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Abstract—Communication networks conventionally operate
with half-duplex methods and interference avoiding schemes to
manage multiple transceivers. Here we consider a method in
which nodes transmit and receive in concert to achieve full duplex
communication without transmitter coordination. We build on
a recent framework for full-duplex communication in ad-hoc
wireless networks recently proposed by Zhang, Luo and Guo.
An individual node in the wireless network either transmits or it
listens to transmissions from other nodes but it cannot do both
at the same time. There might be as many nodes as there are
MAC addresses but we assume that only a small subset of nodes
contribute to the superposition received at any given node in the
network. We develop deterministic algebraic coding methods that
allow simultaneous communication across the entire network. We
call such codes choir codes. Users are assigned subspaces of F2m

to define their transmit and listen times. Codewords on these
subspaces are designed and proven to adhere to bounds on worst-
case coherence and the associated matrix spectral norm. This in
turn provides guarantees for multi-user detection using convex
optimization. Further, we show that matrices for each receiver’s
listening times can be related by permutations, thus guaran-
teeing fairness between receivers. Compared with earlier work
using random codes, our methods have significant improvements
including reduced decoding/detection error and non-asymptotic
results. Simulation results verify that, as a method to manage
interference, our scheme has significant advantages over seeking
to eliminate or align interference through extensive exchange of
fine-grained channel state information.

Index Terms—Duplex Codes, coding theory, wireless, full
duplex, sparse recovery, random access

I. INTRODUCTION

In many wireless networks, nodes communicate in an
uncoordinated fashion. Users are not allocated channels or
time-slots and they independently choose when to transmit
their data. We call such networks random access networks.
Examples of wireless random access networks include control
channels of cellular systems as well as certain ad hoc and
sensor networks. Conventionally, nodes in these scenarios
compete for channel resources using contention resolution
schemes such as ALOHA or CSMA. In these schemes, nodes
either wait for acknowledgements and retransmit collided data
or preemptively detect activity on the channel to avoid colli-
sions. However, such schemes can introduce significant delays
and waste channel resources. Addressing this problem, a new
approach has developed which uses the fact that typically only
a few users simultaneously compete for the channel.

Since the set of active users is small, if they simulta-
neously transmit their codewords, the signal at a receiver
is, in a sense, sparse. This was recognized in [1] where
recent advances in sparse signal recovery were applied to
random access uplink communication. It was shown that data
from multiple users could be detected simultaneously, without
interference avoidance or coordination. This was strengthened
and extended to asynchronous uplink communication in [2].
Recently, [3] introduced a novel scheme in which similar ideas
were applied beyond the uplink. It was shown that network-
wide virtual full-duplex communication could be achieved
with half-duplex hardware. By switching radios between trans-
mitting and receiving on user specific intervals, nodes could
simultaneously recover data from neighbors while transmitting
data themselves. This was further developed in [4] and [5].
It is upon the scheme in [3]–[5] which the work in this
paper is based. In this paper, we consider a code design for
the virtual full-duplex framework of [4] for random access
wireless networks.

In [4] and [5], randomly generated codewords, defining both
the receive periods and transmitted symbols, were consid-
ered. It was proved that, using a group testing or message-
passing algorithm with the random codewords, data from
transmitting nodes can be recovered with high probability.
Further, in [4] they simulated the use of deterministic second-
order Reed-Muller codewords with random erasures defining
receive periods. Using the chirp decoding algorithm of [6]
they empirically showed successful recovery. In this paper, we
develop a fully deterministic code with several advantageous
properties. Firstly, as a fully deterministic code, storage and
generation is relatively simple. Second, by proving bounds on
metrics of the codebook, we are able to give data recovery
guarantees when a variety of algorithms are used. Finally, we
show that the recovery problems exposed to each receiver are
equivalent in a manner that ensures fairness between them.

The remainder of the paper is organized as follows. In
Section II we describe the virtual full-duplex system and its
model along with our underlying assumptions. Section III is
the bulk of the paper and contains the description of our
deterministic codes. In the subsections we analyze the code’s
properties in the context of three metrics; the worst-case
coherence, the average coherence, and the spectral norm. In
Section IV we apply our analysis to results from the literature



to provide recovery guarantees from the code. Results from
simulations are described in Section V and we conclude our
discussion in Section VI.

