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Abstract—This paper considers on–off random access channels
where users transmit either a one or a zero to a base station.
Such channels represent an abstraction of control channelsused
for scheduling requests in third-generation cellular systems and
uplinks in wireless sensor networks deployed for target detection.
This paper introduces a novel convex-optimization-based scheme
for multiuser detection (MUD) in asynchronous on–off random
access channels that does not require knowledge of the delays or
the instantaneous received signal-to-noise ratios of the individual
users at the base station. For any fixed number of temporal signal
space dimensionsN and maximum delay τ in the system, the
proposed scheme can accommodateM . exp(O(N1/3)) total
users andk . N/ logM active users in the system—a significant
improvement over thek ≤ M . N scaling suggested by the use of
classical matched-filtering-based approaches to MUD employing
orthogonal signaling. Furthermore, the computational complexity
of the proposed scheme differs from that of a similar oracle-based
scheme with perfect knowledge of the user delays by at most a
factor of log(N+τ ). Finally, the results presented in here are non-
asymptotic, in contrast to related previous work for synchronous
channels that only guarantees that the probability of MUD error
at the base station goes to zero asymptotically inM .

I. I NTRODUCTION

In wireless systems, the termrandom accesscommonly
refers to the scenario in which a number of users vie to
simultaneously communicate with a base station (access point)
in an uncoordinated fashion. In this paper, we are interested
in studyingon–off random access channels, which are char-
acterized by the fact that the users transmit either a “one”
or a “zero” to the base station (BS). Such channels represent
an abstraction that arises frequently in many applications. In
third-generation cellular systems, for example, control chan-
nels that are used for scheduling requests can be modeled as
on–off random access channels; in this case, users requesting
permissions to send data to the BS can be thought of as
transmitting 1’s and inactive users can be thought of as
transmitting0’s. Similarly, uplinks in wireless sensor networks
deployed for target detection can also be modeled as on–
off random access channels; in this case, sensors that detect
a target can be made to transmit1’s and sensors that have
nothing to report can be thought of as transmitting0’s.

The primary objective of the BS in on–off random access
channels is to reliably detect the identity of the active users

This work was completed at Princeton University. Three of the authors,
WUB, MFD, and RC, are now with Duke University. The work is supported
in part by NSF under grant DMS-0914892, by ONR under grant N00014-08-
1-1110, and by AFOSR under grants FA9550-09-1-0643 and FA9550-09-1-
0551. MFD is also supported by NSF Supplemental Funding DMS-0439872
to UCLA-IPAM, P.I. R. Caflisch. (E-mails:lappleba@princeton.edu,
{w.bajwa, marco.duarte, robert.calderbank}@duke.edu)

(i.e., users that transmit1’s) in polynomial time. The two
biggest impediments to this goal are that (i) random access
channels tend to be asynchronous in nature and (ii) it is
quite difficult, if not impossible, for the BS to know the
instantaneous received signal-to-noise ratio (SNR) of each
individual user. Given a fixed number of temporal signal
space dimensionsN , the system-design goal therefore is to
simultaneously maximize the total number of usersM and the
expected number of active usersk that the system can handle
withoutrequiring knowledge of the delays or the instantaneous
receivedSNRs of the individual users at the BS.

In this paper, we propose a novel convex-optimization-based
scheme for multiuser detection (MUD) in asynchronous on–
off random access channels that does not require knowledge
of the delays or the instantaneous receivedSNRs of the
individual users at the BS. In particular, for any fixed number
of temporal signal space dimensionsN and maximum delay
τ in the system, we rigorously establish that the proposed
scheme successfully carries out the MUD with high probability
as long as the total number of usersM . exp(O(N1/3))
and the expected number of active usersk . N/ logM .
In order to put the significance of this result into context,
note that classical matched-filtering-based approaches toMUD
using orthogonal signaling dictate thatk ≤ M . N , which
severely limits the total number of users that can be handled
by the system for a givenN . In addition, we also present
an efficient implementation of the proposed MUD scheme
based on thefast Fourier transform(FFT) that ensures that
the computational complexity of the proposed scheme at worst
differs by a factor oflog(N+τ) from anoracle-basedscheme
that has perfect knowledge of the user delays.

In regards to previous work, we note that Fletcher et al.
[1] have also recently studied the problem of MUD in on–
off random access channels. However, the results in [1]—
while similar in spirit to the ones in here—are limited by the
facts that [1]: (i) assumes perfect synchronization among the
M users, which is hard to guarantee in practical settings for
largeM ; (ii) assumes that instantaneous receivedSNRs of the
individual users are available to the BS in certain cases, which
is difficult—if not impossible—to justify for the case offading
random access channels; and (iii) only guarantees that the
probability of errorPerr at the BS goes to zero asymptotically
in M , which does not shed light on the scaling ofPerr. Finally,
while preparing this paper, we became aware of [2] that also
considers on–off random access in the context of configuration
in ad-hoc wireless networks, and makes assumptions about the
channel model that are similar to [1].



