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Abstract—In this paper, we propose a general framework that
transforms the problems of designing sparse finite-impulse re-
sponse channel-shortening equalizers and target impulse response
filters for multiple antenna systems into the problems of sparsest-
approximation of a vector in different dictionaries. Additionally,
we compare several choices of the sparsifying dictionaries in
terms of the worst-case coherence metric, which determines their
sparsifying effectiveness. Furthermore, a reduced complexity
design approach is proposed, which is realized by exploiting the
asymptotic equivalence of Toeplitz and circulant matrices. Fi-
nally, the significance of our proposed approach is demonstrated
through numerical experiments.

I. INTRODUCTION

In many practical communications settings, the duration

of the channel impulse response (CIR) is far too long. This

significantly affects the performance and complexity of the

communications transceivers. For example, the complexity of

maximum-likelihood sequence estimation (MLSE) increases

exponentially with the number of users (or streams) and with

the memory of the multiple-input multiple-output (MIMO)

channel, which makes its use in preventing inter-symbol inter-

ference (ISI) prohibitively expensive [1]. Moreover, in block-

based multicarrier communications, interblock and intrablock

interferences are eliminated by inserting a cyclic prefix in

every block whose length is equal to the MIMO channel

memory, which in turn can result in a significant reduction

of the achievable throughput [2].

Channel shortening, a generalization of equalization, is

an elegant solution for dealing with this problem. Channel

shortening equalizers (CSEs) are designed to approximate the

original channel with a shorter channel, i.e., the combined

impulse response of the MIMO channel and the CSE is

approximately equivalent to a short MIMO target impulse

response (TIR). CSEs have been well investigated in several

studies; e.g., [3]–[9]. In [3], conditions for optimum TIR are

derived under the unit-tap and the unit-energy constraints. This

framework is generalized to MIMO systems in [4]. In [5], the

CSE coefficients are inferred blindly from the received data

without channel knowledge. In [6], a CSE design approach

is proposed to reduce the complexity of trellis detection,

which converts the MIMO tree structure into a much smaller

trellis, assuming that the channel input is zero-mean Gaussian
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process. However, none of these designs impose a sparsity

constraint on the CSE design.

Recently, sparse equalizers have received increased attention

to reduce implementation cost at acceptable performance loss.

In [7], an exhaustive search method is proposed to design a

sparse filter. However, its computational cost increases expo-

nentially with the filter order. In [8], using greedy algorithms,

a framework for designing sparse CSE and TIR is proposed.

This framework achieved better performance by designing the

TIR taps to be non-contiguous compared to the designs in [3],

where the TIR taps are assumed to be contiguous. However,

this approach is limited to single-input single-output (SISO)

systems and involves inversion of large matrices and Cholesky

factorization, whose computational cost could be large for

channels with large delay spreads.

To the best of the authors’ knowledge, this paper is the

first one to propose sparse MIMO FIR channel-shortening

equalizers for MIMO ISI channels. The main contributions of

this papers in this context are as follows. First, we extend our

framework proposed in [9] to accommodate the more general

case of MIMO systems1. The extended framework transforms

the original problem of designing sparse MIMO filters into

one of sparse approximation of a vector using different dic-

tionaries. Then, this framework is used to find the sparsifying

dictionary that leads to the sparsest FIR filter, hence reducing

its implementation complexity, subject to performance con-

straints. Second, we numerically study the coherence of the

sparsifying dictionaries that we propose as part of our analysis

and identify one dictionary that has small coherence. Then, we

use simulations to validate that the dictionary with the smallest

coherence results in the sparsest FIR design. Finally, numerical

results demonstrate the significance of our approach compared

to conventional sparse TIR designs, e.g., in [10], in terms of

both performance and computational complexity.

Notations: We use the following standard notation in

this paper: IN denotes the identity matrix of size N .

Upper- and lower-case bold letters denote matrices and

vectors, respectively. Underlined upper-case bold letters,

e.g., X , denote frequency-domain vectors. The notations

(.)−1, (.)∗, (.)T and (.)H denote the matrix inverse, the ma-

1We remark that the proposed framework in [4] follows as a special case
of the framework proposed here by setting the performance loss to zero (no
sparsity constraint), while [9] follows by setting the number of inputs and
outputs to be equal to one.



