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ABSTRACT

In this paper, we address the problem of learning the geometry
of a non-linear manifold in the ambient Euclidean space into which
the manifold is embedded. We propose a bottom-up approach to
manifold approximation using tangent planes where the number of
planes is adaptive to manifold curvature. Also, we exploit the lo-
cal linearity of the manifold to subsample the manifold data before
using it to learn the manifold geometry with negligible loss of ap-
proximation accuracy. In our experiments, our proposed Geometry
Preserving Union-of-Affine Subspaces algorithm shows more than a
100-times decrease in the learning time when compared to state-of-
the-art manifold learning algorithm, while achieving similar approx-
imation accuracy.

Index Terms— Manifold geometry, manifold learning, subsam-
pling, tangent spaces, union-of-affine subspaces

1. INTRODUCTION

Many models in signal processing are built on the notion of concise-
ness of a class of signals in a given geometric structure. For many
decades, the most popular geometric models in signal processing
have been the subspace and the union-of-subspaces signal models.
However, even if a class of signals does not have a subspace or a
union-of-subspaces representation, it may be manifested in a low-
dimensional non-linear manifold embedded in a high-dimensional
ambient space. Prominent examples of signal classes particularly
well-represented by a manifold signal model are face and handwrit-
ten images [1, 2]. If we can learn the manifold structure for a class
of signals, it can lead us to interesting solutions to applications like
data denoising, novel data acquisition paradigms, compression, etc.,
for that class of signals.

A lot of work has been done on manifold learning and dimen-
sionality reduction that is aimed towards finding a low-dimensional
embedding of data sampled from a high-dimensional non-linear
manifold [3]. However, we are interested in a slightly different
problem: we want to learn the manifold geometry in the ambient
space that the manifold is originally embedded in. One solution to
our problem is to learn a global parametric representation for the
manifold, but this approach won’t always work because real world
data often lie on highly non-linear manifolds and it is unreasonable
to assume that we will always be able to find a parametric repre-
sentation that encompasses all the non-linearities of the manifold.
Instead, we approximate the non-linear manifold structure locally
only using low-dimensional tangent spaces.

Representing data using subspaces is a well-addressed problem.
Many approaches in subspace clustering and hybrid linear modelling
are geared towards clustering the dataset into groups such that data
in each group can be well-approximated using a collection of sub-
spaces [4, 5, 6]. However, the primary focus of these methods is on

minimization of approximation error of training data so the union of
subspaces cannot be expected to represent the underlying manifold
geometry.1

2. PROBLEM FORMULATION AND OUR
CONTRIBUTIONS

We are interested in learning the geometry of a smooth d-dimensional
Riemannian manifoldM embedded inRD , where it is assumed that
d� D and the embedding is such that the nonlinear structure is not
self-intersecting. For the sake of this exposition, we assume that the
manifold dimension d is known a priori; see [7] for possible means
of estimating d from the data. In order to learnM in RD , we are
given a collection of N data points, X = {x1, x2, . . . , xN} ⊂ RD ,
that are sampled fromM.

In the literature, both bottom-up [8] and top-down [9] ap-
proaches are adopted to approximate manifold geometry in RD

using tangent planes. Considering a hypothetical scenario in which
the dataset X is dense inM, any bottom-up approach to manifold
approximation that considers every sample of the dataset would
be computationally impractical. However, by exploiting the local
linearity of the manifold, the dataset X can be subsampled with
minimal loss of information to get a reduced version of the dataset,
Xred, which can be used for manifold learning.

In both [8] and [9], a shortcoming of the proposed learning ap-
proaches is that the final number of tangent planes required to repre-
sent the manifold structure needs to be somehow estimated and pre-
set. We propose a manifold-adaptive bottom-up approach to man-
ifold learning inspired by the work in [8]: we start by assigning
a tangent plane Tj to each sample xj ∈ Xred as a representation
of the local manifold geometry about xj , and thus we start with a
collection of tangent planes {Tj}j∈A. Then, pairs of neighboring
tangent planes indexed by A are merged under the constraint that
the approximation error of each tangent plane Tj , j ∈ A, remains
within a preset threshold ε where the approximation error of Tj is
defined as

ej =
1

|Cj |
∑
x∈Cj

‖x− Pjx‖
‖x− cj‖

. (1)

Here, Cj is the set of training data samples associated with Tj , Pj

is a projection operator for the tangent plane Tj , cj is the empirical
mean of all the samples in Cj and ‖.‖ is the Euclidean norm. The
error constraint ensures that while we merge neighboring planes and
try to minimize the number of planes approximating the manifold
geometry, each tangent plane in the reduced set of planes is an accu-
rate approximation of the local manifold geometry where accuracy
of the approximation is controlled by the value of ε: the lower the
value of ε, the more accurate the approximation. Thus, the way we

1See Fig. 1(b) for an example.



set up the manifold learning problem makes our proposed algorithm
– termed as Geometry Preserving Union-of-Affine Subspaces (GP
UoAS) – adaptive to the manifold curvature: the final number of
tangent planes representing the manifold geometry is a function of
the preset threshold ε and the manifold curvature.