II. SYSTEM MODEL

We consider a framework like that of [4] in which nodes in
a wireless network simultaneously transmit codewords. While
the nodes are assumed to be half-duplex devices on the symbol
time-scale, we exploit the fact that hardware can rapidly switch
between transmission and reception. Codewords are designed
to describe not only the transmitted signal but also time periods
during which the node is set to receive. In effect, full-duplex
is achieved on the codeword time-scale. In this section we
describe our model of code transmission and reception while
assuming a set of known codewords. In Section III, we make
our code explicit.

Let U be an indexing set for the codewords/users. For each
a ∈ U , we associate a codeword xa as a vector with elements
in {−1,+1, 0}. We collect these vectors together and define
the full codebook matrix as

X̃ =
[
x1 x2 · · · xM+1

]
(1)

where, for clarity, we have assumed U = {1, . . . ,M + 1}.
Using a simple random access model, for each a ∈ U ,
we define an independent and identically distributed (iid)
Binomial random variable Ia with P[Ia = 1] = pt. The
probability pt is assumed to be small. The set of active users
is defined as I = {a ∈ U : Ia = 1} which is a small subset
of U . While the codebook is known to users, the set I is not.

We model communication as follows. Each user a ∈ I
simultaneously transmits their codeword xa by modulating the
non-zero elements of xa on the channel while switching their
radio to receive during the 0 elements. Restricted to the time
slots of the 0 elements, users receive a truncated version of
other users’ codewords. For a receiver a ∈ U , we define the
collapsed codewords of the remaining users as {x(a)

b }b∈U/{a}
where x

(a)
b is the vector xb with the rows corresponding to the

non-zero elements of xa removed. Correspondingly we define
the collapsed measurement matrix as

Xa =
[
x
(a)
b1

x
(a)
b2

· · · x
(a)
bM

]
(2)

where we have indexed U/a by b1, . . . , bM . Xa is a sub-matrix
of X̃ with rows and one column removed.

We can model the signal received by user a as

ya = Xaβ + n (3)

where ya is the vector of samples received during the user’s
receiving time slots and n is vector of noise distributed as
N (0, σI). The vector β has non-zero elements corresponding
to I with values determined by the fading and power modu-
lation of transmitting users. Since I is a small portion of U ,
β has few non-zero components and is a sparse vector.

The goal of user a is to recover I from the support of the
vector β to decode the data. Devoid of the communication
network context, this problem is known as model selection

and, since β is sparse, recent work in sparse recovery and
compressed sensing suggest recovery is possible [7], [8]. In-
deed, there is a large body work providing recovery conditions
and methods for formulations similar to (3) when considering a
single user. However, unique to this problem is that codewords
jointly generate a family of recovery problems (one for each
user). In the original paper by Zhang, Luo and Guo [4], vectors
xa generated at random or partially at random are shown to
work in this framework with high probability. In this paper,
we develop a fully deterministic construction.

III. A SMALL CHOIR CODE

In this section we provide a code designed to operate
in the framework described in Section II. We construct a
code deterministically by operating in the finite field F2m

with m odd. In particular we take U = F∗2m and enumerate
codeword symbols by F∗2m , where we use F∗2m to denote the
multiplicative group of the field.

The code makes extensive use of the field trace operator
denoted as Tr(·). As a review, the field trace has the following
relevant properties for a, b ∈ F2m .

(i) Tr : F2m → F2

(ii) Tr(a2) = Tr(a)
(iiia) Tr(a+ b) = Tr(a) + Tr(b)
(iiib) (a, b) 7→ Tr(ab) is a bilinear form
Letting m be odd and x ∈ F∗2m enumerate the elements of a
codeword, we define the choir code as

[xa]x = (−1)Tr(a
3x3)δTr(ax),0 (4)

where δ denotes the Kronecker delta so that elements are only
non-zero when Tr(ax) = 0. These elements correspond to
the transmission symbols of the codewords. When Tr(ax) =
1, the user a switches its radio to receive signals. To begin,
we investigate some properties of the sets of x during which
Tr(ax) = 0.

Considering F2m as a vector space and using property (iiib)
of the trace, each user a is associated with a subspace we
denote Na = {x ∈ F2m : Tr(ax) = 0}. These subspaces
correspond to the transmission times for each user and the
complementary sets, denoted N c

a , define the receiving times.
The subspaces have the following useful property.