2

trix (or element) complex conjugate, the matrix transpose and

the complex-conjugate transpose operations, respectively. E[.]
denotes the expected value operator. ‖.‖� and ‖.‖F denote

the �-norm and Frobenius norm, respectively. ⊗ denotes the

Kronecker product of matrices. The components of a vector

starting from k1 and ending at k2 are given as subscripts to

the vector separated by a colon, i.e., xk1:k2
.

II. SYSTEM MODEL

A schematic of the relationship between CIR, CSE and

TIR is shown in Figure 1, and the key matrices used in this

paper are summarized in Table I. We consider a linear time-

invariant MIMO ISI channel with ni inputs and no outputs.

The received samples from all no channel outputs at sample

time k are grouped into a no×1 column vector yk as follows:

yk =

v∑
l=0

H lxk−l + nk , (1)

where H l is the lth channel matrix coefficient of dimension

(no × ni), and xk−l is the size ni × 1 input vector at time

k − l. The parameter v is the maximum order of all of the

noni CIRs. Over a block of Nf output samples, the input-

output relation in (1) can be written compactly as

yk:k−Nf+1 = H xk:k−Nf−v+1 + nk:k−Nf+1 , (2)

where yk:k−Nf+1, xk:k−Nf−v+1 and nk:k−Nf+1 are col-

umn vectors grouping the received, transmitted and noise

samples, respectively. Note that yk:k−Nf+1 is a vector of

length Nf , i.e., y =
[
yk yk−1 . . . yk−Nf+1

]T
. Ad-

ditionally, H is a block Toeplitz matrix whose first block

row is formed by {H l}l=v
l=0 followed by zero matrices. It

is useful, as will be shown in the sequel, to define the

output auto-correlation and the input-output cross-correlation

matrices based on a block of length Nf . Using (2), the

ni(Nf+v)×ni(Nf+v) input auto-correlation and the noNf×
noNf noise auto-correlation matrices are, respectively, de-

fined by Rxx � E
[
xk:k−Nf−v+1x

H
k:k−Nf−v+1

]
and Rnn �

E
[
nk:k−Nf+1n

H
k:k−Nf−1

]
. Both the input and noise pro-

cesses are assumed to be white; hence, their auto-correlation

matrices are assumed to be (multiples of) the identity matrix,

i.e., Rxx = Ini(Nf+v) and Rnn = 1
SNRInoNf

. Moreover, the

output-input cross-correlation and the output auto-correlation

matrices are, respectively, defined as

Ryx � E
[
yk:k−Nf+1x

H
k:k−Nf−v+1

]
= HRxx , and (3)

Ryy � E
[
yk:k−Nf+1y

H
k:k−Nf+1

]
=HRxxH

H+Rnn. (4)

III. SPARSE FIR MIMO CHANNEL SHORTENING

In FIR MIMO channel shortening [4], the goal is

to design a MIMO equalizer with Nf matrix taps,

which is denoted by the noNf × ni matrix W �[
W 0 W 1 . . . WNf−1

]T
, to equalize H to a MIMO

CSE

TIR

CIR

Figure 1. A schematic illustrating the relation between CIR, CSE, and TIR.

TIR matrix B̃ �
[
B̃0 B̃1 . . . B̃Nb

]T
with (Nb + 1)

matrix taps B̃i, each of size ni × ni. By defining the matrix

BH =
[
0ni×niΔ B̃

H
0ni×nis

]
, where 0 ≤ Δ ≤

Nf+v−Nb−1 and s � Nf+v−Nb−Δ−1, the mean square

error (MSE) of the error signal can be written as follows (see

Figure 1) [4]

ξ (B,W ) � Trace
{

E
[
EkE

H
k

]}

= Trace
{
BHRΔB

}
︸ ︷︷ ︸

� ξm(B)