II. PROBLEM FORMULATION

In this section, we formulate the problem of MUD in
asynchronous on–off random access channels, along with the
accompanying assumptions. To begin, we assume that there
are a total ofM users in the system that communicate with
the BS using packets of durationT and (two-sided) bandwidth
W ; in other words, the total number of temporal signal space
dimensions (degrees of freedom) in the wireless system are
N = TW . Further, we assume that users communicate using
spread spectrum waveforms of the form

xi(t) =
√
Ei

N−1∑

n=0

xi
n g(t− nTc), t ∈ [0, T ) (1)

whereg(t) is a unit-energy prototype pulse(
∫
|g(t)|2dt = 1),

Tc ≈ 1
W is the chip duration, Ei denotes the transmit power

of the i-th user, and

xi =
[
xi
0 xi

1 . . . xi
N−1

]T
, i = 1, . . . ,M (2)

is the N -length (real- or complex-valued)codewordof unit
energy(‖xi‖2 = 1) assigned to thei-th user.

The key feature of on–off random access channels that
distinguishes them from the more commonly studied multiple-
access channels in network information theory (and related
multiuser-detection problems) is the assumption that onlya
small number ofrandomusers communicate1’s with the BS
at any time instant. Specifically, we assume (without loss of
generality) that on average a total ofk of theM users transmit
1’s at timet = 0, resulting in the following expression for the
received signal at the BS

y(t) =

M∑

i=1

hiδixi(t− τi) + w(t). (3)

Here,hi ∈ C andτi ∈ R+ are thechannel fading coefficient
and thedelayassociated with thei-th user, respectively,w(t) is
complex additive white Gaussian noise (AWGN) introduced by
the receiver circuitry, and{δi} are independent0–1 Bernoulli
random variables that model the random activation of theM
users in the system in the sense thatPr(δi = 1) = k/M . Note
that one of the major differences between [1], [2] and the setup
in here is that it is assumed in [1], [2] thatmaxi,j(τi−τj) < Tc

whereas we do not make any such assumption here since it
is nearly impossible to satisfy this condition for large-enough
values ofM . Finally, we assume that the transmissions of the
users undergo independent Rayleigh fading in the sense that
the hi’s are independently distributed asCN (0, ρ2i ).

Next, we define the individualdiscrete delaysτ ′i ∈ Z+ as

τ ′i
def
=
⌊
τi
Tc

⌋
and define themaximum discrete delayτ ∈ Z+ in

the system asτ
def
= maxi τ

′
i . It is easy to see that the received

signaly(t) at the BS can be sampled at the chip rate to obtain
the equivalent discrete representation

y =

M∑

i=1

hiδi
√
Ei x̃i +w. (4)

Here, the (complex) AWGN vectorw is distributed as
CN (0N+τ , IN+τ ) (in other words, the instantaneous received
SNR of the active users isEi|hi|2) and the vectors̃xi ∈ CN+τ

are defined as

x̃i =
[
0T
τ ′
i

xT
i 0T

τ−τ ′
i

]T
, i = 1, . . . ,M. (5)

The goal of any MUD scheme in asynchronous on–off random
access channels is to obtain an estimateÎ of the set of active
usersI def

= {i : δi = 1} from the(N + τ)-dimensional vector
y without knowledge of the set of delays{τ ′i} or the set of
channel coefficients{hi} at the BS. In particular, for the sake
of this exposition, we are interested in characterizing three key
aspects of our proposed scheme for MUD in asynchronous
on–off random access channels:

1) the computational complexity of the solution,

2) the probability of error,Perr
def
= Pr(Î 6= I), and

3) the relationship between the number of temporal signal
space dimensionsN , the maximum (discrete) delayτ
in the system, the total number of usersM that can be
accommodated by the BS, and the average number of
active usersk in the system.

In this regard, the only assumptions we allow ourselves to
make here are that (i) the maximum delayτ (or an upper
bound on τ ) is known at the BS and (ii) each user has
knowledge of theSNR at which its transmitted signal arrives
at the BS (in other words, thei-th user knows|hi|). Note that
both these assumptions are quite reasonable from a practical
perspective; in particular, if one assumes that the BS transmits
a beacon signal before the users start transmitting then thelast
assumption simply follows because of reciprocity between the
downlink and the uplink.

III. M ULTIUSER DETECTION USING LASSO

In this section, we describe our proposed approach to MUD
in asynchronous on–off random access channels that is based
on the mixed-norm convex optimization program known as the
lasso [3]. The lasso was first proposed in the statistics literature
for linear regression in underdetermined settings. In [1],the
lasso has been suggested as a potential method for MUD
in synchronouson–off random access channels. However,
extending the ideas of [1] to the asynchronous case using the
standard lasso formulation seems very difficult. In contrast,
while the MUD scheme proposed in this paper is based on
the lasso, we present a rather nonconventional usage of the
lasso that is specific to the problem at hand and one of our
major contributions indeed is establishing that this formulation
is guaranteed to yield successful MUD with high probability.
It is also worth mentioning here that the analysis carried out in
the paper in this regard might also be of independent interest
to researchers working on configuration (neighbor discovery)
in ad-hoc wireless networks and sensor networks.