Fact 1: For a1, . . . , al as linearly independent elements in
F∗2m the cardinality of the set Na1 ∩Na2 ∩ · · · ∩Nal is 2m−l.
This fact can be proved using dual bases, for example see [2,
Proposition 5].

Since each subspace is of size |Na| = 2m−1, users transmit
during approximately half of their length 2m − 1 codeword.
Further, intersections of subspaces are of size 2m−2 meaning
users are able to receive approximately half of every other
users’ transmission. Assigning subspaces of F2m to users this
way ensures that no user’s transmissions completely mask any
other user. While these non-overlapping transmission supports
are necessary to allow recovery, they are not sufficient to
ensure recovery. Below we consider properties of the matrices
Xa which we later apply to recovery guarantees in Section IV.



A. Worst-Case Coherence

Worst-case coherence is a common metric found in sparse
recovery literature. The worst-case coherence is the largest
magnitude of inner-products between columns and is defined
as

µ(Xa) =
1

2m−2
max

b,c∈U/{a}
b6=c

|〈x(a)
b ,x(a)

c 〉| (5)

where we have added a normalization factor of 2−(m−2) to
account for the fact that worst-case coherence is customarily
applied to unit-normed columns. Using (4), we can write the
inner-product of columns as the sum

〈x(a)
b ,x(a)

c 〉 =
∑
x∈F2m

x∈N c
a∩Nb∩Nc

(−1)Tr((b
3+c3)x3) (6)

where the sum is over all of F2m since 0 is already excluded
from N c

a . First, note that if a = b+c the sum is 0 since N c
a ⊂

(Nb ∩ Nc)c. For the non-trivial case, we have the following
lemma.

Lemma 1: For the linearly independent elements a, b, c ∈
F∗2m , 〈x(a)

b ,x
(a)
c 〉2 ≤ 2m+1.

Proof: Defining g = (b3 + c3) for brevity, we can write
the squared sum of (6) as

〈x(a)
b ,x(a)

c 〉2 =
∑

x,y∈F2m

x,y∈N c
a∩Nb∩Nc

(−1)Tr(g(x
3+y3))

=
∑

x,y∈F2m

x,y∈N c
a∩Nb∩Nc

(−1)Tr(g((x+y)
3+xy(x+y)))

=
∑

z,y∈F2m

y∈N c
a∩Nb∩Nc

z∈N c
a∩Nb∩Nc+y

(−1)Tr(g(z
3+zy(z+y)))

(7)

where in the last equality we have used the change of variables
z = x + y. Using the linearity of the trace, we know that
Tr(ax) = 1 with Tr(ay) = 1 implies Tr(a(x+y)) = 0. Thus,
for all y ∈ N c

a ∩ Nb ∩ Nc, we have N c
a ∩ Nb ∩ Nc + y =

Na ∩Nb ∩Nc. We can therefore factor the above sum as

〈x(a)
b ,x(a)

c 〉2 =
∑
z∈F2m

z∈Na∩Nb∩Nc

(−1)Tr(gz
3)×

∑
y∈F2m

y∈N c
a∩Nb∩Nc

(−1)Tr(g(z
2y+y2z))

=
∑
z∈F2m

z∈Na∩Nb∩Nc

(−1)Tr(gz
3)×

∑
y∈F2m

y∈N c
a∩Nb∩Nc

(−1)Tr((gz
2+
√
gz)y)

(8)

where for the final equality we have used the properties (ii)
and (iiia) of the trace in the inner sum. Focusing on the inner
sum, in the exponent we have a linear function of y with the

null space Ngz2+√gz . For most values of z, the inner sum
is 0 since, by Fact 1, precisely half the summands are (−1).
However, if Ngz2+√gz ⊃ Na ∩ Nb ∩ Nc, all the summands
are equal and the inner sum evaluates to ±|N c

a ∩Nb ∩Nc| =
±2m−3. In what follows, we bound the number of z in the
outer sum for which this occurs.

The condition Ngz2+√gz ⊃ Na ∩ Nb ∩ Nc is equivalent
to gz2 +

√
gz = s for s ∈ Span{a, b, c}. By Proposition 1

in the Appendix, this equation is linear with two solutions
to the homogeneous equation. Therefore, there are at most
2× |Span{a, b, c}| = 24 values of z for which the inner sum
of (8) evaluates to ±2m−3. Applying the triangle inequality
on the outer sum yields the result.