+Trace
{
GHRyyG

}
︸ ︷︷ ︸

� ξex(B,W )

,(5)

where RΔ � Rxx−RxyR
−1
yy Ryx and G � W−R−1

yy RyxB.
The second term of the MSE is equal to zero under the

optimum CSE matrix filter coefficients, i.e., W = R−1
yy RyxB,

and the resulting MSE can then be expressed as follows(
definingRΔ � AH

ΔAΔ

)
:

ξm (B) = Trace
{
BHAH

ΔAΔB
}
=

∥∥AΔB
∥∥2
F

=
∥∥∥AΔ

[
b(1) b(2) . . . . . . b(ni)

]∥∥∥2
F

=
∥∥∥ (Ini

⊗AΔ) vec (B)
∥∥∥2
F

=
∥∥∥AΔ b(1)

∥∥∥2
2
+ · · · · · ·+

∥∥∥AΔ b(ni)
∥∥∥2
2
,(6)

where b(i) is the ith column of B and vec is an operator that

maps a n×n matrix to a vector by stacking the columns of the

matrix. To compute the TIR matrix filter taps B that minimize

ξm (B), we minimize ξm (B) under the identity tap constraint

(ITC) where we restrict the �th matrix coefficient of B̃ to be

equal to the identity matrix, i.e., B̃� = Ini
. Towards this goal,

we rewrite ξm (B) as follows:

ξm (B, �) =

ni∑
i=1

∥∥∥∥∥∥∥A
(:\

m︷ ︸︸ ︷
niΔ+ ni�+i)

Δ b(i\m+i) +am+i

∥∥∥∥∥∥∥

2

2

,

(7)

where A
(:\m+i)
Δ is formed by all columns of AΔ except the

(m+ i)
th

column, i.e., am+i, and b(i\m+i) is formed by all

elements of b(i) except the (m+ i)
th

entry, which is set

equal to one. Then, we formulate the following problem for

the design of sparse TIR matrix filter taps B:
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Table I
CHANNEL SHORTENING NOTATION AND KEY MATRICES USED IN THIS PAPER

Notation Meaning
H Channel matrix of size noNf × ni

(
Nf + v

)

Rxx Input auto-correlation matrix of size ni

(
Nf + v

)× ni

(
Nf + v

)

Rxy Input-Output cross-correlation matrix of size ni

(
Nf + v

)× no
(
Nf

)

Ryy Output auto-correlation matrix of size noNf × noNf

Rnn Noise auto-correlation matrix of size noNf × noNf

RΔ � Rxx −RxyR
−1
yy Ryx matrix of size ni

(
Nf + v

)× ni

(
Nf + v

)

W CSE matrix of size noNf × ni

B TIR matrix of size ni

(
Nf + v

)× ni

b̂
(i\m+i)

� argmin
∥∥∥b(i\m+i)

∥∥∥
0

subject to∥∥∥A(:\m+i)
Δ b(i\m+i) + am+i

∥∥∥2
2
≤ γeq,i ,

(8)

where γeq,i is used to control the performance-complexity

tradeoff. Once b̂
(i\m+i)

, ∀i ∈ ni, is calculated, we insert the

identity matrix B� in the �th location to form the sparse TIR

matrix coefficients, Bs. Then, the optimum CSE matrix taps,

in the minimum MSE (MMSE) sense, are determined from

(5) to be

W opt = R−1
yy

:=β︷ ︸︸ ︷
RyxBs . (9)

Since W opt is not sparse in general, we further propose

a sparse implementation for the CSE matrix taps as follows.

After computing Bs, the MSE will be a function only of W

and can be expressed as
(

defining Ryy � AH
y Ay

)

ξ (Bs,W ) = ξm (Bs)+Trace
{
GHAH

y AyG
}

= ξm (Bs)+
∥∥∥AyW −A−H

y β
∥∥∥2
F︸ ︷︷ ︸

� ξex(W )

. (10)

By minimizing ξex(W ), we further minimize ξ (Bs,W ).
This is achieved by a reformulation for ξex(W ) to get a vector

form of W , as in the case of (8), as follows:

ξex(wf ) =
∥∥∥(Ini

⊗AH
y

)
vec (W )−vec(A−H

y β)
∥∥∥2
2
. (11)

Afterward, we solve the following problem to compute the

CSE matrix filter taps

wf � argmin ‖wf‖0 subject to ξex(wf ) ≤ γeq , (12)

where wf = vec (W ) and γeq > 0 is used to control the

performance-complexity tradeoff.