A. Main Result

In order to make use of the lasso for MUD in asynchronous
on-off random access channels, we first rewrite (4) in the



following matrix–vector product form

y =
[
x̃1 x̃2 . . . x̃M

]
︸ ︷︷ ︸

X̃

β̃ +w (6)

where thei-th entry of the vector̃β ∈ CM is described as

β̃i
def
= hiδi

√Ei. Note that despite the fact that the above
expression appears superficially similar to the standard lasso
formulation, we cannot use the lasso to obtain an estimate of
the set of active usersI from (6) since the(N + τ) × M
matrix X̃ in (6) is unknown due to the asynchronous nature
of the problem. In order to overcome this obstacle, we first
define(N + τ) × (τ + 1) Toeplitz matricesXi as follows

Xi =



xi 0

. . .
0 xi


, i = 1, . . . ,M (7)

and observe that we can equivalently write (6) in the form

y =
[
X1 X2 . . . XM

] [
β
T
1 β

T
2 . . .βT

M

]T
︸ ︷︷ ︸

Xβ

+w (8)

whereX is now an(N+τ)×M(τ+1) knownmatrix and the
vectorβ ∈ CM(τ+1) is a concatenation ofM vectors, each of
length (τ + 1), whose entries are given by

βi,j = β̃i1{τ ′
i
=j−1}, i = 1, . . . ,M, j = 1, . . . , τ + 1. (9)

We can now make use of this notation to describe the proposed
lasso-based scheme for MUD in asynchronous on–off random
access channels.1

Algorithm 1 Multiuser Detection in Asynchronous On–Off
Random Access Channels Using Lasso
Inputs

1) The chip-rate sampled vectory
2) Set ofN -dimensional codewords{xi}Mi=1

3) Maximum discrete delayτ in the system
4) A regularization parameterλ for the lasso

Compute the matrixX described in (8) using{xi} andτ

β̂ ← argmin
b∈CM(τ+1)

1
2

∥∥y −Xb
∥∥2
2
+ λ‖b‖1 (LASSO)

Î ←
{
i : ‖β̂i‖0 > 0

}

Return Î as an estimate of the set of active usersI

We are now ready to state the main result of this paper,
which bounds the probability of error of Algorithm 1 and
specifies the corresponding relationship between the system
parametersτ, k,N , andM .

1Algorithm 1 acts as a hybrid between the standard lasso and the group
lasso [4]. Specifically, it is clear from the problem formulation that the group
lasso is ill-suited for the specified MUD problem since each of the sub-vectors
{βi} in (8) has at most one nonzero entry. On the other hand, we are only
interested in detecting the active users and need not estimate their delays;
hence, the group nature of the detection criterion in the definition of Î.

Theorem 1. Suppose that theM codewords{xi ∈ C
N}Mi=1

are drawn independently from abinary(±1/
√
N, IN ) distri-

bution and pick the parameterλ = 2
√
2 log (M

√
τ + 1 ).

Further, let the transmit powers of the active users satisfy

Ei >
128 log (M

√
τ + 1 )

|hi|2
, i ∈ I. (10)

Then Algorithm 1 successfully carries out multiuser detection
with Perr ≤ 13

(
M(τ + 1)

)−1
+ 4M−1 + 2 exp

(
−

√
NM
8

)
if

M ≤ exp
(
c1(τ + 1)−2/3N1/3

)

τ + 1
and (11)

k ≤ c2N

(τ + 1) log
(
M(τ + 1)

) . (12)

Here, the constantsc1, c2 > 0 are independent of the problem
parameters.

The proof of this theorem is provided in Section IV. The
implications of the scaling behavior outlined in (11) and (12)
are quite positive in the important special case of fixed-
bandwidth spread spectrum waveforms and a base station
serving a bounded geographic region. Specifically, Theorem1
signifies that—for any fixed number of temporal signal space
dimensionsN and maximum delayτ in the system—the pro-
posed MUD scheme can accommodateM . exp(O(N1/3))
total users andk . N/ logM active users in the system.
This is a significant improvement over thek ≤ M . N
scaling suggested by the use of classical matched-filtering-
based approaches to MUD employing orthogonal signaling.

We conclude our discussion of Theorem 1 by noting that
k . N/ logM scaling has also been suggested in [1] for the
case of MUD in synchronous on–off random access channels
using the lasso. In contrast, Theorem 1 establishes that the
MUD scheme proposed here for asynchronous on–off random
access channels has the ability to achieve roughly the same
scaling of the system parametersk,N , andM as that reported
in [1] for the ideal case of synchronous channels.

B. Computational Complexity

Theorem 1 helps us characterize the performance of Algo-
rithm 1 for MUD in asynchronous on–off random access chan-
nels but fails to shed any light on the issue of computational
complexity of the proposed scheme. However, note that the
lasso is a well-studied program in the statistics literature and—
thanks to its convex nature—there exist a number of extremely
fast (polynomial-time) implementations of the unconstrained
version of the lasso specified in (LASSO); see, e.g., [5].

In this regard, note that the computational complexity of
the implementations of (LASSO) such as SpaRSA [5] is
determined—to a large extent—by the complexity of the
matrix–vector multiplicationsXb and XHy. It therefore
seems that Algorithm 1 increases the computational com-
plexity of the matrix–vector multiplications fromO(NM),
corresponding to the case of perfectly-known user delays
[cf. (6)], to O(NM(τ + 1)). This observation, however,
ignores the fact that the matrixX in (8) has a Toeplitz-block



structure. Specifically, note that if we writeb ∈ C
M(τ+1) as

b =
[
bT
1 . . . bT

M

]T
then it follows from elementary signal

processing that

Xb =
M∑

i=1

F−1
N+τ

(
FN+τ

(
xi

)
�FN+τ

(
bi

))
(13)

whereFn(·) andF−1
n (·) denote the FFT implementation of

the n-point discrete Fourier transform (DFT) and then-point
inverse DFT of a sequence, respectively, while� denotes
pointwise multiplication. Similarly, if we use(·)[n1 : n2] to
denote then1-th to n2-th elements of a vector and(·)− to
denote the time-reversed version of a vector, then it follows
from routine calculations that∀ i = 1, . . . ,M , we have