An application of the above lemma to the definition in (5)
yields the following theorem.

Theorem 1: For any a ∈ F2m , µ(Xa) ≤ 2−(
m+5

2 ).

B. Average Coherence

Where the worst-case coherence considers the magnitude
of inner-products pairwise, the average coherence considers
the inner-product with the average received codeword. As a
metric, it is useful for guaranteeing support recovery using
one-step thresholding [7]. The average coherence is defined
as

ν(Xa) =
1

2m−2
1

|U| − 2
max

b∈U/{a}
|
∑

c∈U/{a,b}

〈x(a)
b ,x(a)

c 〉| (9)

where, once again, we have added an additional factor of
2−(m−2) to account for codeword normalization.

To bound the average coherence, we begin with a simple
fact about the full code matrix X̃.

Lemma 2: With appropriate enumeration of the users and
codeword elements, the matrix X̃ is circulant.

Proof: Let z be a generator for the multiplicative group
F∗2m and consider the following enumeration of the codeword
elements and users. Let the ith element be indexed by xi = zi

and the jth user be indexed by aj = z−j . Thus, elements of
the matrix X̃ are given by

[X̃]i,j = (−1)Tr(a
3
jx

3
i ) = (−1)Tr(z

3(i−j)) (10)

which is a function of (i− j) mod 2m − 1.
Since X̃ is circulant, the row sums of X̃, (and Xa) are

constant. We denote this value R and can say the following.
Lemma 3: The row sum of X̃ is R = ±2m−1

2 − 1.
Proof: Completing the row with a element of value 1 to

sum over F2m rather than F∗2m and taking our arbitrary row
to be x = 1, we have

R+ 1 =
∑
a∈F2m

Tr(a)=0

(−1)Tr(a
3). (11)



Squaring the sum gives

(R+ 1)2 =
∑

a,b∈N1

(−1)Tr(a
3+b3)

=
∑

a,b∈N1

(−1)Tr((a+b)
3+ab(a+b))

=
∑
w∈N1

(−1)Tr(w
3)
∑
b∈N1

(−1)Tr(w
2b+b2w)

=
∑
w∈N1

(−1)Tr(w
3)
∑
b∈N1

(−1)Tr((w
2+
√
w)b)

(12)

where in the final two equalities we first made the substitution
w = a+ b and second, as we did in (8), used properties of the
trace to produce a linear function of b in the exponent. The
inner sum is precisely zero unless w2 +

√
w = 0 or 1 and we

consider these two cases in turn.
Using the fact that the field has characteristic 2, solutions

to w2 +
√
w = 1 are also solutions to w4 + w + 1 = 0. This

is an irreducible polynomial and therefore its solutions are in
F4. However, since we take m to be odd, F4 is not a sub-field.
Thus, no solutions exists to w2 +

√
w = 1 in F2m for m odd.

By Proposition 1 in the Appendix, the solutions to w2 +√
w = 0 are 0 and 1. However, only w = 0 is an element of
N1. Thus, the outer sum has only one non-trivial term with
the value (R+ 1)2 = |N1| = 2m−1.

In addition to the row sum, we also require a bound on
sums of arbitrary columns of the collapsed matrix Xa. The
following lemma provides such a bound.

Lemma 4: For any b 6= a ∈ F∗2m , the sum of a collapsed
codeword obeys 〈x(a)

b ,1〉 ≤ 2
m+1

2 , where 1 is the vector of
all 1.

Proof: The proof is similar to that of Lemma 1 since the
column sum has the form

〈x(a)
b ,1〉 =

∑
x∈N c

a∩Nb

(−1)Tr(b
3x3) (13)

which differs from (6) only in the subspaces of the index and
the coefficient of x3. Letting g = b3 and following similar
manipulations yields an equation identical to (8), though with
the outer and inner sum indices as Na ∩ Nb and N c

a ∩ Nb,
respectively. In this case, |N c

a ∩ Nb| = 2m−2. Further gz2 +√
gz ∈ Span{a, b} has at most 23 solutions for z. As a result,

applying the triangle inequality yields

〈x(a)
b ,1〉2 ≤ 23 × 2m−2. (14)

Using the results of Lemmas 3 and 4 we can derive the
following bound on average coherence.