IV. PROPOSED SPARSE APPROXIMATION FRAMEWORK

In this section, we provide a general framework for design-

ing both sparse MIMO CSE filter with Nf matrix taps and

MIMO TIR filter with (Nb + 1) nonzero matrix taps that can

be considered as the problem of sparse approximation using

different dictionaries. Mathematically, this framework poses

the FIR filter design problem as follows

ẑs � argmin
z

‖z‖0 subject to ‖K (Φz − d)‖22 ≤ ε , (13)

where Φ is the dictionary that will be used to sparsely

approximate d, while K is a known matrix and d is a

known data vector, both of which change depending upon the

sparsifying dictionary Φ. Notice that ẑs corresponds to one of

the elements in {b̂(i), wf} and ε is the corresponding element

in
{
γeq,i, γeq

}
. Hence, one can use any factorization for Ryy

and RΔ, e.g., in (5), to formulate a sparse approximation

problem. Using the Cholesky or eigen decomposition for Ryy

or RΔ we will have different choices for K, Φ and d.

For instance, by defining the Cholesky factorization [11] of

RΔ in (6) as RΔ � LΔL
H
Δ , or in the equivalent form

RΔ � PΔΣΔP
H
Δ = ΩΔΩ

H
Δ (where LΔ is a lower-

triangular matrix, PΔ is a lower-unit-triangular (unitriangular)

matrix and ΣΔ is a diagonal matrix), the problem in (13) can,

respectively, take one of the forms below:

min

b∈C
ni

(
Nf+v

) ‖b‖0 s.t.

∥∥∥∥(L(:\m+i)
Δ

)H
b(i\m+i)+ lm+i

∥∥∥∥2

2

≤ γeq,i , and

min

b∈C
ni

(
Nf+v

) ‖b‖0 s.t.

∥∥∥∥(Ω(:\m+i)
Δ

)H
b(i\m+i)+ pm+i

∥∥∥∥2

2

≤ γeq,i . (14)

Recall that Ω
(:\m+i)
Δ is formed by all columns ofΩΔ except

the (m+ i)
th

column, pm+i is the (m+ i)
th

column of

ΩΔ, and b(i\m+i) is formed by all entries of b(i) except the

(m+ i)
th

entry which we have constrained to be equal to

1. Similarly, by writing the Cholesky factorization of Ryy

as Ryy � LyL
H
y or the eigen decomposition of Ryy as

Ryy � UyDyU
H
y , we can formulate the problem in (13)

as follows

min
wf∈C

noNf

‖wf‖0
s.t.

∥∥∥(Ini
⊗ LH

y

)
wf − vec(L−H

y β)
∥∥∥2

2
≤ γeq , (15)

min
wf∈C

noNf

‖wf‖0
s.t.

∥∥∥∥
(
Ini

⊗D
1
2
yU

H
y

)
wf −vec(D

− 1
2

y UH
y β)

∥∥∥∥2

2

≤ γeq, (16)

min
wf∈C

noNf

‖wf‖0
s.t.

∥∥∥(Ini
⊗L−1

y

)((
Ini

⊗Ryy

)
wf −vec(β)

)∥∥∥2

2
≤ γeq. (17)

Note that the sparsifying dictionaries in (15), (16) and (17)

are
(
Ini⊗LH

y

)
,
(
Ini⊗D

1
2
yU

H
y

)
and (Ini⊗Ryy), respec-

tively. Furthermore, the matrix K is an identity matrix in

all cases except in (17), where it is equal to
(
Ini

⊗L−1
y

)
.
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Notice that several other sparsifying dictionaries can be used

to sparsely design the CSE and TIR FIR matrix filter taps.

