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ABSTRACT
A rich body of literature has emerged during the last decade that seeks to exploit the sparsity of a signal for a reduction in
the number of measurements required for various inference tasks. Much of the initial work in this direction has been for the
case when the measurements correspond to a projection of the signal of interest onto the column space of (sub)Gaussian
and subsampled Fourier matrices. The physics in a number of applications, however, dictates the use of “structured”
matrices for measurement purposes. This has led to a recent push in the direction of structured measurement (or sensing)
matrices for inference of sparse signals. This paper complements some of the recent work in this direction by studying
the geometry of Toeplitz-block sensing matrices. Such matrices are bound to arise in any system that can be modeled as
a linear, time-invariant (LTI) system with multiple inputs and single output. The reported results therefore should be of
particular benefit to researchers interested in exploiting sparsity in LTI systems with multiple inputs.
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1. INTRODUCTION
Consider the classical setup in which a signal x ∈ RN is measured according to the linear model y = Ax + w. Here, A
is an n×N measurement or sensing matrix, while w ∈ Rn represents additive noise in the measurement system. Despite
its simplicity, the linear model suffices to capture the measurement process in a surprisingly large number of engineering
applications. The signal processing challenge under this measurement model in an application then is to infer (certain
characteristics of) x from the measurements y.

In the absence of any prior (statistical or geometric) knowledge about x, elementary linear algebra dictates that infer-
ence of x requires the number of measurements n to be at least equal toN , the extrinsic dimension of the signal. During the
last decade, however, it has been successfully argued that the linear dependence of the number of measurements onN is too
stringent for signals that can be approximated by a small number of nonzero coefficients in a basis. In particular, it is now a
well-known fact that inference of signals that are exactly k-sparse in the canonical basis, ‖x‖0 := #{i : xi 6= 0} ≤ k, can
be carried out in a computationally efficient manner using only n ≈ Ω(k log(N)) carefully chosen measurements.∗ The
most common inference tasks in this sparse setting include (i) recovery/estimation of x from y, studied under the rubric of
“compressed sensing” [1, 2]; (ii) estimation of the locations of nonzero entries of x from y, studied under the monikers of
“model selection” [3–5] and “sparsity pattern recovery” [6, 7]; and (iii) testing for the presence of x in noise [8, 9].

Our focus in this paper is on first two of the aforementioned inference tasks. In both these cases, there is a large body
of existing literature that characterizes the performance of various optimization-based and greedy methods as a function
of certain geometrical properties of the sensing matrix. These properties include the restricted isometry property [10],
restricted eigenvalue property [11], irrepresentable condition [3], incoherence condition [6], and variants of the coherence
property [4, 5, 12, 13]. Much of the initial push in the literature has been on leveraging these properties to establish that
sensing matrices such as (sub)Gaussian matrices and subsampled Fourier matrices require near-optimal scaling of the
number of measurements: n ≈ Ω(k log(N)) [14]. However, the measurement process in a number of applications, such as
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∗Recall the big-O notation: f(z) = O(g(z)) if there exist positive C and z0 such that for all z > z0, f(z) ≤ Cg(z). Also,
f(z) = Ω(g(z)) if g(z) = O(f(z)), and f(z) = Θ(g(z)) if f(z) = O(g(z)) and g(z) = O(f(z)).



channel estimation [15], radar [16], seismic imaging [17], and optical imaging [18,19], cannot be adequately described by
these “canonical” sensing matrices. This realization has led to a recent push in the direction of studying the geometry of
“structured” sensing matrices for inference of sparse signals. In this paper, we complement the existing work on structured
sensing matrices by studying the geometry of Toeplitz-block sensing matrices for sparse signal processing. In general,
Toeplitz-block sensing matrices are bound to arise in any system that can be modeled as a linear, time-invariant (LTI)
system with multiple inputs and single output. The results reported in this paper therefore should be of particular benefit
to researchers interested in exploiting sparsity in LTI systems with multiple inputs.