Theorem 2: For any a ∈ F∗2m , ν(Xa) ≤ 5/(2m − 3).
Proof: Using the fact established in Lemma 2 that the

row sums of Xa are constant, we can write∑
c∈U/{a,b}

x(a)
c = R1− x

(a)
b . (15)

Applying this to the inner-product of (9) gives∑
c∈U/{a,b}

〈x(a)
b ,x(a)

c 〉 = R〈x(a)
b ,1〉 − 〈x(a)

b ,x
(a)
b 〉

≤ 2m(3/4 + 2
1−m

2 )

(16)

where we have used Lemmas 3 and 4 with the fact that
〈x(a)
b ,x

(a)
b 〉 = 2m−2. Taking m ≥ 3 to bound the second

term in the brackets by 1/2 and including the additional
multiplicative factors in (9) gives the result.

C. Spectral Norm

Here, we investigate the spectral norm (or induced `2 norm)
‖Xa‖2. This norm can be used to give recovery guarantees for
the lasso algorithm. We begin with the simple fact that, since
Xa is a sub-matrix of X̃, ‖Xa‖2 ≤ ‖X̃‖2. Thus, the bulk of
this subsection is devoted to bounding the spectral norm of
the full codebook matrix.

The spectral norm of X̃ is determined by the eigenvalues of
the Gram matrix X̃T X̃. We first investigate the off diagonal
entries of the Gram matrix.

Lemma 5: For x 6= y ∈ F2m indexing a row and column,
the element [X̃T X̃]x,y is either −1 or ±2m−1

2 − 1.
Proof: Let S be the element at location x, y. Its value is

given by the sum

(S + 1) =
∑

a∈Nx∩Ny

(−1)Tr((ax)
3+(ay)3)

=
∑

a∈Nx∩Ny

(−1)Tr(ga
3)

(17)

where we have added 1 to allow a sum over F2m rather than
F∗2m and defined g = x3 + y3.

Following similar steps to (7) and (8) we have

(S + 1)2 =
∑

a,b∈Nx∩Ny

(−1)Tr(g((a+b)
3+ab(a+b)))

=
∑

z∈Nx∩Ny

(−1)Tr(gz
3)×

∑
b∈Nx∩Ny

(−1)Tr((gz
2+
√
gz)b)

(18)

where we have used the change of variables z = a+ b. As we
have found in earlier sections, unless gz2+

√
gz ∈ Span{x, y},

the inner sum vanishes which motivates the definition of the
set Z = {z ∈ F2m : gz2 +

√
gz ∈ Span{x, y}}. Unlike

in earlier sections, we can take advantage of not indexing
over a complementary set such as N c

a . Here, the inner sum is
identically |Nx ∩ Ny| = 2m−2 for z ∈ Z (i.e., we know the
sign is not negative). As result, we have

(S + 1)2

2m−2
=

∑
z∈Nx∩Ny∩Z

(−1)Tr(gz
3) (19)

where we have included Z in the index to reflect that they
are the only terms that remain in the outer sum. By a
simple application of Proposition 1 in the Appendix, Z and
consequently Nx ∩ Ny ∩ Z is a subspace of F2m . Therefore,



seeing that (19) is similar to (17), we can apply the same
transformations in (18) and find(

(S + 1)2

2m−2

)2

=
∑

z∈Nx∩Ny∩Z
(−1)Tr(gz

3)×

∑
b∈Nx∩Ny∩Z

(−1)Tr((gz
2+
√
gz)b)

=
∑

z∈Nx∩Ny∩Z
(−1)Tr(gz

3) × |Nx ∩Ny ∩ Z|

= |Nx ∩Ny ∩ Z|
(S + 1)2

2m−2
(20)

where, in the second equality we use the fact that outer sum is
restricted z ∈ Z making the inner sum constant for every z. In
the last equality, we use that the sum in (19) has reemerged.
Thus, we have a quadratic equation for (S + 1)2 which has
two solutions, (S + 1)2 = 0 or

(S + 1)2 = |Nx ∩Ny ∩ Z| × 2m−2. (21)

Focusing on the second case, we first note this can occur
only if all the terms in (19) are 1. Considering that z =
g−1/3 ∈ Z has the violating property Tr(gz3) = Tr(1) = 1,
we find Nx ∩ Ny ∩ Z is a strict subset of Z . Next, since
|Span{x, y}| = 4, using Proposition 1, |Z| is at most 8.
However, by definition, (S+1) must be an integer. Therefore,
to make (21) a perfect square, |Nx ∩Ny ∩Z| must be an odd
power of 2. The only possibility is |Nx ∩Ny ∩Z| = 2 which
gives the result.

