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Abstract—This paper considers on—off random access channels(i.e., users that transmit’s) in polynomial time. The two
where users transmit either a one or a zero to a base station. piggest impediments to this goal are that tandom access
Such channels represent an abstraction of control channelssed channels tend to be asynchronous in nature and i is

for scheduling requests in third-generation cellular systms and - o . . .
uplinks in wireless sensor networks deployed for target dedction. quite difficult, if not impossible, for the BS to know the

This paper introduces a novel convex-optimization-basedckieme instantaneous received signal-to-noise ratiw) of each
for multiuser detection (MUD) in asynchronous on—off randan individual user. Given a fixed number of temporal signal
access channels that does not require knowledge of the detagr  space dimension#/, the system-design goal therefore is to
the instantaneous reqelved S|gnal-.to-n0|se ratios of thaﬂdlwdgal simultaneously maximize the total number of uskéfsand the
users at the base station. For any fixed number of temporal sitl .

space dimensionsN and maximum delay 7 in the system, the e>§pected number of active usérghat the system. can handle
proposed scheme can accommodatd/ < exp(O(N'/3)) total ~Withoutrequiring knowledge of the delays or the instantaneous
users andk < N/log M active users in the system—a significant receivedsnRrs of the individual users at the BS.

improvement over thek < M < N scaling suggested by the use of  |n this paper, we propose a novel convex-optimization-thase
classical matched-filtering-based approaches to MUD emp}ing  gcheme for multiuser detection (MUD) in asynchronous on—

orthogonal signaling. Furthermore, the computational conplexity .
of the proposed scheme differs from that of a similar oracledased off random access channels that does not require knowledge

scheme with perfect knowledge of the user delays by at most aOf the delays or the instantaneous recei&drs of the
factor of log(NN4-7). Finally, the results presented in here are non- individual users at the BS. In particular, for any fixed numbe
asymptotic, in contrast to related previous worl_<_for synchionous of temporal signal space dimensionsand maximum delay
chakr]mebls that only guarantees that the probatlm;hty of MUD eror - iy the system, we rigorously establish that the proposed
at the base station goes to zero asymptotically 7. scheme successfully carries out the MUD with high probghbili
|. INTRODUCTION as long as the total number of uset$ < exp(O(N1/3))
) and the expected number of active usérs< N/log M.

In wireless systems, the termandom accessommonly |y order to put the significance of this result into context,
refers to the scenario in which a number of users vie ite that classical matched-filtering-based approacheio
§|multaneously communlc_ate with a base station (acgesﬂ;)pobsing orthogonal signaling dictate that< M < N, which
in an uncoordinated fashion. In this paper, we are intetestgayerely limits the total number of users that can be handled
in studyingon—off random access channelghich are char- by the system for a givenV. In addition, we also present
acterized by the fact that Fhe users transmit either a “ongy, efficient implementation of the proposed MUD scheme
or a “zero” o the base station (BS). Such channels represggkeq on thdast Fourier transform(FFT) that ensures that
an abstraction that arises frequently in many applicatitms e computational complexity of the proposed scheme attwors
third-generation cellular systems, for example, contitdre jitfers by a factor olog(N +7) from anoracle-basedscheme
nels that are used for scheduling requests can be modelegas has perfect knowledge of the user delays.
on—off random access channels; in this case, users reagiesti |, regards to previous work, we note that Fletcher et al.
permissions to send data to the BS can be thought of @% have also recently studied the problem of MUD in on-
transmitting 1's and inactive users can be thought of agff random access channels. However, the results in [1}—
transmitting0’s. Similarly, up_Imks in wireless sensor networkSyhile similar in spirit to the ones in here—are limited by the
deployed for target detection can also be modeled as Ofgs that [1]: () assumes perfect synchronization among the
off random access channels; in this case, sensors thatt defgcsers, which is hard to guarantee in practical settings for
a target can be made to transniis and sensors that havejarge ; (ii) assumes that instantaneous receissgs of the
nothing to report can be thought of as transmittirg individual users are available to the BS in certain casegtwh

The primary objective of the BS in on—off random accesg gjfficult—if not impossible—to justify for the case édding
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Il. PROBLEM FORMULATION Here, the (complex) AWGN vectow is distributed as
nCN(ON+T, In4-) (in other words, the instantaneous received