1.1 Our Contribution
The Toeplitz-block sensing matrix A studied in this paper comprises m (partial) Toeplitz matrices with n rows and p
columns each. Specifically, we have A =

[
T 1 T 2 . . . Tm

]
∈ Rn×N with N = mp and

T i =


sip sip−1 . . . si2 si1
sip+1 sip . . . si3 si2

...
...

...
...

...
sin+p−1 sin+p−2 . . . sin+1 sin

 , i = 1, . . . ,m, (1)

where the sequence {sij}
n+p−1
j=1 is the seed to the n× p Toeplitz matrix T i. The n×N matrix A in this case is completely

described by the m(n + p − 1) sequence values {sij}i,j . Note that extensions of this block setup to the case of (partial)
Hankel blocks, partial circulant blocks and additional stacking of blocks in the vertical direction are straightforward and
therefore will not be discussed in this paper.

The main contribution of this paper is to establish that Toeplitz-block sensing matrices generated from a random seed
achieve near-optimal scaling of the number of measurements, n ≈ Ω(k log(N)), for both compressed sensing and model
selection problems. The recipe for these results was implicitly provided for Toeplitz-block sensing matrices comprising
full Toeplitz matrices in our earlier work on multiuser detection [20]. In this paper, we explicitly report these results for the
case of partial Toeplitz blocks. The key to our results is a characterization of two geometric measures of Toeplitz-block
sensing matrices, namely, the worst-case coherence and the spectral norm. The worst-case coherence of A, defined as

µA := max
i,j∈{1,...,N}

i6=j

|〈ai, aj〉|
‖ai‖2‖aj‖2

, (2)

is a measure of the worst-case similarity between the columns {ai, i = 1, . . . , N} of A. The spectral norm of A, on
the other hand, can be heuristically regarded as a measure of the similarity between the rows of A, defined as ‖A‖2 :=√
λmax (ATA) (i.e., the maximum singular value of A). Specifically, we derive upper bounds on the worst-case coherence

and the spectral norm of random Toeplitz-block sensing matrices in Section 2. We then leverage recent results reported
in [4, 13, 21] and the results of Section 2 to obtain the scaling relationship n ≈ Ω(k log(N)) for Toeplitz-block sensing
matrices in Section 3.

1.2 Relationship to Previous Work
In relation to previous works, our work is a generalization of the earlier work on Toeplitz and circulant matrices in com-
pressed sensing [18, 22–26]. To the best of our knowledge, however, the only works in the sparse signal processing
literature that have considered block sensing matrices with Toeplitz or circulant blocks are [27,28] and [29]. Both [27] and
[29] require superlinear scaling (in k) of the number of measurements. The scaling requirements in [28] are linear (modulo
a polylogarithmic factor) and its setup is also the one most closely related to our setup. The biggest difference between
[28] and this paper is that [28] requires each of its (quasi-circulant) blocks to have full row rank (i.e., n ≥ p).

2. GEOMETRY OF RANDOM TOEPLITZ-BLOCK SENSING MATRICES
In this section, we specify the column and row geometry of random Toeplitz-block sensing matrices in terms of the worst-
case coherence and the spectral norm. We begin with a characterization of µA of A in the following.



THEOREM 2.1 (BOUND ON THE WORST-CASE COHERENCE). Suppose m ≥ 2 and the n×N(= mp) Toeplitz-block
matrix A is generated from the sequence {sij , i = 1, . . . ,m, j = 1, . . . , n+p−1} with each sij drawn independently from
a Binary(+1/

√
n,−1/

√
n) distribution. Then the worst-case coherence of A satisfies

µA ≤
√

12 log(N)

n
(3)

with probability exceeding 1− 4N−1.

