with the ones
obtained in Section 5.5 shows that the previously estaddigtower-distortion-latency scaling laws
for estimation of compressible and sparse signals in thevkrgubspace case continue to hold
under the effects of fading and imperfect phase synchrﬁnizaprovided{%’?} have a nonzero

mean and the FC uses the modified decoder of (5.86).

Remark 5.18 Note that these results are similar in spirit to some of théezaesults obtained

in the context of joint source-channel communication fatributed estimation of sources—see,

e.g., [42,154-156]. In particular, those results alsodatdi that fading (and/or imperfect synchro-

nization) tends to have no effect on the distortion scalspag as the random channel gains have

nonzero means.

5.7.3 Compressive Wireless Sensing

In the presence of phase synchronization errors only (ringade.,%’? = cos(A?) only), CWS

observations are givenliy i = 1,..., L)
k
o= ol(3 0sh) + ol (7 owh) + = (5.90)
(3 0s) + 613 o)+ 22
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. T e . .
wherey" = [? 75] [see (5.68)]. Defining the vectd asy"* “ 1,,+6* and substituting

ki
into the above gives

Zk:

~k T k T . .k T(Sk k k 7
U = ¢is"+ oW+ (070 (s"+wW")) + = (5.91)
( ( ) YVP
whereéd” is a zero-mean random vector with i.i.d. entries givenSny: if —1,j=1,...,n.

Comparing this with (5.68), we see that the net effect of plgschronization errors is the intro-
duction of a new noise-like term of the fore] (5’“ ® (s* +w")). Foregoing a rigorous theoretical
analysis of the effects of this contribution, we insteadiass (by the Central Limit Theorem) that
it is approximately Gaussian distributed, in which caseait be treated like the projected noise
{¢]w"}, as in Section 5.6.1. Further, assuming théti'im'g' unif[—b, b] and thatb is small, we
can use a one-term Taylor series approximation of the vegiahthe new zero-mean noise contri-
bution. The result is that each CWS observation is agaimdye(5.74) but the equivalent noise
variance is given by? = 02 + 02d,* (B? + 02) /(7*P) + (B? + 02)b*/45, the last term in the
expression being the contribution of the new phase synctatian error term.

More generally, if we also define the fading envelope of eafssr’s transmissions @$ =
1 + €%, then the overall random channel gain of each received Higmames)’ = g% cos(A¥) =
(14 ) (14 6%) = 14 €& + 6F + k6%, The net result of this is a new noise-like term of the form
®; ((€* + 6" + €"6") ® (s" + w*)). With appropriate modeling of thé terms, the additional
variance due to this contribution can also be computed amdptimization problem in (5.77) can
be updated accordingly. This approach was used in the diimgaand appears to work well in
practice for a range of phase synchronization errors, witlithout mild fading, as can be seen

from Figure 5.10.

5.8 Simulation Results

In this section, we present a few simulation results to nically demonstrate some of the
power-distortion-latency relationships of our schemeeaurabth known and unknown/adaptive
subspace assumptions. All signals discussed in this seateocontaminated with zero-mean ad-

ditive white Gaussian measurement noise of variarjce- 1, i.e., the baseline MSE of all signals
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is taken to bel. Moreover, the measurement SNR of all signals, defined t0|8%|3/n) /o2, is
given by SNR.eas= 20 dB, and the received communication SNR for each projectefiped to
bep/a?, is given by SNRymm = 0 dB (unless otherwise stated).

The first simulation result, corresponding to Figure 5 laisirates the distortion scaling of
a spatially piecewise smooth signal field with the numberrofgetionsZ using both CWS and
known subspace case reconstructions, where the signaisigdanpled by, = 8192 sensor nodes
in a noisy manner. Such signals tend to be compressible iHalae domain withh = 1 and this
value ofa was also verified numerically. For the purposes of known gabs reconstruction, the
observation vector is projected ontdHaar basis elements correspondind.ttargest coefficients
of the noiseless vector using the scheme described in 8e¢cBowhile for the case of CWS recon-
struction, the observation vector is projected ohttandom Rademacher vectors. The resultant
reconstruction MSEs are shown in the figure using solid aifea a log-log scale), while the
dotted curve and dashed curve in the figure correspond tarlfiteof CWS distortion curve and
reconstruction MSE in a centralized setting (i€,= 0), respectively. Finally, the total network
power consumption for both CWS and known subspace casestegotions is given by, < L,
owing to the fact that we have chosgr= O(1) in this simulation.