In this section, we formulate the problem of MUD i : ) 9 B N
R of the active users i§;|h;|*) and the vectors; € CV+7

asynchronous on-off random access channels, along with .
accompanying assumptions. To begin, we assume that thidfg defined as
are a tota_l ofM users in the _system that c_ommunicatg with % = [03 X7 OI_Tf T7 =1 M )
the BS using packets of durati@hand (two-sided) bandwidth i
W in other words, the total number of temporal signal spadge goal of any MUD scheme in asynchronous on—off random
dimensions (degrees of freedom) in the wireless system aigess channels is to obtain an estinfatf the set of active
N = TW. Further, we assume that users communicate usiggersz </ {i: §; = 1} from the (N + 7)-dimensional vector
spread spectrum waveforms of the form y without knowledge of the set of delays;} or the set of
No1 channel coefficient$h;} at the BS. In particular, for the sake
zi(t) = VE Z zl gt —nT,), t €10,7T) (1) of this exposition, we are interested in characterizingetkey
ne0 aspects of our proposed scheme for MUD in asynchronous
on—off random access channels:

whereg(t) is a unit-ener rototype pul t)|?dt = 1), . . :
9t) ap ype pulsy |g(1)| ) 1) the computational complexity of the solution,

T. ~ % is the chip duration &; denotes the transmit power

of the i-th user, and 2) the probability of errorp.,., def Pr(f #+7), and
_ _ _ T 3) the relationship between the number of temporal signal
xi= [ @ ... 2] ,i=1....M (2 space dimension®/, the maximum (discrete) delay

in the system, the total number of usérs that can be
accommodated by the BS, and the average number of
active userg: in the system.

is the N-length (real- or complex-valuedjodewordof unit
energy(||x;||2 = 1) assigned to the-th user.

The key feature of on—off random access channels that )
distinguishes them from the more commonly studied mukipl&? this regard, the only assumptions we allow ourselves to
access channels in network information theory (and relatBtke here are that)(the maximum delayr (or an upper
multiuser-detection problems) is the assumption that @nly®ound on7) is known at the BS andif) each user has
small number ofandomusers communicaté's with the BS Knowledge of thesnr at which its transmitted signal arrives
at any time instant. Specifically, we assume (without loss 8f the BS (in other words, theth user knowsh;). Note that

generality) that on average a totaliobf the M users transmit POth these assumptions are quite reasonable from a piactica
I's at timet = 0, resulting in the following expression for theP€rspective; in particular, if one assumes that the BS tnéts
received signal at the BS a beacon signal before the users start transmitting thelashe

assumption simply follows because of reciprocity betwéen t
M downlink and the uplink.
y(t) = hidii(t — 7;) + w(t).
i=1 [1l. M ULTIUSER DETECTIONUSING LASSO
Here,h; € C andr; € R, are thechannel fading coefficient In this section, we describe our proposed approach to MUD
and thedelayassociated with theth user, respectivelyy(t) is  in asynchronous on—off random access channels that is based
complex additive white Gaussian noise (AWGN) introduced hyn the mixed-norm convex optimization program known as the
the receiver circuitry, andd; } are independerti-1 Bernoulli lasso [3]. The lasso was first proposed in the statisticsatitee
random variables that model the random activation of the for linear regression in underdetermined settings. In {ig
users in the system in the sense tRafd, = 1) = k/M. Note lasso has been suggested as a potential method for MUD
that one of the major differences between [1], [2] and thepsetin synchronouson—off random access channels. However,
in here is that it is assumed in [1], [2] thaiax; ;(7;—7;) < T.  extending the ideas of [1] to the asynchronous case using the
whereas we do not make any such assumption here sincetéindard lasso formulation seems very difficult. In coniras
is nearly impossible to satisfy this condition for largesagh while the MUD scheme proposed in this paper is based on
values of M. Finally, we assume that the transmissions of thtbe lasso, we present a rather nonconventional usage of the
users undergo independent Rayleigh fading in the sense tlagko that is specific to the problem at hand and one of our
the h;’s are independently distributed &sV/(0, p?). major contributions indeed is establishing that this folatian
Next, we define the individualiscrete delays; € Z, as is guaranteed to yield successful MUD with high probabhility
7! def | 7| and define thenaximum discrete delay € Z, in It is also worth mentioning here that the analysis carrietiou
de he paper in this regard might also be of independent interes

lef A ;
the system as = max; 7;. Itis easy to see the.‘t the receive 0 researchers working on configuration (neighbor disggver
signaly({) at the BS can be sampled at the chip rate to Obtq'ﬁ‘ ad-hoc wireless networks and sensor networks.
the equivalent discrete representation

c

A. Main Result

M
y= Z hidin/Ei xi +w. 4) In order to make use of the lasso for MUD in asynchronous
i=1 on-off random access channels, we first rewrite (4) in the



following matrix—vector product form Theorem 1. Suppose that thé/ codewords{x; € CV} M,
are drawn independently from kinary(+1/+/N,1y) distri-

y=[%x1 % ... %Xy|B+w (6) _ ,
[f1 % m] bution and pick the parametek = 2\/2 log (M+/T+1).
X Further, let the transmit powers of the active users satisfy
where thei-th entry of the vector3 € CM is described as 1 1
o y B £ > 28log (M /T + )’ ieT (10)