Proof. In order to prove this theorem, notice that the worst-case coherence of A can be expressed in terms of its
constituent block matrices as follows:

µA = max

 max
i=1,...,m

µT i , max
i,j=1,...,m

i 6=j

∥∥∥T iTT j
∥∥∥
max

 , (4)

where µT i denotes the worst-case coherence of T i and ‖·‖max denotes the max norm of a matrix. We next pick a δ ∈ (0, 1)
and appeal to Theorem 4 in [24], which dictates that the worst-case coherence of a (partial) Toeplitz matrix generated from
a random binary sequence satisfies

Pr (µT i ≥ δ) ≤ 2p(p− 1) exp

(
−nδ

2

4

)
. (5)

We therefore trivially get from the union bound that

Pr

(
max

i=1,...,m
µT i ≥ δ

)
≤ 2mp(p− 1) exp

(
−nδ

2

4

)
. (6)

In order to provide a similar probabilistic bound on maxi,j=1,...,m
i6=j

∥∥∥T iTT j
∥∥∥
max

, we define Gi,j = T iTT j for any

fixed i, j with i 6= j and express the (k, `) entry of Gi,j as

Gi,j
k,` =

n∑
q=1

sip+q−k s
j
p+q−` =

n∑
q=1

s̃q, (7)

where we have suppressed the dependence of (i, j, k, `) on s̃q = sip+q−k s
j
p+q−` for ease of notation. Since i 6= j, it is

easy to argue that the random sequence {s̃q} is independent and identically distributed (i.i.d.) as Binary(+1/n,−1/n).
We can therefore apply the Hoeffding inequality [30] to the sum in (7) and obtain

Pr
(∣∣∣Gi,j

k,`

∣∣∣ ≥ δ) ≤ 2 exp

(
−nδ

2

2

)
. (8)

We now first apply the union bound for p2 distinct entries ofGi,j to obtain a probabilistic bound for
∥∥∥T iTT j

∥∥∥
max

, followed

by the union bound for m(m− 1)/2 distinct
∥∥∥T iTT j

∥∥∥
max

to finally obtain

Pr

 max
i,j=1,...,m

i 6=j

∥∥∥T iTT j
∥∥∥
max
≥ δ

 ≤ m(m− 1)p2 exp

(
−nδ

2

2

)
. (9)

A final application of the union bound over the two probability events in (6) and (9) along with the mild assumption m ≥ 2
then results in

Pr (µA ≥ δ) ≤ 4m(m− 1)p2 exp

(
−nδ

2

4

)
. (10)



The proof of the theorem now follows by taking δ =
√

12 log(mp)
n .

Note that the case of m = 1 corresponds to the canonical partial Toeplitz matrix and has been addressed in our
earlier work [24]. The normalization factor 1/

√
n in Theorem 2.1 is meant to maintain uniformity with the traditional

literature that assumes matrices with unit-norm columns. Any change in this normalization factor, however, does not
affect (3) because of the normalization inherent in the definition of the worst-case coherence. Likewise, the choice of
binary distribution in this theorem for the seed sequence is not critical. Rather, the result can be readily generalized to
sub-Gaussian distributions in much the same way as in [24]. Finally, note that Theorem 2.1 is closely related to Lemma 1
in our earlier work [20], which bounds the worst-case coherence of a random Toeplitz-block matrix with each block being
a full Toeplitz matrix with (n+ p− 1) rows and p columns.

It is important to point out that Theorem 2.1 alone can be used to provide a crude scaling of the number of measurements
of Toeplitz-block matrices. This is because the restricted isometry property (RIP) of a matrix is related to its worst-case
coherence through the Geršgorin circle theorem [31]: A sensing matrix A with worst-case coherence µA satisfies the RIP
of order k = O

(
µ−1A

)
. This relationship between the RIP and the worst-case coherence, for example, has been exploited in

[23,24] and [29] to provide guarantees for Toeplitz-structured sensing matrices. In our case, a similar approach will dictate
that a random Toeplitz-block matrix satisfies the RIP of order k as long as n = Ω(k2 log(N)). Note that this superlinear
scaling of the number of measurements is not due to a loose bound in Theorem 2.1. Indeed, the Welch bound [32] tells
us that the bound in Theorem 2.1 is tight up to the log(N) factor. Rather, the scaling limitation is a direct consequence
of approaching the RIP through the worst-case coherence alone. In order to improve upon the n = Ω(k2 log(N)) scaling
for random Toeplitz-block matrices, we therefore need a handle on another geometric measure of A, namely, the spectral
norm. The following result is mainly a consequence of Lemma 2 in our earlier work [20], with changes to account for the
partial Toeplitz blocks in our setup.