Due to lack of space, we have presented above some of these

possible choices and other choices can be derived by applying

suitable transformations to (6) and (10).

So far, we have shown that the problem of designing sparse

CSE and TIR FIR matrix filter taps can be cast into one of

sparse approximation of a vector by a fixed dictionary. The

general form of this problem is given by (13). To solve this

problem, we use the well-known Orthogonal Matching Pursuit

(OMP) greedy algorithm [12] that estimates ẑs by iteratively

selecting a set S of the sparsifying dictionary columns (i.e.,

atoms φ′
is) of Φ that are most correlated with the data vector

d and then solving a restricted least-squares problem using the

selected atoms. The OMP stopping criterion can be either a

predefined sparsity level (number of nonzero entries) of zs
or an upper-bound on the norm of the Projected Residual

Error (PRE), i.e., “K × (Φz − d) � K × Residual Error”.

The computations involved in the OMP algorithm are well

documented in the sparse approximation literature (e.g., [12])

and are omitted here for brevity.

It is also worth pointing out that we can use the asymptotic

equivalence between Toeplitz and circulant matrices to carry

out the computations needed for Ryy and RΔ factoriza-

tions efficiently using the fast Fourier transform (FFT) and

inverse FFT [13]. This approximation turns out to be quite

accurate as shown in [9]. For a Toeplitz matrix, the most

efficient algorithms for Cholesky factorization are Levinson

or Schur algorithms [14], which involve O(N2
f ) computations.

In contrast, the eigen-decomposition of a circulant matrix can

be done efficiently using the FFT and its inverse with only

O (Nf log(Nf )) operations. Hence, based on our results in

[9], it can be shown that (defining L = noNf )

Ryy
∼= 1

L2
FH

LΨY Ψ
H
Y FL + noσ

2
nIL

=
1

L2
FH

L

(
ΨY Ψ

H
Y + noLσ

2
nIL

)
FL

= ΣΣH , (18)

where FL is an L × L DFT matrix, σ2
n = 1/SNR,

ΨY =
[
Λ

Ỹ
i . . . ΛỸ

no

]H
, ΨH

Y ΨY =
∑no

i=1

∣∣∣∥∥∥Ỹ i
∥∥∥∣∣∣2 =

Nf

∑no
i=1

∣∣∥∥Hi
∥∥∣∣2 , where

∣∣∣∥∥∥.∥∥∥∣∣∣2 is defined as the element-

wise norm square and H is the L-point DFT of the CIRs,

H =
[
H1T . . . HnoT

]T
. To illustrate, for no = 1,

Ryy in (18) reduces to Ryy = FH
Nf

(Λ�1)FNf ,where �1 =

Nf |‖H‖|2 + σ2
nNf1Nf

, and H is the Nf -point DFT of the

CIR h. Similarly, after some algebraic manipulations, RΔ can

be expressed as

RΔ
∼= 1

L
FH

N

(
IN −ΓΛ���Γ

H
)
FN = ΘΘH (19)

where Γ =
[
IM . . . IM

]H
, � = � + noLσ

2
n1L,

� = Nf

∑no

i=1

∣∣∥∥Hi
∥∥∣∣2, � denotes element-wise division

and N = ni(Nf + v). Notice that for the proposed sparse

CSE and TIR filters, the main computational tasks are the

factorizations of the matrices RΔ, Ryy and the computation

of OMP. Reference [12] pointed out that the computation

cost, e.g., complex multiplications and additions, of OMP is

O (NMS), where NM is the size of W or B and S is the

number of nonzero entries of zs. Moreover, additional O (
S3

)
computations are reuqired to obtain the restricted least square

estimate of zs. Hence, the total cost to obtain an estimate

of zs using our proposed design method is the sum of the

factiorization cost of the involved matrices in the FIR filter

design, OMP cost and the restricted least square cost.