XHy[i(τ + 1)− τ : i(τ + 1)] = F−1
2N+τ−1

(
F2N+τ−1

(
x−
i

)
�

�F2N+τ−1

(
y
))[

N : N + τ
]
. (14)

It therefore follows from the complexity of the FFT that the
matrix–vector multiplicationsXb and XHy in Algorithm 1
can in fact be carried out using onlyO(NM log(N + τ))
operations as opposed toO(NM(τ + 1)) operations. This
suggests that the computational complexity of Algorithm 1 at
worst differs by a factor oflog(N + τ) from an oracle-based
scheme that has perfect knowledge of the user delays.

IV. PROOF OF THEMAIN RESULT

In this section, we provide a proof of Theorem 1. To begin,
we develop some notation to facilitate the forthcoming anal-
ysis. Throughout this section, we useXB to denote theblock
subdictionaryof X obtained by collecting the Toeplitz blocks
of X corresponding to the indices of the active users; in other

words, we haveXB
def
=
[
Xi : i ∈ I

]
. In addition, we useXS

to denote the(N + τ)× |I| submatrix obtained by collecting
the columns ofX corresponding to the nonzero entries of
β, while we useβS to denote the|I|-dimensional vector
comprising of the nonzero entries ofβ. Finally, we usesgn(·)
for elementwisesignumfunction, wheresgn(z)

def
= z/|z| for

any z ∈ C.
The basic idea behind the proof of Theorem 1 follows from

the proof of [6, Theorem 1.3]. Specifically, usingS = supp(β)
to denote the set of the locations of the nonzero entries ofβ,

we have from [6, Lemma 3.4] that the lasso solutionβ̂
def
=

β + h satisfieshSc = 0 and

hS = (XH
SXS)

−1[XH
Sw− λ sgn(βS)] (15)

if min
i∈S
|βi| > 4λ and the following five conditions are met:

• C1 – Invertibility condition:‖(XH
SXS)−1‖2 ≤ 2.

• C2 – Noise stability:‖(XH
SXS)−1XH

Sw‖∞ ≤ λ.
• C3 – Complementary noise stability:

‖XH
Sc(I−XS(X

H
SXS)

−1XH
S )w‖∞ ≤ λ√

2
.

• C4 – Size condition:‖(XH
SXS)−1sgn(βS)‖∞ ≤ 3

• C5 – Complementary size condition:

‖XH
ScXS(X

H
SXS)

−1sgn(βS)‖∞ ≤ 1
4 .

Further, it trivially follows in this case thatsupp(β̂) ≡ S,
which guarantees that̂I = I. Our goal then is to consider
the probability of each one of these conditionsnot being met
under the assumptions of Theorem 1 and the proof of the
theorem would then simply follow from the union bound. The
requisite analysis in this regard frequently requires a bound
on the maximum inner products between the columns ofX

and a bound on the spectral norm ofX, and the following two
lemmas help us specify these two bounds.

Lemma 1. Given any fixedς > 0, the Toeplitz-block matrix
X described in(8) satisfies

µ(X)
def
= max

(i,j) 6=(i′,j′)

∣∣〈xi,j ,xi′,j′〉
∣∣ ≤ ς (16)

with probability exceeding1−2M2(τ +1)2e−
Nς

2

4 . Here,xi,j

denotes thej-th column of the Toeplitz matrixXi.

Proof: The proof of this lemma is a consequence of
the bound on the worst-case coherenceµ of random Toeplitz
matrices [7, Theorem 3.5] and the Hoeffding inequality [8].
Specifically, note that we can write

µ(X) = max
{
max
j 6=j′

∣∣〈xi,j ,xi,j′ 〉
∣∣,max

i6=i′

∣∣〈xi,j ,xi′,j′〉
∣∣
}
.

Further, note that the proof of Theorem 3.5 in [7] implies
that

∣∣〈xi,j ,xi,j′ 〉
∣∣ ≤ ς with probability exceeding1− 4e−

Nς
2

4

for any j 6= j′. Finally, since the product of two independent
binary random variables is again a binary random variable,
it can also be shown using the Hoeffding inequality that∣∣〈xi,j ,xi′,j′〉

∣∣ ≤ ς with probability exceeding1− 2e−
Nς

2

2 for
any i 6= i′. It therefore follows from the union bound that
µ(X) ≤ ς with probability exceeding1−2M2(τ +1)2e−

Nς
2

4 .
This completes the proof of the lemma.

Lemma 2. The spectral norm of the Toeplitz-block matrixX
described in(8) satisfies

‖X‖2 def
=
√
λmax (XHX) ≤ 26

√
τ + 1

(
1 +

√
M

N

)
(17)

with probability exceeding1− e−
√

NM

8 .