B; = h;0;7/&. Note that despite the fact that the above
expression appears superficially similar to the standassbla
formulation, we cannot use the lasso to obtain an estimate
the set of active userg from (6) since the(N + 7) x M

|hal?
Tol}en Algorithm 1 successfully carries out multiuser débect
With Ppy < 13(M(7+1) " +4M " 4 2exp (—22T) if

matrix X in (6) is unknown due to the asynchronous nature exp (01 (r+ 1)—2/3N1/3)
of the problem. In order to overcome this obstacle, we first M < 1 and (11)
define(N + 7) x (7 + 1) Toeplitz matricesX; as follows ;N
k< : 12
X; 0 T (t+1)log (M(1+1)) (12)
X = s i=1,...,. M (7)  Here, the constants;, ¢, > 0 are independent of the problem
0 X; parameters.

and observe that we can equivalently write (6) in the form  The proof of this theorem is provided in Section IV. The

T T — implications of the scaling behavior outlined in (11) an@)(1
y= [Xl Xz ... XM] [51 B2 "'BM] +w (8) are quite positive in the important special case of fixed-
X3 bandwidth spread spectrum waveforms and a base station

serving a bounded geographic region. Specifically, Thedrem
signifies that—for any fixed number of temporal signal space
dimensionsV and maximum delay in the system—the pro-
posed MUD scheme can accommodate < exp(O(N'/3))

Bi.i 231*1{7;:3;1}7 i=1,...,M, j=1,...,7+1. (9) total users andc < N/logM active users in the system.
Thjs is a significant improvement over the < M < N

We can now make use of this notation to describe the Propoge ling suggested by the use of classical matched-filtering

lasso-based scheme for MUD in asynchronous on—off rand%rg : : :
sed approaches to MUD employing orthogonal signaling.
access channels. bp ploying g g 9

We conclude our discussion of Theorem 1 by noting that

ﬁk < N/log M scaling has also been suggested in [1] for the

case of MUD in synchronous on-off random access channels

using the lasso. In contrast, Theorem 1 establishes that the

MUD scheme proposed here for asynchronous on—off random

access channels has the ability to achieve roughly the same

scaling of the system parametér,sV, and M as that reported

in [1] for the ideal case of synchronous channels.

whereX is now an(N +7) x M (7 +1) knownmatrix and the
vector@ € CM(7+1) s a concatenation a¥/ vectors, each of
length (7 + 1), whose entries are given by

Algorithm 1 Multiuser Detection in Asynchronous On-O
Random Access Channels Using Lasso
Inputs

1) The chip-rate sampled vectgr

2) Set of N-dimensional codewordéx; } M,

3) Maximum discrete delay in the system

4) A regularization parametey for the lasso

B. Computational Complexity

Compute the matrixX described in (8) usingx;} andr Theorem 1 helps us characterize the performance of Algo-
,@ « argmin 1 Hy _ XbH2 + Albl: (LASSO) rithm 1 for MUD in asynchronous on—off random access chan-
beCM(r+1) 2 2 nels but fails to shed any light on the issue of computational

~ RPN complexity of the proposed scheme. However, note that the
1« {Z 1Billo > 0} lasso is a well-studied program in the statistics literatmd—
Return Z as an estimate of the set of active USErs thanks to its convex nature—there exist a number of extrgmel
fast (polynomial-time) implementations of the unconsteai
We are now ready to state the main result of this papélr(?lrs'on. of the lasso specified inAsso); see, e.g., [5].