As predicted by the theory, distortion curve for known swaspreconstruction in Figure 5.6
hits its minimum at a point where the distortion due to therappnation error is balanced by
the distortion due to the observation and communicatiose)cand starts to rise aftér ~ 70
projections since each subsequent projection contrilautlysa small amount of signal but a larger
amount of noise. Note that minimum distortion in the ceieal setting is attained fol. ~
90 projections. This is because distortion scaling constemtee known subspace case depend
upong? ando?/p [see (5.39)], whiles? = 0 in the centralized case. For the case of CWS,
distortion scaling follows a slope 6f1.48 that turns out to be better than the expected value of
—2a/(2a + 1) = —2/3 [see (5.78)]. This, however, does not contradict the regelported in
Section 5.6 since we only have upper bounds for distorti@tirsg in the CWS case. Finally,

Figure 5.7 illustrates the fact that varying the receiveshocwnication SNR per projection has no
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I
== Compressive Wireless Sensing Recon.
++ CWS Dist. Scaling w/ L: Slope=-1.48
=—— Known Subspace Case Reconstruction
4 Minimum Distortion for KS (L = 70)
= = Centralized Reconstruction MSE
H  Minimum Centralized Dist. (L= 90)

Distortion (D)
=
o

7 Bias-limited Regime (BLR)

Variance-limited Regime (VLR)

Number of projections (L)

Figure 5.6 Distortion scaling of a fixed lengthcompressible signal as a function of number of
projectionsL under both known and unknown subspace assumptions (logelmg): number of
sensor nodes = 8192;a = 1 (in Haar basis); baseline MSE2)) = 1; measurement SNR = 20 dB;
received communication SNR per projection dB.

T

+ % CWS Recon.: Comm. SNR = -10 dB
% CWS Recon.: Comm. SNR = -5 dB
=%- CWS Recon.: Comm. SNR =0 dB

++ KS Recon.: Comm. SNR = -10 dB
+=+ KS Recon.: Comm. SNR = -5 dB
— KS Recon.: Comm. SNR =0 dB
= = Centralized Reconstruction MSE

Distortion (D)

Number of projections (L)

Figure 5.7 Distortion scaling of a fixed lengthcompressible signal as a function of number of
projectionsL for various values of received communication SNR per ptaaander both known
and unknown subspace assumptions (log-log scale): nunfilsensor nodes = 8192;a = 1 (in
Haar basis); baseline MSE2) = 1; measurement SNR = 20 dB.
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effect on the scaling behavior of known subspace and CWSstieation MSEs (except a change
in the scaling constants).

The second simulation result, corresponding to FigureibuBtrates the distortion scalinfy
of an M-sparse signal field with the number of sensor nodes using®éfS and known subspace
case reconstructions, where we also scale the number of Dtfeisignal as\/ = n* = n!/3
in the Haar basis. For the purposes of known subspace casgstection, the observation vec-
tor is projected ontd. = M Haar basis elements corresponding to Menonzero coefficients
of the noiseless vector using the scheme described in &est while for the case of CWS
reconstruction, the observation vector is projected dntsx log(n) n'/?2M = log(n)n°/® ran-
dom Rademacher vectors. The resultant reconstruction M&Eshown in the figure using solid
curves (on a log-log scale), while the dotted and dashedesurvthe figure correspond to lin-
ear fit of known subspace/CWS distortion curves and recectstn MSE in a centralized setting,
respectively. Finally, the total network power consumptfor CWS and known subspace case
reconstructions is given b, =< log(n) n®/% and P, < n'/3, respectively, owing to the fact that
we have choseh = O(1) in this simulation.