Proof: We first recall that the spectral norm is invari-

ant under column-interchange operations. Now defineΦ
def
=[

x1 . . . xM

]
and Ψ

def
=

[
Φ0 Φ1 . . . Φτ

]
, where

each blockΦi is an (N + τ)×M matrix that is constructed
by prepending and appendingΦ with i rows and(τ − i)
rows of all zeros, respectively. It is then easy to see that
‖X‖2 = ‖Ψ‖2 and‖Φ0‖2 = · · · = ‖Φτ‖2 = ‖Φ‖2. Further,
note that we can write for anyM(τ + 1)-dimensional vector
z =

[
zT0 zT1 . . . zTτ

]T

‖Ψz‖2
‖z‖2

(a)

≤
∑τ

i=0 ‖Φizi‖2
‖z‖2

≤ ‖Φ‖2
∑τ

i=0 ‖zi‖2
‖z‖2

(b)

≤
√
τ + 1‖Φ‖2‖z‖2
‖z‖2

=
√
τ + 1‖Φ‖2 (18)



where(a) follows from the definition ofΨ and the triangle
inequality, while (b) follows from the Cauchy–Schwarz in-
equality. It therefore follows from the previous discussion and
(18) that‖X‖2 ≤

√
τ + 1‖Φ‖2.

In order to complete the proof, notice thatΦ is anN ×M
random matrix whose entries are independently distributed
as binary(±1/

√
N). It can therefore be established, similar

to [9, Proposition 2.4], that‖Φ‖2 ≤ 26
(
1 +

√
M
N

)
with

probability exceeding1− e−
√

NM

8 .
Note that Lemma 1 implies that the event

G1 =



µ(X) ≤

√
12 log

(
M(τ + 1)

)

N



 (19)

holds with probability exceeding1−2
(
M(τ+1)

)−1
. Similarly,

Lemma 2 implies that the event

G2 =

{
‖X‖2 ≤ 52

√
M(τ + 1)

N

}
(20)

holds with probability exceeding1− e−
√

NM

8 . The rest of the
analysis in this section is carried out by implicitly conditioning
on these two events.

A. Invertibility Condition

In order to establish the invertibility condition, we will make
use of the following proposition from [10].

Proposition 1 ([10]). Fix q = 2 log
(
M(τ + 1)

)
and define

the block coherence

µB(X)
def
= max

1≤i,j≤M
‖XH

i Xj − 1{i=j}I‖2.

Then, forEqZ
def
= [E|Z|q]1/q and δ

def
= k/M , we have the

following bound

Eq‖XH
BXB − I‖2 ≤ 20µB(X) log

(
M(τ + 1)

)
+ δ‖X‖22+

+ 9
√
δ log

(
M(τ + 1)

)(
1 + τµ(X)

)
‖X‖2. (21)

Now note that, since we are conditioning onG1 andG2, it
follows from (11), (12), (19), and (20) that

µ(X) ≤ 1

c′(τ + 1) log
(
M(τ + 1)

) , and (22)

‖X‖22 ≤
1

c′δ log
(
M(τ + 1)

) (23)

for c′
def
= 6000 as long as the constantsc1 andc2 in (11) and

(12) are appropriately chosen. It therefore follows from the
definition of the block coherence, (22), and the linear algebra
fact ‖ · ‖2 ≤

√
‖ · ‖1‖ · ‖∞ [11] that

µB(X) ≤ 1

c′ log
(
M(τ + 1)

) . (24)

Consequently, substituting (22), (23), and (24) into (21) yields
Eq‖XH

BXB − I‖2 < 1
4 .

Finally, notice thatXS is a submatrix ofXB and therefore
we trivially have that‖XH

SXS − I‖2 ≤ ‖XH
BXB − I‖2. It can

then be easily seen from the Markov inequality that

Pr(‖XH
SXS − I‖2 > 1/2) ≤ 2q(Eq‖XH

BXB − I‖2)q
(a)

≤
(
M(τ + 1)

)−2 log 2
(25)

where(a) follows from the fact thatEq‖XH
BXB − I‖2 < 1

4 .
We have now established that‖XH

SXS‖2 ∈ [1/2, 3/2] with
high probability; that is,‖(XH

SXS)−1‖2 > 2 with probability

Pr(Cc1
∣∣G1,G2) ≤

(
M(τ + 1)

)−2 log 2
. (26)

B. Noise Stability

In order to establish the noise-stability condition, we first
condition onC1 (the invertibility condition). Next, we denote
the j-th column ofXS(XH

SXS)−1 by zj and note that

‖(XH
SXS)

−1XH
Sw‖∞ = max

1≤j≤|S|
|〈zj ,w〉|. (27)

Further, since the noise vectorw is distributed asCN (0, I),
we also have that〈zj ,w〉 ∼ CN (0, ‖zj‖22). Finally, note that
conditioned onC1, we have the upper bound

‖zj‖2 ≤ ‖XS(X
H
SXS)

−1‖2 ≤ ‖XS‖2‖(XH
SXS)

−1‖2 ≤
√
2.

The rest of the argument now follows easily from bounds on
the maximum of a collection of arbitrary (complex) Gaussian
random variables. Specifically, it can be seen from the previous
discussion and [12, Lemma 6] that

Pr
(
‖(XH

SXS)
−1XH

Sw‖∞ ≥
√
2t
∣∣C1
)
≤ 4Me−t2/2

√
2πt

.

We substitutet = λ/
√
2 in the above expression to obtain

4Me−λ2/4

√
πλ

=
2

M(τ + 1)
√
2π log(M

√
τ + 1 )

.