Having characterized the entries of [X̃T X̃]x,y we can bound
the norm of Xa with the following theorem. We state the result
in terms of 1

2m−2 ‖Xa‖22, since conventionally the spectral
norm is calculated with normalized columns.

Theorem 3: For arbitrary a ∈ F∗2m , 1
2m−2 ‖Xa‖22 ≤ 2

m+5
2

Proof: The diagonal entries of X̃T X̃ are all 2m − 1
while the off-diagonal entries are, by Lemma 5, bounded in
magnitude by 2

m−1
2 +1. Thus, by Gershgorin’s circle theorem

[9],

‖X̃‖22 = λmax(X̃
T X̃)

≤ (2m−1 − 1) + (2
m−1

2 + 1)(2m − 2)

≤ 2
3m+1

2

(22)

Since Xa is a sub-matrix of X̃, it also obeys this bound.
Normalizing by 1

2m−2 gives the result.
We concede that the bound in Theorem 3 is not tight due to

the crude application of Gershgorin circle theorem. However,
it is possible to efficiently calculate a tighter bound on the
spectral norm. In particular, from Lemma 2 we know that X̃
is diagonalized by the Fourier matrix. Therefore, ‖X̃‖2 can
be calculated with the computationally efficient Fast Fourier
Transform (FFT) applied on any codeword xa. This in turn
bounds ‖Xa‖2. In Figure 1 we display computations of this
bound. For comparison, we include direct computations of

1√
2m−2

‖Xa‖2 for small values of m. We also include a the
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Fig. 1. Comparison of spectral norm bounds for Xa for various values of m
in a semi-log plot. Normalizations are applied for comparison with Theorem 3.

lower bound
√

2m−2
2m−1 provided by a tight frame of unit normed

columns with dimensions of Xa. Figure 1 shows that the
Theorem 3 is loose but a tighter bound is computable. Further,
we conjecture that 1√

2m−2
‖Xa‖2 scales like a tight frame.

Methods extending those of Lemma 5 to give this result are
in progress.

D. Receiver Fairness

While the above results for µ(Xa), ν(Xa) and ‖Xa‖2 apply
to every user, they are upper bounds and apply to sufficiency
conditions in Section IV. As such, it may be the case that some
collapsed measurement matrices perform better than others. In
this section we show that this is not the case. We do so by
showing that the collapsed measurement matrices are related
by row and column permutations.

We define the following matrices to aid in our discussion.
For a ∈ F∗2m let Ca be the (2m−1)× (2m−1) matrix which,
when multiplied on the left, “zeros” rows indexed by x ∈ F∗2m
that satisfy Tr(ax) = 0. That is, Ca is the identity matrix with
the defined rows/columns set to zero. Further, for α ∈ F∗2m ,
define Tα as the (2m − 1) × (2m − 1) permutation matrix
which, when multiplied on the right, permutes columns such
that column a is moved to column aα. From the basic facts
of permutation matrices Tα is also a row permutation matrix
which, when multiplied on the left, permutes rows such that
row x is moved to row xα−1.

CaX̃ is very closely related to Xa. Xa is a sub-matrix of
CaX̃ since the latter merely contains extra rows of zeros and
one extra column of zeros. We will show that CbX̃ is formed
from a permutation of rows and columns of CaX̃. As sub-
matrices, Xa and Xb are like-wise related by permutations.
We begin with the following lemmas.

Lemma 6:
CbTba−1 = Tba−1Ca (23)

Proof: The following compound operations are equiva-
lent:



• moving row x to b−1ax then setting it to zero if
Tr(bb−1ax) = Tr(ax) = 0

• setting row x to zero if Tr(ax) = 0 then moving to b−1ax

Lemma 7:
TαX̃ = X̃Tα−1 (24)

Proof: By a fact of permutation matrices, T−1α = Tα−1 .
Thus, here we equivalently show TαX̃Tα = X̃. The ele-
ment at location (x, a) is moved to (aα, xα−1) by the pre
and post multiplication of Tα. The value at (aα, xα−1) is
(−1)Tr(a3α−3α3x)δ(Tr(aαα−1x) = 0) which is equal to the
value at (x, a).

Theorem 4: For a 6= b ∈ F2m , Xb is a permutation of the
rows and columns of Xa.