As predicted by the theory, the distortion scaling curvekioown subspace reconstruction in
this case tends to follow a slope ofl + 1 ~ —0.64 [see (5.62)]. Similarly, the distortion scaling
curve for CWS reconstruction in this case can be expressdd as M log(n)/L ~ n~%%2—
again in accordance with the theory [see (5.79)]. FinaliguFe 5.9 and Figure 5.10 illustrate the
robustness of our proposed scheme to a range of phase syizetiian errors, with or without

fading, under both known and unknown/adaptive subspacerggsns.

5.9 Discussion

In this chapter, we have presented a distributed joint ®sah@annel communication architec-
ture for estimation of networked data at the FC and analylzed¢orresponding power-distortion-
latency relationships as a function of the number of senedes. Our approach is built on dis-

tributed computation of appropriately chosen projectiohthe sensor data at the fusion center.
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Figure 5.8 Distortion scaling of af/-sparse signal as a function of number of sensor nades
under both known and unknown subspace assumptions (logeklg): nhumber of nonzero coef-
ficients M = n'/? (in Haar basis); baseline MSE?) = 1; measurement SNR = 20 dB; received
communication SNR per projectiont=dB; number of projections—Known subspace case recon-
struction: L = M =< n'/3, CWS reconstructionL = log(n) n'/2M = log(n) n®/®,

++ KS w/ Fading & Sync. Errors:mj Dunif [-172, 2]
= KS w/ Fading & Sync. Errors:gcz Ounif [-173, T3]

= KS w/ Fading & Sync. Errors: @ Ounif [-1V6, 6]
% KS w/ Sync. Errors Only: @ Ounif [-172, /2]
% KS w/ Sync. Errors Only: @ Ounif [-173, 03]
=#= KS w/ Sync. Errors Only: 9 Ounif [-176, TV6]
o Ve , == KS Recon. without Fading and Sync. Errors
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Figure 5.9 Distortion scaling of an/-sparse signal as a function of number of sensor nades
under the effects of fading and phase synchronization®(Kmown subspace case reconstruction
only): number of nonzero coefficientd = »'/3 (in Haar basis); baseline MSg&2) = 1; mea-
surement SNR = 20 dB; received communication SNR per piioject 0 dB; fading envelope:
Rayleigh distributed; number of projectiohs= M = n'/3.
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: 1+ CWS w/ Fading & Sync. Errors: @ Ounif [-174, T74]
Ll =+ CWS w/ Fading & Sync. Errors: @ Ounif [-1U6, T76]
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Figure 5.10 Distortion scaling of a fixed lengthcompressible signal as a function of number of
projectionsL under the effects of fading and phase synchronization (@S reconstruction
only): number of sensor nodes= 8192,« = 1 (in Haar basis), baseline MSE?) = 1, measure-

ment SNR = 20 dB, received communication SNR per projectiordB; fading envelope: Rician
distributed (<-factor of 7.5).
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Phase-coherent transmissions from the sensors enabl@takph of the distributed beamform-
ing gain for dramatic reductions in power consumption. A féistinct features of our approach
are: 1) processing and communication are combined into istrébaited projection operation, 2) it
requires almost no in-network processing and communicadind 3) given sufficient prior knowl-
edge about the networked data, asymptotically consistgnalsestimation is possible even if the
total network power consumption goes to zero.

In addition, we have also introduced and analyzed a uniessanation scheme—compressive
wireless sensing (CWS)—that provides asymptotically test signal estimates, even if little or
no prior knowledge about the networked data is assumedhé&munbre, power and latency require-
ments in CWS grow at most sub-linearly with the number of sadehe network. This universal-
ity, however, comes at the cost of less favorable powepdisnh-latency relationship: the absence
of sufficient prior knowledge about the signal field leadsrabing the entire:-dimensional space
using random projections instead of focusing on the sulespimterest. However, for precisely
the same reason, CWS has the ability to capture part of sigrder all circumstances and does
not require reprogramming of the network for different segscenarios—different hypotheses on
the signal field structure can be tested at the fusion cerdehe reconstruction algorithms. Fur-
thermore, projecting the sensor network data onto a fixedgade may result in a distortion much
greater than the one achievable by CWS if prior informatibaw the signal field is inaccurate.
Therefore, we contend that CWS should be the estimatiomselod choice in cases when either
little prior knowledge about the sensed field is availableanfidence level about the accuracy of
the available knowledge is low.