Our next challenge is to determine the best sparsifying

dictionary for use in our framework. We know from the

sparse approximation literature that the sparsity of the OMP

solution tends to be inversely proportional to the worst-case

coherence μ (Φ), μ (Φ) � max
i �=j

|〈φi, φj〉|
‖φi‖2‖φj‖2

[15], [16]. Notice

that μ (Φ) ∈ [0, 1]. Next, we investigate the coherence of the

dictionaries involved in our setup.

V. COHERENCE OF SPARSIFYING DICTIONARY

In [17], we showed that design of sparse FIR filters depends

largely on the worst-case coherence, μ (Φ) , of the sparsifying

dictionaries. Here, we are also concerned with analyzing μ (Φ)
of the sparsifying dictionaries to ensure it does not approach

1. Furthermore, we are interested in identifying which Φ has

the smallest coherence and, hence, has the potential to give the

sparsest FIR design. In our setup, we have many sparsifying

dictionaries (Ryy, RΔ and their factors), but, we can classify

them into two groups. The first group includes dictionaries

resulting from factorization of the posterior error covariance

matrix RΔ, while the second group includes both the output

auto-correlation matrix Ryy itself or any of its factors. Notice

that the matrix RΔ is an asymptotically Toeplitz matrix, while

Ryy is a Hermitian positive-definite square block Toeplitz

matrix.

To characterize the upper-bounds on μ (Φ) for each group

of dictionaries, we first obtain upper bounds on the worst-

case coherence of both RΔ and Ryy separately and evaluate

their closeness to 1. Then, we demonstrate through simulations

that the coherence of their factors will be less than 1 and

smaller than that of μ(RΔ) and μ(Ryy), respectively. The

matrix RΔ can be expressed compactly in terms of the SNR

and CIR coefficients as RΔ =
[
R−1

xx +HHR−1
nnH

]−1

=[
I + SNR

(
HHH

)]−1

. This shows that, at low SNR, the

noise dominates, i.e., RΔ ≈ I , and thus, μ (RΔ) → 0. As

the SNR increases, the noise effect decreases and the CIR

effect increases, which makes μ (RΔ) converge to a constant.

Typically, this constant, as shown through simulations, does

not approach 1.

On the other hand, Ryy has a well-structured (Hermitian

Toeplitz) closed-form in terms of the CIR coefficients, filter

time span Nf and SNR, i.e., Ryy = HHH + 1
SNRI . Also,

it is a square matrix with full rank, due to the presence of

noise. In [17], we derived an upper-bound on μ(Ryy) for any

given channel length v. By numerical evaluation, we find that

the worst-case coherence of Ryy (for any v) is sufficiently

less than 1. This observation points to the likely success of
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OMP in providing the sparsest solution ẑs corresponding to

the dictionary that has the smallest μ(Φ). Next, we confirm

these assertations through numerical experiments reported in

the next section.

VI. SIMULATION RESULTS

In our simulations, the used MIMO CIRs are unit-energy

symbol-spaced FIR filters with v taps generated as zero-

mean uncorrelated complex Gaussian random variables with

a uniform power-delay-profile2 (UPDP). For simplicity, we

assume ni = no = 2. However, our framework can work

for any given number of inputs and outputs. Each point in

the reported figures represents the mean of 5000 channel

realizations. We use the notation D(χt, χe) to refer to a TIR

designed using sparsifying dictionary χt and a CSE designed

using sparsifying dictionary χe.

2This type of CIRs can be considered as a worst-case assumption since the
inherent sparsity of other channel models, e.g., [18] and [19], leads to even
better channel shortening performance.

In Figure 2, we plot the impulse responses of the CSEs

versus the tap index to quantify the accuracy of approximating

the block Toeplitz matrices by their equivalent block circulant

matrices. This figure shows single realizations of the impulse

responses obtained from the optimum solution (in the MMSE

sense) and the equivalent circulant approximation. We observe

that both solutions are typically matched. The effect of filter

length Nf is shown in [9].

To investigate the coherence of the sparsifying dictionar-

ies used in our analysis, we plot the worst-case coherence

versus the input SNR in Figure 3 for sparsifying dictionaries

Ly, D
1
2

y U
H
y and Ryy . Note that a smaller value of μ(Φ)

indicates that a sparser approximation is more likely. At high

SNR levels, the noise effects are negligible and, hence, the

sparsifying dictionaries (e.g., Ryy ≈ HHH) do not depend on

the SNR. As a result, the coherence converges to a constant.