Proof: As noted above, since Xb and Xa are sub-
matrices, it is enough to show that CbX̃ is a permutation of
CaX̃.

CbX̃ = Tba−1CaTb−1aX̃ = Tba−1CaX̃Tba−1 (25)

where the first equality is due to Lemma 6 and the second
equality is due to Lemma 7.

IV. PERFORMANCE WITH RECOVERY METHODS

In this section, we take the Theorems 1–3 of Section III
and apply them to known results in the literature which can
guarantee the recovery of β or I for the problem posed in
Section II.

A. Restricted Isometry Property

Perhaps the best known recovery guarantees for sparse
signals are those based on the restricted isometry property
(RIP). For example, in [10], the RIP is used to provide sparse
signal recovery guarantees using a linear program. We say a
matrix A with unit-normed columns satisfies the RIP of order
S with parameter δS is if

(1− δS)‖v‖22 ≤ ‖ASv‖22 ≤ (1 + δS)‖v‖22 (26)

for all v ∈ RS and for all sub-matrices AS of A constructed
by selecting S columns. While the choir codes were not
designed with the RIP in mind, due to its prolific nature we
characterize the RIP of the matrix Xa using µ(Xa).

The condition in (26) is equivalently a bound on the eigen-
values of AT

SAS . Using the methods of [11] any eigenvalue
λ of AT

SAS satisfies |λ− 1| ≤ (S − 1)µ(A). Applied to Xa

we have that Xa satisfies the RIP for all δS and S satisfying

δS ≥ 2−
m+5

2 (S − 1). (27)

This RIP result can be applied to a wide variety of recovery
methods. For example, applied to the Dantzig selector [12],
gives a guarantee that β is estimated accurately when

|I| ≤ Cd2
m
2 (28)

for a known constant Cd. This result is somewhat weak due
to the reliance on µ(Xa) to prove the RIP.

Recent advances, however, have provided recovery guaran-
tees that depend directly on the metrics proved in Section III
rather than the RIP. Further, they consider the support recovery
problem directly and address estimates of I rather than esti-
mates of β. We consider two of these results in the subsections
below.

B. One-Step Thresholding

The model selection problem of estimating I from ya using
one-step thresholding is studied in [7]. One-step thresholding
is the simple algorithm of back-projecting ya onto XT

a and
thresholding the resulting vector. The two conditions

µ(Xa) ≤
0.1√

2 log(2m − 1)
and (29)

ν(Xa) ≤
µ(Xa)√
2m−1 − 1

(30)

are proven to allow one-step thresholding to recover I with
high probability. Using Theorems 1 and 2, choir codes satisfy
both conditions. As a result, [7] gives the following guarantee.
With an appropriately chosen threshold, one-step threshold
recovers I with high probability when

|I| ≤ CO
2m−1 − 1

m log 2
(31)

for a known constant CO dependent on the noise [7, The-
orem 1]. Compared with (28), we find that with one-step
thresholding a large set I can be guaranteed to be recovered.

C. The Lasso

Known as the lasso, the minimization

β̂ = argminb
1

2
‖ya −Xab‖22 − λσ‖b‖1 (32)

is an estimation technique for the sparse signal β. It is studied
in [8] in the context of model selection, whereby an estimate
of I is formed from the support of β̂. In [8], the following
two conditions are given.

µ(Xa) ≤
CL0

log(2m − 1)
(33)

[β]a > 8σ
√

2 log(2m − 1) ∀a ∈ I (34)

where CL0
is a known constant. For the choir code, (33)

is satisfied by Theorem 1, while (34) is a mild require-
ment on the received signal power. When satisfied, I is
successfully recovered with high probability as long as |I| ≤
CL1

2m−1
(2m−2)−1‖Xa‖22 log(2m−1) for a known constant CL1

[8,
Theorem 1.3]. Applying Theorem 3 and assuming received
powers satisfy (34), recovery of I is assured with high
probability if

|I| ≤ CL2

2
m
2

m log 2
(35)

for a known constant CL2
. This scales slightly worse than (28).

However, the bound on ‖Xa‖2 calculable using the FFT can
be used. As shown in Figure 1 and discussed in Section III-C,
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Fig. 2. Monte Carlo experiments illustrating the quality of recovery for choir
codes and random codes as a function of expected size of I.

evidence shows that ‖Xa‖2 scales as a tight frame. In this
case,

|I| ≤ CL3

2m

m log 2
. (36)

guarantees recovery. This scales as (31).
In Section V we simulate the use of the choir code with

lasso recovery.