THEOREM 2.2 (BOUND ON THE SPECTRAL NORM). Suppose n ≤ C2
1m for some C1 > 0 and the n × N(= mp)

Toeplitz-block matrix A is generated from the sequence {sij , i = 1, . . . ,m, j = 1, . . . , n + p − 1} with each sij drawn
independently from a Binary(+1/

√
n,−1/

√
n) distribution. Then the spectral norm of A satisfies

‖A‖2 ≤ 26(1 + C1)

√
N

n
(11)

with probability exceeding 1− exp
(
−
√
nm
8 + log(p)

)
.

Proof. The spectral norm is invariant under column-interchange operations. We therefore define another n×N block
matrix Ã :=

[
Ã1 Ã2 . . . Ãp

]
such that the jth block Ãj is an n×m matrix comprising the jth column of each of the

original Toeplitz blocks {T i}mi=1 ofA. Since Ã is related toA through column exchanges, we trivially have ‖A‖2 = ‖Ã‖2.
We can now bound ‖Ã‖2 in terms of the spectral norms of its individual blocks as (see, e.g., Lemma 2 in [20])

‖Ã‖2 ≤
√
p max
j=1,...,p

‖Ãj‖2. (12)

In order to complete the proof, notice that each matrix Ãj has i.i.d. entries distributed as Binary(+1/
√
n,−1/

√
n). It

therefore follows from Proposition 2.4 in [33] and the assumption n ≤ C2
1m that ‖Ãj‖2 ≤ 26(1+C1)

√
m
n with probability

exceeding 1− exp
(
−
√
nm
8

)
. The proof of the theorem now follows by taking the union bound for the p distinct ‖Ãj‖2.

It is important to point our here that the scaling ‖A‖2 = O
(√

N/n
)

in (2.2) is tight. This can be argued by recalling
that the trace of a matrix is equal to the sum of its eigenvalues and noting that

λmax

(
ATA

)
≥
∑n

i=1 λi
(
ATA

)
n

=
trace

(
ATA

)
n

=
N

n
. (13)

The only room of improvement in Theorem 2.2 is the condition n ≤ C2
1m, which may be restrictive for certain applications.



3. TOEPLITZ-BLOCK SENSING MATRICES FOR SPARSE SIGNAL PROCESSING
To the best of our knowledge, the significance of the worst-case coherence and the spectral norm of sensing matrices in
the context of recovery of sparse signals was originally highlighted in [13, 21], while their significance in the context of
model selection was first highlighted in [4]. In this section, we simply take the bounds obtained in Section 2 and leverage
the key results of [4, 13, 21] to evaluate the performance of Toeplitz-block sensing matrices for both (noiseless) recovery
of sparse signals and (noisy) model selection. We begin with the result for recovery of sparse signals using Toeplitz-block
sensing matrices. The following theorem is due to Tropp and follows from combining results in Section 2 along with the
ones reported in [21] and [13].

THEOREM 3.1 (TOEPLITZ-BLOCK SENSING MATRICES FOR RECOVERY OF SPARSE SIGNALS). Suppose y = Ax
for a k-sparse signal x ∈ RN and an estimate of x is obtained from y using the following optimization program:

x̂r = arg min
z∈RN

‖z‖1 subject to y = Az. (P1)

Then under the assumptions that (i) the nonzero entries of x are independently distributed with zero median, (ii) the
support set S := {i : xi 6= 0} has a uniform distribution over all

(
N
k

)
k-subsets of {1, 2, . . . , N}, and (iii) A is a random

Toeplitz-block sensing matrix defined earlier with m ≥ 2 and n ≤ C2
1m for some C1 > 0, the solution of (P1) satisfies

x̂r = x with probability exceeding 1−N−2 log(2) − 5N−1 − exp
(
−
√
nm
8 + log(p)

)
provided

n > max
{
cr,1k log(N), cr,2k log2(N), cr,3 log3(N)

}
. (14)

Here, cr,1, cr,2, and cr,3 are positive numerical constants independent of the problem parameters.