On the other hand, at low SNR, the noise effects dominate the

channel effects. Hence, the channel can be approximated as

a memoryless (i.e., single tap) channel. Then, the dictionaries

(e.g., Ryy ≈ 1
SNR

I) can be approximated as a multiple of the

identity matrix, i.e., μ (Φ) → 0. A similar trend for μ(RΔ)
and its factors has been observed in [9].

Next, we compare different sparse FIR MIMO CSE and

MIMO TIR designs based on different sparsifying dictionaries

to study the effect of μ (Φ) on their performance. The OMP

algorithm is used to compute the sparse approximations.

The OMP stopping criterion is set to be a predefined spar-

sity level (number of nonzero entries) or a function of the

PRE such that: Performance Loss (η)= 10Log10

(
SNR(ẑs)

SNR(zopt)

)
≤

10Log10

(
1 + ε

ξm

)
� ηmax, where zopt is the optimum solution

where no sparsity constraint is imposed. Here, ε is computed

based on an acceptable ηmax and, then, the coefficients of ẑs

are computed using (13). The percentage of the active taps is

calculated as the ratio between the number of nonzero taps

to the total number of filter taps. For optimum equalizers,

where none of the coefficients is typically zero, the number of

active filter taps is equal to the filter span [20]. The decision

delay, Δ, and the identity-tap location, m, are chosen to be

around (Nf + ν)/2 to maximize the equivalent SNR, i.e,

SNR= 1/ξ (B,W ) [4].

Figure 4 plots the percentage of the active taps versus the

performance loss ηmax for the proposed sparse FIR MIMO-

CSEs and the proposed approach in [10], which we refer to

as the “significant taps” approach. In that approach, all of the

FIR filter taps are computed and only the ν-significant ones

are retained. We observe that a lower active taps percentage

is obtained when the coherence of the sparsifying dictionary

is small. For instance, allowing for 0.25 dB SNR loss results

in a significant reduction in the number of active CSE taps.

Approximately 80% of the taps are eliminated when using

D
1
2
y U

H
y and LH

y at SNR equal to 10. The sparse MIMO-CSE

designed based on Ryy needs more active taps to maintain

the same SNR loss as that of the other sparse MIMO-CSEs

due to its higher coherence. This suggests that the smaller

the worst-case coherence of the dictionary in our setup, the

sparser is the equalizer. Moreover, a lower sparsity level

(active taps percentage) is achieved at higher SNR levels,
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which is consistent with the previous findings (e.g., in [21]).

Furthermore, reducing the number of active taps decreases the

filter equalization design complexity and, consequently, power

consumption since a smaller number of complex multiply-and-

add operations are required.

In Figure 5, we compare our proposed sparse TIR design

with the “significant taps” approach in terms of equivalent

SNR , i.e, SNR= 1/ξ (B,W ), where we plot it versus the

number of CSE taps Nf for the UPDP channel. We vary

Nb, the number of TIR taps, from 2 (lower curve) to 10
(upper curve) with step 2. The equivalent SNR increases as Nb

increases for all TIR designs, as expected, and our sparse TIR

outperforms, for all scenarios, the “significant taps” approach.

Notice that as Nb increases, the sparse TIR becomes more

accurate in approximating the actual CIR.

VII. CONCLUSIONS

We proposed a general framework for designing sparse FIR

MIMO CSE and TIR filters based on a sparse approxima-

tion formulation using different dictionaries. In addition, we

showed how to reduce the computational complexity of the

design of the sparse equalizers by exploiting the asymptotic

equivalence of Toeplitz and circulant matrices. We further

numerically evaluated the coherence of the proposed dictio-

naries involved in our design and showed that the dictionary

with the smallest coherence gives the sparsest filter design.

The numerical experiments prove superior performance of our

approach compared to conventional high-complexity methods.
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