n this regard, note that the computational complexity of

which.bounds the proba.bility of _error_of Algorithm 1 anqhe implementations of LASSO) such as SpaRSA [5] is
specifies the corresponding relationship between the myStgetermined—to a large extent—by the complexity of the

parameters:, k, N, and M. matrix—vector multiplicationsXb and X"y. It therefore
LAlgorithm 1 acts as a hybrid between the standard lasso angribup SE€EMS that Algor't_hm 1 Increases th? computational com-
lasso [4]. Specifically, it is clear from the problem formtida that the group plexity of the matrix—vector multiplications fron®(N M),

lasso is ill-suited for the specified MUD problem since eatthe sub-vectors corresponding to the case of perfectlv-known user delavs
{B;} in (8) has at most one nonzero entry. On the other hand, werdye o P 9 P y y

interested in detecting the active users and need not dstithair delays; [Cf- (6)], to O(NM (7 + 1)). This observation, however,
hence, the group nature of the detection criterion in thentiefh of Z. ignores the fact that the matriX in (8) has a Toeplitz-block




structure. Specificalljy, note that if we write € CM(7+1) as  Further, it trivially follows in this case thaiupp(B) = S,
b= [bf ... b}] thenitfollows from elementary signalwhich guarantees that = Z. Our goal then is to consider
processing that the probability of each one of these conditians being met
M under the assumptions of Theorem 1 and the proof of the
_ -1 , , theorem would then simply follow from the union bound. The

xb ;}—N” (fN+T (XZ) © Fivtr (bz)) 13) requisite analysis in this regard frequently requires aniou
on the maximum inner products between the column&Xof
and a bound on the spectral normXf and the following two
lemmas help us specify these two bounds.

where F,,(-) and F,,(-) denote the FFT implementation of
the n-point discrete Fourier transform (DFT) and thepoint
inverse DFT of a sequence, respectively, whiledenotes
pointwise multiplication. Similarly, if we usé-)[n; : no] to Lemma 1. Given any fixed > 0, the Toeplitz-block matrix
denote then;-th to no-th elements of a vector and)~ to X described in(8) satisfies

denote the time-reversed version of a vector, then it falow

from routine calculations that i = 1,..., M, we have u(

H [ o _ 1 - .
X Y[Z(T + 1) T ’L(T + 1)] -F2N+7-71 (-F2N+7'71(Xz )® with probability exceeding _ 2M2(T+ 1)2€7NT2_ Here,xiyj
o -7:2N+7-71(Y)) [N:N+1]. (14) denotes the-th column of the Toeplitz matriX.;.

def
= max
(i,9)#(i,5")

<< (16)

(Xi,5,Xir5)

It therefore follows from the complexity of the FFT that the ~ Proof: The proof of this lemma is a consequence of
matrix—vector multiplicationsXb and X"y in Algorithm 1 the bound on the worst-case coherepcef random Toeplitz

can in fact be carried out using onl9(NM log(N + 7)) matriggs [7, Theorem 3.5] and t.he Hoeffding inequality [8].
operations as opposed ©(NM(r + 1)) operations. This SPecifically, note that we can write

suggests that the computational complexity of Algorithmt1 a
worst differs by a factor ofog(N + 7) from an oracle-based

Further, note that the proof of Theorem 3.5 in [7] im2plies
IV. PROOF OF THEMAIN RESULT that |(x; ;, % /) ]

w(X) = max{ _;g_)/( ’(xm—, X; 1)

,max | (x; j, Xir js)
J i#£4!

scheme that has perfect knowledge of the user delays.
< ¢ with probability exceeding —4e= "2~

In this section, we provide a proof of Theorem 1. To begifor any j # j'. Finally, since the product of two independent
we develop some notation to facilitate the forthcoming andpinary random variables is again a binary random variable,
ysis. Throughout this section, we u3g; to denote theéblock it can also be shown using the Hoeffding inequality that
subdictionaryof X obtained by collecting the Toeplitz blocks|(x,;, xi;/)| < ¢ with probability exceeding — 2¢~"5 for
of X corresponding to the indices of the active users; in otheny ¢ # ¢’. It therefore follows from the union bounthhat
words, we haveX 5 </ [X; :i € Z]. In addition, we us&Xs  1(X) < ¢ with probability exceeding — 2M?*(7 +1)%e~ =
to denote th€ N + 7) x |Z| submatrix obtained by collecting This completes the proof of the lemma. ]
the columns ofX corresponding to the nonzero entries o
3, while we useBs to denote the|Z|-dimensional vector
comprising of the nonzero entries Bf Finally, we usesgn(-)
for elementwisesignumfunction, wheresgn(z) = z/|z| for X2 def \/m <267 T 1 <1 i \/E) (17)
any z € C. N

The basic idea behind the proof of Theorem 1 follows from
the proof of [6, Theorem 1.3]. Specifically, usiSg= supp(3) with probability exceeding — e~
to denote the set of the locations of the nonzero entrie8, of
we have from [6, Lemma 3.4] that the lasso solutﬁndéf
B + h satisfieshs. = 0 and