Finally, we conclude this chapter with a brief overview o #tonnections between the results
of this chapter and some related existing works. First, $et@mment on the signal model used
in this chapter. We assume that the physical phenomenorr ohdervation is characterized by
an unknown but deterministic sequence of vector®in where each vector in the sequence is
a-compressible of/-sparse in some orthonormal basisRif (see Section 5.2). Alternative as-
sumptions that are commonly used in previous work are tleasigmal field is either a realization

of a stationary (often bandlimited) random field with somewn correlation function [157-160],
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or itis fully described by a certain number of degrees ofdee (often less than) that are ran-
dom in nature [42,161]. All of these signal models, howeegpress a notion of smoothness or
complexity in the signal field, and the decay charactessifche correlation function (e.g., the rate
of decay) or the number of DoF in the field play a role analogoubat ofa and M in this work.
Essentially, the choice between a deterministic or a sgichiaodel is mostly a matter of taste and
mathematical convenience, the latter being more prevalbah it comes to information-theoretic
analysis of the problem (also, see [131] and the discuskierein). However, the deterministic
formulation can be more readily generalized to include mbgeneities, such as boundaries, in
the signal field [146].

Second, itis generally recognized that the basic opemtibsensing (acquisition), processing
(computation), and communication in sensor networks aerdependent and, in general, they
must be jointly optimized to attain optimal trade-offs beem power, distortion, and latency. This
joint optimization may be viewed as a form of distributedhjosource-channel communication
(or coding), involving both estimation (compression) amtnunication. Despite the need for
optimized joint source-channel communication, our fundatal understanding of this complex
problem is very limited, owing in part to the absence of a wieleloped network information the-
ory [162]. As a result, a majority of research efforts hawedito address either the compression
or the communication aspects of the problem. Recent resnlfsint source-channel communi-
cation for distributed estimation or detection of sourecesansor networks [40-43, 155,161, 163],
although relatively few, are rather promising and indi¢ht limited node cooperation can some-
times greatly facilitate optimized source-channel comitation and result in significant energy
savings that more than offset the cost of cooperation. Hsdlgnfor a given signal field, the
structure of the optimal estimator dictates the struct@itbecorresponding communication archi-
tecture. To the best of our knowledge, the most comprehetrgatment of this problem to date (in
the context of WSNs) has been carried out by Gastpar andrvattgl2] (see also [161]). While
some of our work is inspired by and similar in spirit to [42]a&par and Vetterli have primarily
studied the case of finite number of independent sourcessthatlogous to that of al/-sparse

signal, albeit assuming Gaussian DoF and multiple FCs. Manme the number of DoF in [42] is
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assumed to be fixed and does not scale with the number of nodkes network. Our work, in
contrast, not only extends the results of [42] to the casawthe number of DoF of ai/-sparse
signal scales witm, but also applies to a broader class of signal fields and gieesinsights
into the power-distortion-latency relationships for bottmpressible and sparse signals (cf. Sec-
tion 5.5). Furthermore, we also present extensions of otihma®logy to situations in which very
limited prior information about the signal field is availabl

Third, in the context of compressed sensing theory, whigddlea of using random projections
for the estimation of networked data has recently receieedesattention in the research commu-
nity, the focus has primarily been on the compression omegion aspects of the problem (see,
e.g., [51, 67,164, 165]), and our work is the first to cargfutivestigate the potential of using
random projections from a source-channel communicatiospeetive (cf. Section 5.6).