The proof of this theorem is omitted here, but it follows from simple but tedious algebraic manipulations of the results
of [21] and [13] (see, e.g., Theorem 11 in [34]) along with the union bound involving the results of Section 2. Theorem 3.1
is quite powerful in the sense that it allows linear scaling (in k) of the number of measurements (modulo a logarithmic
factor) for recovery of sparse signals using Toeplitz-block sensing matrices. It is also worth pointing out some limitations
of this theorem. First, it guarantees recovery of sparse signals in an average sense, rather than the worst-case guarantees
implied by the RIP-based analysis. Second, it does not have a straightforward generalization in the presence of noise. The
first limitation of course is not that critical in many applications. The second limitation can be overcome if one shifts the
focus from signal recovery to exact model selection, as shown below. The following theorem is due to Candès and Plan
and follows from combining results in Section 2 along with the ones reported in [4].

THEOREM 3.2 (TOEPLITZ-BLOCK SENSING MATRICES FOR MODEL SELECTION). Suppose y = Ax + w for a
k-sparse signal x ∈ RN , the three assumptions stated in Theorem 3.1 hold, and an estimate of x is obtained from y using
the following optimization program:

x̂m = arg min
z∈RN

1

2
‖y −Az‖2 + τ‖z‖1. (P1,2)

Then under the additional assumptions that (i) the additive noise w is distributed as N (0, σ2I) and (ii) the smallest (in
magnitude) nonzero entry of the sparse signal x obeys mini∈S |xi| > 8

√
2σ2 log(N), the solution of (P1,2) computed

with τ = 2
√

2σ2 log(N) satisfies {i : x̂m,i 6= 0} = S with probability exceeding 1−O(N−1)− exp
(
−
√
nm
8 + log(p)

)
provided

n > max
{
cm,1k log(N), cm,2 log3(N)

}
. (15)

Here, cm,1 and cm,2 are positive numerical constants independent of the problem parameters.

The proof of this theorem is also omitted here, since it is a straightforward application of Theorem 2.1 and Theorem 2.2
to the results of [4]. Similar to the case of Theorem 3.1, we have from Theorem 3.2 that exact model selection using
Toeplitz-block sensing matrices in the average case only requires n ≈ Ω(k log(N)) scaling of the number of measurements.



4. CONCLUSIONS
In this paper, we have studied the geometry of random Toeplitz-block sensing matrices in terms of the measures of the
worst-case coherence and the spectral norm. The near-tightness of these measures derived in the paper imply that Toeplitz-
block sensing matrices require roughly linear scaling (with sparsity) of the number of measurements for both sparse signal
recovery and model selection problems. We have also commented on the relationship between the worst-case coherence
and the restricted isometry property (RIP), which only results in a quadratic scaling of the number of measurements. The
difference in the two approaches of course is that our results report average behavior while the RIP-based results report
worst-case behavior. Recently, another geometric measure of average coherence has been introduced in [5] that helps
eliminate the statistical prior on the nonzero entries of sparse signals. Bounding the average coherence of random Toeplitz-
block sensing matrices, however, is a little more involved than bounding the worst-case coherence; this remains a focus of
our ongoing research.
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[31] Geršgorin, S. A., “Über die Abgrenzung der Eigenwerte einer Matrix,” Izv. Akad. Nauk SSSR Ser. Fiz.-Mat. 6, 749–
754 (1931).

[32] Welch, L., “Lower bounds on the maximum cross correlation of signals,” IEEE Trans. Inform. Theory 20, 397–399
(May 1974).

[33] Rudelson, M. and Vershynin, R., “Non-asymptotic theory of random matrices: Extreme singular values,” in [Proc.
Int. Congr. of Mathematicians ], 1–25 (Aug. 2010).

[34] Bajwa, W. and Pezeshki, A., “Finite frames for sparse signal processing,” in [Finite Frames ], Casazza, P. and Ku-
tyniok, G., eds., Birkhuser Boston, Cambridge, MA (2012).