If_emma 2. The spectral norm of the Toeplitz-block matdx
described in(8) satisfies

N M
8

Proof: We first recall that the spectral norm is invari-

. . d
ant under column-interchange operations. Now defin&?
def

. Con [xi ... xy] and ¥ = [®y & ... .|, where
hs = (XsXs)™ [Xsw — Asgn(Bs)] (15)  each block®, is an (N + 7) x M matrix that is constructed
if min|B;| > 4\ and the following five conditions are met: by prepending and appending with i rows and(r — i)
= o - i . rows of all zeros, respectively. It is then easy to see that
» Ci — Invertibility condition: |(XsX.e)” 2 < 2 X[z = ]2 and [ @o]lo = - = || @, |2 = | @].. Further,
« (> — Noise stability:[|(XsXs) ™ Xgw/loo < A. note that we can write for any/ (7 + 1)-dimensional vector
o C3 — Complementary noise stability: 7 — [ZOT 27 .”ZT]T
XE (I - Xs(XEXs) ' XDwo < 2. . .
1%s:( s(XsXs)  Xs)wloo < 75 [Wz2 @ 2o 1Pizalla _ [1Bll2 3050 [1%ll2
« C4 — Size condition]| (XEXs) 'sgn(Bs)|l < 3 lzll2 — lz|2 - lz|2
o C5 — Complementary size condition: ®) /T + 1||®|5||z

IXE.Xs (XEXs) " san(Bs) e < 1. I=]2



where (a) follows from the definition of® and the triangle  Finally, notice thatXs is a submatrix 0fX;z and therefore
inequality, while (b) follows from the Cauchy—Schwarz in-we trivially have that| X4 X s —I||> < ||X}iXg —1I||2. It can
equality. It therefore follows from the previous discussand then be easily seen from the Markov inequality that
(18) that||X > < v/7 + 1|@].. " .
In order to complete the proof, notice th&itis an N x M Pr([XsXs —1Tll2 > 1/2) < 29(Eq | X5 X5 — I||2)*
random matrix whose entries are independently distributed (2 ~2log 2
. . L M 1 25
as binary(+1/v/N). It can therefore be established, similar < (M(r+1)) (25)
to [9, Proposition 2.4], thafl @[> < 26 (1+ /4 ) with Where(a) follows from the fact thatt, | XX ~1T]l; < .
- We have now established thgKYX s> € [1/2,3/2] with
: B high probability; that is||(X4Xs)~!||2 > 2 with probability

probability exceeding — e~
Note that Lemma 1 implies that the event

G — {M(X) - \/1210g (M(T+ 1))

—2log 2

(26)

(19) B. Noise Stability

In order to establish the noise-stability condition, wetfirs
condition onC; (the invertibility condition). Next, we denote
the j-th column of X5(X%¥Xs)~! by z; and note that

Pr(C{|G1,G2) < (M (7 + 1))
e

holds with probability exceeding—2(M(T+1)) - Similarly,
Lemma 2 implies that the event

I(X5Xs) ' Xgwlo = max_[(zj,w)].  (27)
G, = {||X||2 <2y T 1)} (20) el
Further, since the noise vecter is distributed a< A/ (0, I),

we also have thatz;, w) ~ CN(0, ||z;]|3). Finally, note that
conditioned orC,, we have the upper bound

holds with probability exceeding) — =% The rest of the

analysis in this section is carried out by implicitly conaiiting
on these two events. l25]]2 < | Xs(XEXs) 2 < [Xsl2|(XEXs) " |2 < V2.

A. Invertibility Condition The rest of the argument now follows easily from bounds on
the maximum of a collection of arbitrary (complex) Gaussian
random variables. Specifically, it can be seen from the previ
discussion and [12, Lemma 6] that

In order to establish the invertibility condition, we willake
use of the following proposition from [10].