Finally, from an architectural and protocol viewpoint, rmesisting works in the area of sen-
sor data estimation emphasize the networking aspects logifug on multi-hop communication
schemes and in-network data processing and compressienegse, [146, 157, 159, 160]). This
typically requires a significant level of networking inftagcture (e.g., routing algorithms), and ex-
isting works generally assume this infrastructure as gi@ur approach, in contrast to these meth-
ods, eliminates the need for in-network communicationgmodessing, and instead requires phase
synchronization among nodes that imposes a relativelylfmiaen on network resources and can
be achieved, in principle, by employing distributed symetization/beamforming schemes, such
as those described in [143, 144]. Although we use the comerom tsensor network” to refer to
such systems, the systems we envision often act less likeriet and more like coherent ensem-
bles of sensors and thus, our proposed wireless sensirensysperhaps more accurately termed
a “sensor ensembléhat is appropriately queried by aimformation retrievet (FC) to acquire the

desired information about the networked data.
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5.10 Appendix
5.10.1 In-Network Collaboration: Power-Distortion Trade-off Revisited

Analysis in Sections 5.5.1 and 5.5.2 shows that O(1) is necessary for optimal distor-
tion scaling in estimation of compressible and sparse gmesulting inP; =< n'/?*+) and
Pot < M, respectively. In this appendix we partially address thestjon: How good is the
power-distortion scaling of our proposed schem&hile a comparison with all conceivable dis-
tributed estimation schemes does not seem possible, wearertie performance of the proposed
scheme (which does not require data exchange between rodes)ore favorable and idealized
setup where the nodes in the network can communicate the@redtions in an error-free manner
to a designated cluster af < n < n nodes. We do not make any assumptions on the nature of
in-network communication and also ignore the incurred ocostnergy consumption (since quan-
tifying this cost requires making additional system-speessumptions). Thus, our performance
comparison is solely based on the power required for nett@kC communication to achieve
optimal distortion scaling. Note that = 1 corresponds to all nodes routing their measurements
to a single clusterhead in the network (using perhaps rholti-communications), while = n
corresponds to all the nodes in the network noiselesslyirghéneir data with each other (using
perhaps gossip algorithms). Ontaodes in the network have access to the entire observatmn ve
tor x* following each snapshot, they compute the requitgarojection coefficients (with respect
to a given basis) and then coherently transmit the resyttiogection coefficients to the FC using a
sum transmit power oP per channel use. This effectively transforms the clusiégf@ MAC into
a point-to-point AWGN channel with-fold power-pooling gain due to coherent beamforming of
identical data.

We focus on estimation af-compressible signals. Specifically, we assumeihatdes in the
designated cluster have access to identical estimates oétjuired. W-coefficients at the end of

the data-exchange stage, i.e.,

0F = ixF = 0F+yiwF, (=1,... L. (5.92)
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By a simple extension of the encoder structure of Sectiontbestransmitting cluster ot nodes

coherently beamforms thedeprojection coefficients per snapshotiinconsecutive channel uses

as follows
N T
vh= i (00) = [ o ot
1 A 1T -
J

where {p,}%_, are scaling factors used to satisfy the sum power constraiim each of thel
channel uses. At the end of tlieth channel use, the received signal at the input of the d=aa@d

is simply given by
rf = Z \/hjy;c + z"
j=1

R 1T
= fz[\/,o—le’f \//)—Leﬂ + 2"
— AT @' + AT (gv’;Tw’f) + 7 (5.94)

wherel' & diag(\/p1,---,/Pr ), 0F = (0%,...,05)T, 2* ~ N(0,,0°1;) is an AWGN vector,
andn is the power-pooling gain of identical coherent transnoigsifromn nodes. An estimate of

the noiseless networked data can be formed at the FC as
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As for fixing the values of p, }, note that (5.93) implies that¢ = 1,..., L,
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where the upper bound essentially follows from the facttisquared magnitudes of the ordered
coefficients{¢}} in the case of compressible signals are bounded &< "0—?6‘2‘“‘1 [see (5.9)].
This implies that

AP
7 d,¢ (n C,-20-1 4 ag)

o = 0=1,....L (5.97)

would suffice to satisfy the sum power constraint/offor each of theL. channel uses, where
c, = C,/C, andX € (0, 1] is again the power scaling factor for controlling total netlvpower
consumption. We are now ready to state the distortion aablevfor ana-compressible signal

under the assumption of in-network collaboration.