Summarizing, we have that the noise stability condition fails
to hold with probability at most

Pr(Cc2
∣∣C1) ≤

2

M(τ + 1)
√
2π log(M

√
τ + 1 )

. (28)

C. Complementary Noise Stability

In order to establish the complementary noise-stability con-
dition, we use ideas similar to the ones used in the previous
section. To begin with, we again condition on the eventC1
and usePXS

def
= XS(XH

SXS)−1XH
S to denote the orthogonal

projector onto the column span ofXS . Next, we usezj to
denote thej-th column of(I−PXS )XSc and note that

‖XH
Sc(I−PXS )w‖∞ = max

1≤j≤|Sc|
|〈zj ,w〉|. (29)

Finally, given thatPXS is a projection matrix and the columns
of X have unit norm, we have that

‖zj‖2 = ‖(I−PXS )XScej‖2 ≤ 1 (30)



whereej denotes thej-th canonical basis vector.
It is now easy to see that, since〈zj ,w〉 is also distributed as
CN (0, ‖zj‖22), we can make use of [12, Lemma 6] to obtain

Pr
(
‖XH

Sc(I−PXS )w‖∞ ≥ t
∣∣C1
)
≤ 4M(τ + 1)e−t2/2

√
2πt

.

We substitutet = λ/
√
2 in the above expression to obtain

4M(τ + 1)e−λ2/4

√
πλ

≤ 2

M
√
2π log(M

√
τ + 1 )

. (31)

Summarizing, we have that the complementary noise stability
condition fails to hold with probability at most

Pr(Cc3
∣∣C1) ≤

2

M
√
2π log(M

√
τ + 1 )

. (32)

D. Size Condition

In order to establish the size condition, we first write

‖(XH
SXS)

−1sgn(βS)‖∞
(a)

≤ ‖
(
(XH

SXS)
−1 − I

)
sgn(βS)‖∞ + ‖sgn(βS)‖∞

= ‖
(
(XH

SXS)
−1 − I

)
sgn(βS)‖∞ + 1 (33)

where(a) follows from the triangle inequality. Next, we once
again usezj to denote thej-th column of

(
(XH

SXS)−1 − I
)
,

which simply implies that‖
(
(XH

SXS)−1 − I
)
sgn(βS)‖∞ =

max1≤j≤|S| |〈zj , sgn(βS)〉|. Now defineA =
(
XH

SXS − I
)

and condition on the eventC1. Then it follows from the von
Neumann series (cf. [6, p. 2171]) that‖zj‖2 ≤ 2‖Aej‖2.
Further, sinceXS is a submatrix ofXB, we have‖Aej‖2 ≤
‖(XH

BXB− I)ej′‖2, wherej′ is such that thej′-th column of
XB matches thej-th column ofXS .

Finally, define the diagonal matrixQ
def
= diag(δ1, . . . , δM )

with the “random activation variables”{δi} on the diagonal
and define a new matrixR = Q⊗ Iτ+1, where⊗ denotes the

Kronecker product. Next, use the notationH
def
= (XHX− I)

and notice that‖(XH
BXB − I)ej′‖2 = ‖RHej′′‖2, wherej′′

is such that thej′′-th column ofX matches thej-th column
of XS . In addition, note thatH has a block structure that can
be expressed as follows

H =
[
H1 H2 . . . HM

]

=




H1,1 H1,2 . . . H1,M

H2,1 H2,2 . . . H2,M

...
...

. ..
...

HM,1 HM,2 . . . HM,M


 (34)

whereHi,j = XH
i Xj − 1{i=j}I, 1 ≤ i, j ≤ M , andHi =

[HH
1,i . . . HH

M,i]
H . We now define two blockwise norms on

H as follows:

• ‖H‖B,1
def
= max1≤i≤M ‖Hi‖2, and

• ‖H‖B,2
def
= max1≤i,j≤M ‖Hi,j‖2.

Then it follows from the preceding discussion and the structure
of the block matrixH that

‖zj‖2 ≤ 2‖Aej‖2 ≤ 2‖RHej′′‖2 ≤ 2‖RH‖B,1. (35)

Our next goal then is to provide a bound on‖RH‖B,1 and
for this we resort to [10, Lemma 5].

Proposition 2 ( [10]). For q ≥ 2 logM and δ = k/M , we
have that

Eq‖RH‖B,1 ≤ 21.5
√
q‖H‖B,2 +

√
δ‖H‖B,1. (36)

Now notice from the definition ofH and ‖ · ‖B,2 that
‖H‖B,2 ≡ µB(X) ≤ (τ +1)µ(X). In addition, we have from
the definition ofH and‖ · ‖B,1 that

‖H‖B,1

(b)

≤ max
1≤i≤M

‖XHXi‖2 + ‖Iτ+1‖2
(c)

≤
√
1 + τµ(X)‖X‖2 + 1 (37)

where(b) follows from the definition of the spectral norm and
the triangle inequality, while(c) mainly follows from the fact
that ‖Xi‖2 ≤

√
1 + τµ(X) because of the Geršgorin disc

theorem [11]. We can now fixq = 2 logM and make use of
the above bounds to conclude from Proposition 2 that

Eq‖RH‖B,1 ≤ 4(τ + 1)µ(X)
√

logM+

+
√
δ(1 + τµ(X))‖X‖2 +

√
δ. (38)

We can now substitute (22) and (23) into the above expression
to obtainEq‖RH‖B,1 ≤ γ0 with