Proposition 1 ([10]). Fix ¢ = 2log (M (7 + 1)) and define

AMet"/?
the block coherence Pr (||(X§X5)‘1X§IWHOO > \/it\Cl) S —=
pp) Y max XX, ~ 12T | . v
1<i,j<M We substitute: = \/+/2 in the above expression to obtain
Then, forE,z < [E|Z|9/7 and 5 “ k/M, we have the AMe=X'14 2
following bound NZD M(T+1)\/27rlog(M\/m)

E,[|[X5X5 — I||2 < 20u5(X) log (M (1 + 1 X3 . . - . :
ol X5Xp — 1|2 < 2015(X) Og( (r+ )) + Ol lz+ Summarizing, we have that the noise stability conditiomsfai

+ 9\/6 log (M (1 + 1)) (14 7u(X))[|X[l2. (21) to hold with probability at most

Now note that, since we are conditioning Gn and G,, it Pr(Cg\Cl) < 2 . (28)
follows from (11), (12), (19), and (20) that M(r+ 1)\/27r log(M/7+1)
1 . -
X) < d 22) C. Complementary Noise Stabilit
ue )_c’(T—l-l)log(M(T—l-l))’ an (22) P y y

1 In order to establish the complementary noise-stability-co

X3 < (23) dition, we use ideas similar to the ones used in the previous

c'dlog (M (7 +1)) section. To begin with, we again condition on the evént
. def H —1yH
for ¢ “ 6000 as long as the constants and e, in (11) and and usePx, = Xs(XsXs)™ X to denote the orthogonal

; jector onto the column span &s. Next, we usez, to
(12) are appropriately chosen. It therefore follows from thProlec ) J
definition of the block coherence, (22), and the linear aﬂgebOIenOte thej-th column of (I — Px,)Xs- and note that

fact |- [|2 < /[~ [~ [l [11] that XE( = Pxo)wlo = | max [{z;. W)l (29)
Sjs|se
1
pp(X) < (24) Finally, given thatPx is a projection matrix and the columns

dlog (M(r+1))

Consequently, substituting (22), (23), and (24) into (2&)ds
Eq|IXEX5 — 1|2 < 1. [zjll2 = [[(I - Pxs)Xseejf2 <1 (30)

of X have unit norm, we have that



wheree; denotes theg-th canonical basis vector. Then it follows from the preceding discussion and the stmect
It is now easy to see that, sin¢e;, w) is also distributed as of the block matrixH that

12 i
CN(0,||z;]/5), we can make use of [12, Lemma 6] to obtain Izl < 2| Ae,|ls < 2|RHe, || < 2|RH| 5.  (35)

AM (1 + 1)(3“52/2 Our next goal then is to provide a bound (pRH|| 5, and
HC _ > < ) ) B,1
Pr (X5 (1= Pxs)wlee > 1[C1) < ot for this we resort to [10, Lemma 5].
We substitute = \/+/2 in the above expression to obtain Proposition 2 ([10]). For ¢ > 2log M and§ = k/M, we
have that
—22/4
AMr+ e ™~ 2 B1) B RH|ps <25 /G[H] s+ Vi[H|p1  (36)

TA - ’
VT M\/Qﬁlog(MvT+ 1) Now notice from the definition offf and | - ||z that
H| 2 = pp(X) < (7+1)u(X). In addition, we have from

Summarizing, we have that the complementary noise Sl)ﬁbﬂ[ e definition oft and | - |51 that

condition fails to hold with probability at most

(b)
< HY
2 , (32) Hllp < max [IXTXo + [Tl

M/ 2nlog(M~v/T+1) (¢)
V < V14 7pX)[X]]2 +1 (37)
where(b) follows from the definition of the spectral norm and
In order to establish the size condition, we first write the triangle inequality, whiléc) mainly follows from the fact
that || X;|2 < +/1+ 7u(X) because of the Gersgorin disc

[(X5Xs) 'sgn(Bs)lloo theorem [11]. We can now fix = 2log M and make use of
(a) H . the above bounds to conclude from Proposition 2 that
< ((XsXs) ™" = T)sgn(Bs)lo + Ilsgn(Bs)

_ E,|RH <4 Dp(X)+/log M
— [(XEXs) ™" ~ D)sgn(Bs)o +1 (33)  FalBHlp <40+ Dhu(X)vioe My
+ VO + X)Xz + V6. (38)
where(a) follows from the triangle inequality. Next, we once

again usez; to denote thej-th column of (X4Xs)~! — 1), We can now substitute (22) a_md (23) into the above expression
which simply implies that] (X¥Xs)~! — I)sgn(Bs)| = © OPINE[RH]|5, < 50 with
max; < <|s| |(z;,sgn(Bs))|. Now defineA = (XUXs —1I) def 4

and condition on the everd. Then it follows from the von Yo = ¢ \/log(M (1 + 1))+
Neumann series (cf. [6, p. 2171]) thdg,|l. < 2[Ae,||.