V. RECEIVER SIMULATIONS

To verify the results presented in this paper, we use sim-
ulations of a receiver in a network using choir codes. In our
experiments, we take m = 11 and select an arbitrary user a
as a receiver. The active user set I and Gaussian noise n is
generated at random in Monte Carlo iterations. We populate
the vector β on the support corresponding to I with the value
1 and choose the noise parameter σ such that the SNR is
20dB. 500 Monte Carlo trials are used for each experiment. We
choose the lasso as our recovery method and use the SpaRSA
[13] package as a solver.

For comparison, we also simulate a receiver in a network
using randomly generated codewords. The random codewords
are generated with iid symbols. In expectation, half the
symbols are 0. The transmitted symbols are ±1 with equal
probability. The random codebook is generated once per
experiment.

Results of these simulations are shown in Figure 2. The
experiments show the average quality of recovery of I as a
function of the sparsity E[|I|]. The sparsity level is adjusted
via activation probability pt. The quality of recovery is mea-
sured as the average size of the error set (I∩Îc)∪(Ic∩Î) (i.e.,
the average number of missed detections and false positives).
We see that we are able to recover the active user set with few
errors when the average number of users is less than 70. By
comparison, we find that the randomly generated code begins
to show significant errors with a smaller active user set sizes.

VI. CONCLUSION

In this paper, we introduce choir codes for use in random
access wireless networks. The code’s intent is to allow full
duplex communication in the network by including 0 symbols
indicating sampling periods during which a user’s radio is set
to receive. We allocate the 0 symbols to users by assigning
subspaces of F2m , the field upon which the code is defined.
This ensures each user can receive a sufficient portion of
other users’ transmitted codewords when restricted to the
listening symbols. The set of codewords creates a family
of estimation problems where each user must recover data
from sets of collapsed codewords of other users. On the sets
of these collapsed codewords, we calculate bounds on three
important metrics: worst-case coherence, average coherence
and spectral norm. We draw these metrics from literature
on sparse signal recovery and model selection. By bounding
them, we provide guarantees that users can recover transmitted
data when receivers use one-step thresholding, the lasso or
various other algorithms. Further, we show that no user is at a
disadvantage to another by proving that the recovery problems
are equivalent via permutations.

Compared to past work, choir codes have several advan-
tages. Firstly, the code is a purely deterministic construction.
As such, allocation, storage and retrieval of codewords and
the matrices Xa is relatively simple. The code also exhibits
performance benefits. As shown in Figure 2, the performance
of the code exceeds that of the randomly generated codewords
of [4] when using the lasso. We expect that this extends
to other recovery methods as well. Further, the results in
Section III and their subsequent application in Section IV
are non-asymptotic which gives designers more insight into
parameter selection.

These codes represent a movement away from avoiding
interference to managing interference. Conventional peer-to-
peer random access wireless networks operate with orthogonal
signaling or collision detection and avoidance mechanisms.
This can be costly in delays or pre-communication coordina-
tion. Choir codewords, on the other hand, work in harmony
to provide simultaneous network-wide communication.

APPENDIX

Proposition 1: For m odd and g ∈ F2m , let f : x 7→ gx2+√
gx. Then f is linear and f = 0 has two solutions given by

x = 0 and x = g−1/3.
Proof: Since F2m has characteristic 2, (x+y)2 = x2+y2.

Further,
√
x = x2

(m−1)

. The linearity of f comes from these
two facts.

Solutions to f = 0 also satisfy f2 = 0 which factors as
gx(gx3 + 1) = 0. Thus, the two solutions are x = 0 and x =
g−1/3. The cubed root is well defined since, by Proposition 2,(
a
b

)3
= 1 has the unique solution a = b. Therefore, a 7→ a3

is a bijection.
Proposition 2: For m odd, there are no non-trivial cubed

roots of unity in F2m .
Proof: Assume a non-trivial cubed root exists. Since the

order of an element must divide the order of F∗2m , we must



have 3 | 2m−1. However, by [14, Theorem 2.3], gcd(3, 2m−
1) = 2gcd(2,m)−1 = 1, where for the last equality we use the
fact that m is odd.
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