γ0
def
=

4

c′
√
log(M(τ + 1))

+

+
2√

c′ log(M(τ + 1))

√
1 +

1

c′ log(M(τ + 1))
. (39)

In order to establish the size condition, we now define
the eventE = {max1≤j≤|S| ‖zj‖2 < γ} and make use of
the Markov inequality along with (35) and the preceding
discussion to obtain

Pr(Ec) ≤ γ−q
[
Eq max

1≤j≤|S|
‖zj‖2

]q

≤
(
2

γ
Eq‖RH‖B,1

)q

≤
(
2γ0
γ

)q

. (40)

Finally, we useZ
def
= max1≤j≤|S| |〈zj , sgn(βS)〉| and con-

clude that

Pr(Z ≥ t) ≤ Pr(Z ≥ t
∣∣E) + Pr(Ec)

(d)

≤ 2Me−t2/2γ2

+ (2γ0/γ)
q (41)

where(d) is a consequence of the complex Bernstein inequal-
ity [13, Proposition 16] and the union bound. The condition
is now established from (33) by settingt = 2 in the above
expression. Further, set

γ ≤
√

2

(1 + 2 log 2) logM
(42)



which leads to2Me−2/γ2 ≤ 2M−2 log 2 and

γ0
γ
≤ 2(

√
1 + c′ + 2)

0.9155c′
< 1/4. (43)

Therefore, we obtain thatPr(Ec) ≤ (1/2)q ≤ M−2 log 2

and thus we have that the size condition does not hold with
probability at most

Pr(Cc4
∣∣C1) ≤ 3M−2 log 2. (44)

E. Complementary Size Condition

In order to establish the complementary size condition,
we proceed similar to the case of the “size condition“ and
define the vectorzj as zj = (XH

SXS)−1XH
SXScej . It can

then be easily seen that‖XH
ScXS(XH

SXS)−1sgn(βS)‖∞ =
max1≤j≤|Sc| |〈zj , sgn(βS)〉|. Now condition on the eventC1
and notice that‖zj‖2 ≤ 2‖XH

SXScej‖2, j = 1, . . . , |Sc|.
We now defineXBc

def
=
[
Xi : i ∈ Ic

]
and consider the set

of indicesT1 def
= {j′ : XScej′ ∈ XBc}. It is then easy to argue

by making use of the notation developed in Section IV-D that
if j ∈ T1 then

‖XH
SXScej‖2 ≤ max

i∈Ic
‖XH

BXi‖2

= ‖XH
BXBc‖B,1

(a)

≤ ‖RH‖B,1 (45)

where(a) follows from the fact thatXH
BXBc is a submatrix

of RH. We therefore have from the discussion following
Proposition 2 and the Markov inequality that∀ j ∈ T1 and for
q = 2 logM andγ > 0

Pr(‖XH
SXScej‖2 > γ) ≤ [Eq‖RH‖B,1]

q

γq
≤
(
γ0
γ

)q

. (46)

Finally, the argument involvingj ∈ T c
1 is a little more

involved but follows along similar lines. Specifically, fix any
j ∈ T c

1 and definei′ ∈ I to be such thatXScej is a column
of Xi′ . Next, definex̃S∩i′ to be the column ofXS that lies
within the Toeplitz blockXi′ and X̃S\i′ to be the submatrix
constructed by removing the columñxS∩i′ from XS . Then,

if we use the notationXB\i′
def
=
[
Xi : i ∈ B \ {i′}

]
, it can be

verified that for anyj ∈ T c
1 we have

‖XH
SXScej‖22 = ‖X̃H

S\i′XScej‖22 + |x̃H
S∩i′XScej |2

≤ max
i′∈I
‖XH

B\i′Xi′‖22 + µ2(X)

(b)

≤ ‖RH‖2B,1 + µ2(X) (47)

where(b) again makes use of the fact that the spectral norm
of a matrix is an upper bound for the spectral norm of any
of its submatrices. We therefore once again obtain from the
discussion following Proposition 2 and the Markov inequality
that ∀ j ∈ T c

1 and forq = 2 logM andγ > 0

Pr(‖XH
SXScej‖2 > γ) ≤ Pr

(
‖RH‖B,1 >

√
γ2 − µ2(X)

)

≤
(

γ0√
γ2 − µ2

)q

. (48)

We can now define the eventE =
{
‖XH

SXScej‖2 ≤ γ
}

and use the notationZ
def
= max1≤j≤|Sc| |〈zj , sgn(βS)〉| to

conclude from (46) and (48) that

Pr(Z ≥ t) ≤ Pr(Z ≥ t
∣∣E) + Pr(Ec)

(c)

≤ 2M(τ + 1)e−t2/8γ2

+ (γ0/γ)
q+

+ (γ0/
√
γ2 − µ2(X))q (49)

where (c) follows from [13, Proposition 16] and the union
bound. The condition is now established by settingt = 1

4 in
the above expression. Further, set

γ ≤ 1√
128(1 + 2 log 2) log(M(τ + 1))

(50)

which yields2M(τ +1)e−1/128γ2 ≤ 2(M(τ +1))−2 log 2 and

γ0√
γ2 − µ2

≤
2
√
1+c′

c′ + 4
c′√

0.05722 − 1/c′2
< 1/2.