Pr(cg‘cl) <

D. Size Condition

Further, sinceXs is a submatrix ofXz, we have||Ae;||> < + 2 14+ ; (39)

[(XEX ;5 —T)ej |2, wherej’ is such that thg’-th column of V' log(M (7 + 1)) ' log(M (7 +1))

X matches thg-th column ofXs. . In order to establish the size condition, we now define
Finally, define the diagonal matriQ 2] diag(d1,...,0n) the eventé = {max;<;<s|l|z;jll2 < 7} and make use of

with the “random activation variables{¢;} on the diagonal the Markov inequality along with (35) and the preceding
and define a new matriR = Q®1,;, where® denotes the discussion to obtain

Kronecker product. Next, use the notatibh®</ (XHX - 1) Pr(£°) <47 [E, max |\Z'||2]q

and notice that|(X1Xz — I)ej |2 = || RHe;~||2, wherej” - “i<i<is

is such that thg”’-th column of X matches thej-th column 2 1 270\ ?

of Xs. In addition, note thaH has a block structure that can = (;EHRH”BJ) = <_) : (40)

be expressed as follows def
Finally, we useZ = max;<;<|s||(z;,sgn(Bs))| and con-

H=[H; H, ... Hy] clude that
Hip Hip ... Him Pr(Z > t) < Pr(Z > t|€) + Pr(°)
Hy; Hz;, ... Howuy @ o
ol D (34) <M g (20/7)T (4D)
Hy: Huy2 ... Huywm where(d) is a consequence of the complex Bernstein inequal-

ity [13, Proposition 16] and the union bound. The condition

_ xH - _
whereH;; = X;'X; — 1u=j1, 1 < 4,7 < M, andH; = g now established from (33) by settiig= 2 in the above

[}II{{{l By H}, ,]7. We now define two blockwise norms ONexpression. Further, set
as follows:
de
e [H|p1 lef maxi<i<n ||Hjl2, and v < \/ 191 22 oo I (42)
def -
o 8|52 < maxi<i j<ar [Hi 2. (1+2log2) log




which leads t@2Me~2/7" < 20121022 and We can now define the evesit = {||X¥Xsce;lls < 7}

. de
2(V1+ ¢ +2) 14 43 and use the notatio "< maxi<;<|se| |(z;,5gn(8s))| to
S ST 0915 /4 (43)  conclude from (46) and (48) that
Therefore, we obtain thaPr(£¢) < (1/2)7 < M—2los? Pr(Z > t) <Pr(Z > t|€) 4+ Pr(£°)
and thus we have that the size condition does not hold with (c) 12 /842
probability at most < 2M(r+L)e "/ + (vo0/7) "+
Pr(C§|Cy) < 3M ~2loe2, (44) +(0/V7? - (X)) (49)

where (¢) follows from [13, Proposition 16] and the union

E. Complementary Size Condition bound. The condition is now established by setttrhg
In order to establish the complementary size conditiofhe above expression. Further, set

we proceed similar to the case of the “size condition“ and 1
define the vector; asz; = (X¥Xs) 'XEXsce;. It can v <

then be easily seen thdX. Xs(XEXs) Tsgn(Bs)|le = V128(1 + 2log 2) log(M (7 + 1))
max; <j<|se| (z;,5gn(Bs))|- Now condition on the everd; \\hich yields2M (r + 1)6—1/12872 < 2(M(7+ 1))~21°82 and
and notice thaf|z;||» < 2||X2Xscejll2, j =1,...,]5¢.

(50)

- e . 2\/1 c’/
We now defmeXBc def [X; : i € Z¢] and consider the set "0 e+ <1/2.

of indicesT; < {j - Xseej € Xpe}. Itis then easy to argue Vi \/0 05722 —1/c”

by making use of the notation developed in Section IV-D that

if j €7, then Therefore, we obtain thaPr(€°) < 2(yo/v/7? — 1?)

" " 2(1/2)9 < 2(M(7 + 1))~2°e2 and thus we have that the
[XsXseejll2 < max X5 Xil|2 size condition does not hold with probability at most
(a) ¢ —2log 2
— IXEX el g < [RE]p:  (45) Pr(Cscy) < 4(M(r+1)) = (51)

where (a) follows from the fact thatXXs. is a submatrix F. Proof of Theorem 1

of RH. We therefore have from the discussion following The proof of Theorem 1 follows from the preceding discus-

Proposition 2 and the Markov inequality tha € 7; and for Sion by taking a union bound over all the respective conaiitio

g =2logM and~ > 0 and removing the conditioning®r((C; N Ca N C3 N Cy N

Cs5)°) < 2Pr(Gf) +2Pr(G5) + 2 Pr(C§|G1, G2) + Pr(C§|C1) +

[Eq A’ < (70) (46) Pr(C5|C1) +Pr(C§|C1) + Pr( CS\Cl Consequently, we obtain
v v that the probability of error is upper bounded bfy( (T +