Theorem 5.19 Given the sensor network model of Section 5.2 fomacompressible signal and
under the assumption of in-network collaboration enabfingpdes in the network to have access
to the entire observation vectaf at each time instarit, the beamforming strategy described by
the encoders in (5.93) and the decoder in (5.95) can actievellowing end-to-end distortion by

employingL channel uses per source observation

L\ , 1\ [(02C, L
- - z < < «
<n)UW+<ﬁ)<)\P>_D_COL +

L\ , ) e 1\ (20%2d,°C,

Proof: To establish this theorem, first observe that (5.95) impghesv & € N
L
Lotk a2 —2a L 1 o’
E[EHS 3 Hz] oL 4 <g () S
— O L2 4 £ i Ugducéo i£—2a—1 4 i 27 ¢ 42
e n)? nAP nq ) 020 v
L 1\ [(202d,°C
< —2a - 2 27 ¢ - z u o )
< O, L7 4 (n)aw<1+azdu) + (n) <7AP ) (5.99)

(=1
where the last inequality follows from the fact that
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and-L < L Furthermore, from (5.95), we also have a lower bound of

B ol 5] = (5)o
(&)

Finally, combining the upper and lower bounds of (5.99) and@1), and taking the limit ik

v
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(5.101)
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yields (5.98), thus completing the proof of the theorem. |

Remark 5.20 Under the assumption of nodes coherently transmitting the identical data, the
cluster-to-FC MAC is effectively transformed into a pototpoint multiple-input single-output
AWGN channel. Consequently, while the distortion expmssh (5.98) has been obtained cor-
responding to an analog beamforming strategy of (5.93)mélasi expression for distortion can
be obtained by appropriately transforming the compressblurce model into a stochastic one,
and employing standard rate-distortion and capacity-aoatysis (in other words, by employing

“digital” beamforming).

Remark 5.21 Note that the last term in the upper and lower bounds in (5c@8)esponds to
the distortion component due to the noisy communicatiomobh The factor of: in that term
corresponds to the power-pooling gain due to coherentrirensson of identical data: the greater
the number of nodes coherently beamforming the identidal dae greater the power-pooling gain.
Comparing this communication noise term to the last terrhénupper and lower bounds in (5.39)
shows that, in terms of scaling, the performance of the peg@stimation scheme of Section 5.5
is equivalent to that of an in-network collaboration basgstem that has a beamforming cluster

consisting ofi = # nodes.

Analysis of (5.98) reveals that for optimal distortion $seglunder the in-network collabora-
tion assumptionl = n'/>+Y and the distortion component due to the communication noise
should also scale at least is< n~=2*/(2>*1)_ Consequently, this implies that as long as the extent
of in-network collaboration is such that < n?*/2+1one cannot achieve the optimal distor-

tion scaling under a fixed transmit power constrainfofthe power constraint itself needs to be
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scaled up ag® =< n?*/+1) /i to achieve optimal distortion scaling. On the other handhef
extent of in-network collaboration is such that> n2*/(2+1) then, in fact,\ need not be given by

A = O(1). Rather, in that situation, it can be scaled dowr\as n?*/(2+1) /7;. Going back to

the two extremes of = 1 andn = n, this means that for the case of a single clusterhead in the
network, we have’,, = O(A L P) = O(n) and for the case where all the nodes in the network act
as a big clusterhead, we haig; = O(\ L P) = O(1). Essentially, as the cardinality of the beam-
forming clustern scales up a$ ' n, the total network power scales down franin) to O(1).
Remarkably, the proposed estimation scheme of Sectionchig\es the performance equivalent
to that of a cluster witth = n?*/*+1) nodes, without requiring any in-network collaboration.
Furthermore, while we have ignored the cost of in-netwonkigwnication, we expect that it will

increase monotonically with increase in the size of the Beeming clusters.
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