Therefore, we obtain thatPr(Ec) ≤ 2(γ0/
√
γ2 − µ2)q ≤

2(1/2)q ≤ 2(M(τ + 1))−2 log 2 and thus we have that the
size condition does not hold with probability at most

Pr(Cc5
∣∣C1) ≤ 4

(
M(τ + 1)

)−2 log 2
. (51)

F. Proof of Theorem 1

The proof of Theorem 1 follows from the preceding discus-
sion by taking a union bound over all the respective conditions
and removing the conditionings:Pr((C1 ∩ C2 ∩ C3 ∩ C4 ∩
C5)c) ≤ 2Pr(Gc1)+2Pr(Gc2)+2Pr(Cc1

∣∣G1,G2)+Pr(Cc2
∣∣C1)+

Pr(Cc3
∣∣C1)+Pr(Cc4

∣∣C1)+Pr(Cc5
∣∣C1). Consequently, we obtain

that the probability of error is upper bounded by13
(
M(τ +

1)
)−2 log 2

+ 4M−1
(
2π log(M

√
τ + 1 )

)−1/2
+ 2e−

√
NM

8 .

V. NUMERICAL RESULTS AND DISCUSSION

We conclude this paper by making use of Monte Carlo
simulations to validate and discuss the results reported inhere.
The simulation setup corresponds to a total ofM = 3000
users communicating to the base station using codewords
of length N = 1024 that are drawn independently from
a binary(±1/

√
N, IM ) distribution. In the following, user

activity is generated using independent0–1 Bernoulli random
variables{δi} such thatPr(δi = 1) = k/M for a givenk.
Further, for a given maximum delayτ , the individual user
delays{τi} are generated once at random for each experiment
and then fixed for the remainder of the experiment in keeping
with the fact that our results hold uniformly over all possible
{τi}. The implementation of Algorithm 1 uses the SpaRSA
package [5] in order to solve (LASSO) and includes the
modifications described in Section III-B for speeding up the
matrix–vector multiplicationsXb andXHy. Finally, we use
the performance metric ofaverage number of detection errors
in our simulations, which corresponds to the cardinality ofthe
set (I\Î) ∪ (Î\I) averaged over the independent trials.

The first numerical experiment that we carry out corre-
sponds to studying the performance of the proposed MUD



Fig. 1. Performance of Algorithm 1 as a function of the expected number
of active usersk for five different values of the maximum delayτ .

scheme as a function of the expected number of active users
k in the system. In this experiment, it is assumed that the
users know the magnitudes of their respective channel fading
coefficients|hi| and control their powers so that the transmit
power requirement described in (10) is satisfied. The results
of this experiment are reported in Fig. 1 for five different
values of the maximum delayτ . There are two important
remarks that can be made concerning Fig. 1. First, note that
Theorem 1 suggests that—for appropriate values ofk andτ—
the productτk should be approximately constant in order for
the proposed scheme to successfully carry out MUD (cf. (12)).
In this regard, it can be seen from Fig. 1 that indeed the points
at which the curves begin to diverge from the horizontal axis
tend to be whenτk ≈ 1500. This suggests that the scaling
relationship described by (12) in Theorem 1 is accurate.

Second, Fig. 1 also helps put the novelty of this work
into perspective. Specifically, note that one could have simply
considered the problem of MUD in asynchronous on–off
random access channels in the context of the recent literature
on compressed sensing. Indeed, the expressiony = Xβ +w

in (8) describes the problem of recovering a sparse signalβ

from linear measurements in the presence of noise. However,
if one were to naively apply the theory of compressed sensing
to this problem then one would expect the performance of
Algorithm 1 to improve with increasingτ . This is because
the number of rows of the matrixX in (8) increases asτ is
increased. However, as indicated by the results of this paper,
the Toeplitz-block structure ofX does not allow for such an
improvement. On the contrary, increasing the range of possible
delays poses a more difficult MUD problem, and thus the
expected number of active users for which MUD succeeds
decreases, as can be seen from Fig. 1.

The second numerical experiment that we carry out corre-
sponds to studying the performance of the proposed MUD
scheme as a function of the instantaneous receivedSNRs
{Ei|hi|2} of the active users. The results of this experiment
are reported in Fig. 2 for three different values of the expected
number of active usersk and with the maximum delayτ
set to 19. The main conclusion that can be drawn from
Fig. 2 in this regard is that the power condition of (10) in
Theorem 1 is possibly overly restrictive. Specifically, note that

Fig. 2. Performance of Algorithm 1 as a function of the instantaneous
receivedSNRs of the active users forτ = 19 and three different values ofk.

the power condition (10) for the specified parameters reduces
to Ei|hi|2 ' 31 dB for every active user. On the other hand,
Fig. 2 shows that Algorithm 1 carries out successful MUD
even when the instantaneous receivedSNRs of the active users
are significantly below31 dB. Finally, Fig. 2 also helps us
verify that the theory is correct in predicting that the transmit
power required for successful MUD does not depend upon the
expected number of active usersk.

In conclusion, simulation results confirm that our proposed
scheme successfully carries out MUD in asynchronous on–off
random access channels and that the theoretical guarantees
provided in Theorem 1 are nearly optimal in terms of the
scaling relationship betweenk, τ,M , and N . In the future,
we plan to extend this work by designing deterministic code-
words appropriate for this application and by analyzing the
(detection) outage rates of individual users arising because of
fading and fixed transmit power constraints.
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