~ Finally, the argument involving € 7¢ is a little more 1))*21‘%2 +AM (2rlog(My/T+1))~ vz, 4

involved but follows along similar lines. Specifically, fing

j € T¢ and define’ € 7 to be such thaKs-e; is a column V. NUMERICAL RESULTS AND DiscussioN

of X,/. Next, definexs~;» to be the column ofXs that lies We conclude this paper by making use of Monte Carlo

within the Toeplitz blockX; and f(s\i, to be the submatrix simulations to validate and discuss the results reportéeia.

constructed by removing the coluniy; from Xs. Then, The simulation setup corresponds to a totalldf = 3000

if we use the notatioXz\ ; def [X;:i€ B\ {i'}], it can be USers communicating to the base station using codewords

Pr(|[X5Xseejll2 > 7) <

verified that for anyj € 7° we have of length N = 1024 that are drawn independently from
_ a binary(+1/+/N,1,,) distribution. In the following, user
X5 Xsee;[3 = XS\ Xseejl5 + [X5n Xsee;|? activity is generated using independénrt Bernoulli random
< max||XB\z'X1'H2 + u2(X) variables{é;} such thatPr(§; = 1) = k/M for a givenk.
Further, for a given maximum delay, the individual user
S ”RHHQBJ +u2(X) (47) delays{r;} are generated once at random for each experiment

and then fixed for the remainder of the experiment in keeping
where (b) again makes use of the fact that the spectral nowith the fact that our results hold uniformly over all possib
of a matrix is an upper bound for the spectral norm of anyr;}. The implementation of Algorithm 1 uses the SpaRSA
of its submatrices. We therefore once again obtain from tpackage [5] in order to solveL£sso) and includes the
discussion following Proposition 2 and the Markov inegtyali modifications described in Section I1I-B for speeding up the
thatV j € 7€ and forq = 2log M andy > 0 matrix—vector multiplicationsXb and X"y. Finally, we use
- 5 5 the performance metric @verage number of detection errors
Pr([XsXs-ejlz >7) < Pr (HRH”BJ Z VYT (X)) in our simulations, which corresponds to the cardinalityhef
- q set(Z\Z) U (Z\Z) averaged over the independent trials.
<ﬁ> (48) The first numerical experiment that we carry out corre-
V1T TR sponds to studying the performance of the proposed MUD
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Fig. 1. Performance of Algorithm 1 as a function of the expdchumber Fig. 2.  Performance of Algorithm 1 as a function of the intiaeous
of active users for five different values of the maximum delay receivedsNRs of the active users for = 19 and three different values @f.

scheme as a function of the expected number of active usét power condition (10) for the specified parameters resiuce
k in the system. In this experiment, it is assumed that tfi@ &ik:|> £ 31 dB for every active user. On the other hand,
users know the magnitudes of their respective channel dadifig. 2 shows that Algorithm 1 carries out successful MUD
coefficients|h;| and control their powers so that the transmgven when the instantaneous receiseks of the active users
power requirement described in (10) is satisfied. The resuft'e significantly below31 dB. Finally, Fig. 2 also helps us
of this experiment are reported in Fig. 1 for five differenyerify that the theory is correct in predicting that the sanit
values of the maximum delay. There are two important Power required for successful MUD does not depend upon the
remarks that can be made concerning Fig. 1. First, note tig¥Pected number of active usets
Theorem 1 suggests that—for appropriate values afid r— In conclusion, simulation results confirm that our proposed
the productrk should be approximately constant in order fopcheme successfully carries out MUD in asynchronous on—off
the proposed scheme to successfully carry out MUD (cf. (12§§1ndom access channels and that the theoretical guarantees
In this regard, it can be seen from Fig. 1 that indeed the poifrovided in Theorem 1 are nearly optimal in terms of the
at which the curves begin to diverge from the horizontal axggaling relationship betweeh, 7, M, and N. In the future,
tend to be whenrk ~ 1500. This suggests that the scalingVe plan to extend this work by designing deterministic code-
relationship described by (12) in Theorem 1 is accurate. Words appropriate for this application and by analyzing the
Second, Fig. 1 also helps put the novelty of this worfdetection) outage rates of individual users arising beeaf

into perspective. Specifically, note that one could havepsim fading and fixed transmit power constraints.
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