In Section 3, we lay down the framework of our approach and
then propose GP UoAS. In Section 4, we show the performance of
our algorithm using synthetic datasets and the MNIST dataset [10].
The paper is finally concluded in Section 5.

3. APPROXIMATING MANIFOLD GEOMETRY USING
TANGENT PLANES

We propose a manifold learning algorithm that first subsamples the
dataset X by exploiting the local linearity of the manifold to get
a subsampled version of the dataset, Xred, as explained in Section
3.1. Then, the reduced dataset Xred is used to learn a collection of
tangent planes that approximate the manifold geometry, as explained
in Section 3.2.

3.1. Preprocessing: Subsampling the Dataset

The process of subsampling the dataset X starts by randomly select-
ing a data point x ∈ X . A neighborhood set Nx that is a set of Kin

nearest neighbors of x in X with respect to the Euclidean metric and
a plane of best-fit to all the points in this set Nx are associated with
the randomly selected point x. The associated plane, i.e., the tangent
plane, is characterized by an orthonormal basis matrix φx ∈ Rd×D ,
obtained via Singular Value Decomposition (SVD) of all the points
in Nx, and a vector cx ∈ RD×1, which is the mean of all the sam-
ples in Nx. Next, the approximation error of the tangent plane to
the points in Nx is calculated. If this error is smaller than ε0, the
neighborhood size is incremented by K∆ samples. We keep on ex-
panding the neighborhood size in increments ofK∆ samples as long
as the approximation error of the samples in Nx by the associated
tangent plane remains within ε0. Finally, assuming ε0 is a very small
number, all samples in Nx are well-approximated by the associated
tangent plane. At this point, the samples in the final neighborhood
set Nx are marked for deletion and the original sample x is added
to Xred. This process of randomly selecting a sample x from X ,
associating a tangent plane with x, expanding the associated neigh-
borhood till the approximation error is within an acceptable bound,
and marking the samples in the final neighborhood set for deletion
goes on till the training dataset is exhausted (refer to Algorithm 1 for
further details).

3.2. Main Task: Approximation using Geometry-Preserving
Union of Affine Subspaces

The subsampling stage of our algorithm gives a downsampled ver-
sion Xred of the original dataset along with a collection of tan-
gent planes: with each xj ∈ Xred, sampled in stage 1 of the algo-
rithm, is associated a tangent plane characterized by a basis matrix
φj ∈ RD×d and a subspace offset cj ∈ RD . A cluster of training
data Cj = {xj} is also initialized for the tangent plane associated
with xj ∈ Xred.

LetA be a set of indices such that the initial set of tangent planes,
T , learnt in stage 1 of the algorithm, can formally be written as:

T = {Tj}j∈A such that Tj = {φj , cj , Cj}.

To minimize the number of tangent planes representing the man-
ifold geometry, pairs of tangent planes in T are fused till further

fusion of any pair of tangent planes from T will give an error (1)
larger than ε in the merged tangent plane. However, to ensure the
fused planes adhere to the local manifold geometry, not every pair
of planes in T is eligible for fusion. Our definition of fusibility of
tangent planes is inspired by the definition of fusibility of clusters in
[11]. Let NK(x) contain the K-nearest neighbors of x ∈ Xred in
Xred with respect to the Euclidean distance metric. Then, Ω is the
set of all pairs of fusible planes in T such that

Ω = {(i, j) : yi ∈ NK(yj) or yj ∈ NK(yi)

where yi ∈ Ci, yj ∈ Cj s.t. i, j ∈ A, i 6= j}. (2)

Among all the fusible pairs of planes, we define the best fusible pair
as the one which gives the least approximation error for the associ-
ated training dataset after fusion:

(i∗, j∗) = arg min
(i,j)∈Ω

eproj(Ti, Tj), (3)

where

eproj(Ti, Tj) =
1

|Ci ∪ Cj |
∑

x∈Ci∪Cj

‖x− Pk x‖
‖x− ck ‖

, (4)

where Tk is the tangent plane obtained from merging of Ti and Tj ,
Ci ∪Cj is the set of training data associated with Tk, Pk is the pro-
jection operator for projection onto Tk and ck is the empirical mean
of all the samples in Ci ∪ Cj . Note that evaluation of (4) and thus
(3) is an expensive operation because (4) involves computing SVD
for the samples in Ci and Cj . Thus, (3) would require a SVD com-
putation step for each pair in Ω. To get rid of the SVD computation
step for each fusible pair of planes, we derive an upper bound on (4)
that relies on the following lemma:

Lemma 1. If Ti ∈ T , Tj ∈ T , then∑
x∈Ci

‖x− Pk x‖
‖x− ck ‖

≤
∑
x∈Ci

‖x− Pjx‖
‖x− ck ‖

, and (5)

∑
x∈Cj

‖x− Pk x‖
‖x− ck ‖

≤
∑
x∈Cj

‖x− Pix‖
‖x− ck ‖

. (6)

Proof. Each of (5) and (6) can be proved by contradiction. Suppose
(5) is not true, then

∑
x∈Ci

‖x−Pk x‖
‖x−ck ‖

>
∑

x∈Ci

‖x−Pjx‖
‖x−ck ‖

, which implies∑
x∈Ci∪Cj

‖x−Pk x‖
‖x−ck ‖

>
∑

x∈Ci

‖x−Pjx‖
‖x−ck ‖

+
∑

x∈Cj

‖x−Pk x‖
‖x−ck ‖

. From our

construction of the tangent planes,
∑

x∈Cj

‖x−Pk x‖
‖x−ck ‖

≥
∑

x∈Cj

‖x−Pjx‖
‖x−ck ‖

,

which leads to
∑

x∈Ci∪Cj

‖x−Pk x‖
‖x−ck ‖

>
∑

x∈Ci∪Cj

‖x−Pjx‖
‖x−ck ‖

. This is a

contradiction due to our construction of Tk and the Eckart-Young
theorem [12], thus (5) must be true. Inequality (6) can also be proved
similarly.

Lemma 1 is next used in the derivation of the following theorem.

Theorem 1. If Ti ∈ T , Tj ∈ T , then

eproj(Ti, Tj) ≤
1

|Ci ∪ Cj |
(
∑
x∈Ci

‖x− Pix‖
‖x− ck ‖

+
∑
x∈Cj

‖x− Pjx‖
‖x− ck ‖

+
∑

x∈Ci∪Cj

‖Pix− Pjx‖
‖x− ck ‖

) =: ēproj(Ti, Tj). (7)



Proof. Rewriting (4),
eproj(Ti, Tj) = 1

|Ci∪Cj |
(
∑

x∈Ci

‖x−Pk x‖
‖x−ck ‖

+
∑

x∈Cj

‖x−Pk x‖
‖x−ck ‖

)

(a)
≤ 1
|Ci∪Cj |

(
∑

x∈Ci

‖x−Pjx‖
‖x−ck ‖

+
∑

x∈Cj

‖x−Pix‖
‖x−ck ‖

)

= 1
|Ci∪Cj |

(
∑

x∈Ci

‖x−Pjx+Pix−Pix‖
‖x−ck ‖

+
∑

x∈Cj

‖x−Pix+Pjx−Pjx‖
‖x−ck ‖

)

(b)

≤ 1
|Ci∪Cj |

(
∑

x∈Ci

‖x−Pix‖
‖x−ck ‖

+
∑

x∈Cj

‖x−Pjx‖
‖x−ck ‖

+
∑

x∈Ci∪Cj

‖Pix−Pjx‖
‖x−ck ‖

)

where (a) follows from Lemma 1 and (b) follows from the triangular
inequality.

Note that in contrast to evaluation of eproj(Ti, Tj) in (4), evalu-
ation of ēproj(Ti, Tj) in (7) does not involve computing SVD of the
data samples in Ci ∪ Cj . Thus, instead of solving (3), we minimize
an upper bound to the objective in (3):

(i∗, j∗) = arg min
(i,j)∈Ω

ēproj(Ti, Tj). (8)

If ēproj(Ti∗ , Tj∗) ≤ ε, the best pair of planes (Ti∗ , Tj∗) is merged
to obtain the tangent plane Tk∗ , resulting in a new collection

T ← (T \ {Ti∗ , Tj∗}) ∪ {Tk∗}. (9)

Summarizing our algorithm, once the set T is initialized by cal-
culating the tangent plane at each x ∈ Xred, the set of pairs of fusible
tangent planes Ω is calculated as in (2), the best pair (Ti∗ , Tj∗) from
the set of fusible pairs of planes is selected using (8), and the best
pair of planes is merged as in (9) if the best pair of planes satisfies the
approximation error constraint ēproj(Ti∗ , Tj∗) ≤ ε. This process of
evaluating (2), (8) and (9) is repeated till ēproj(Ti∗ , Tj∗) gives a
value greater than ε after the evaluation of (8). In other words, we
keep on finding and merging the best pair of fusible tangent planes
till the best pair of fusible planes does not satisfy the approximation
error constraint. The accuracy of manifold geometry approximation
by the final set of tangent planes depends on the value of ε: the
smaller the value of ε, the more accurate the estimate and vice versa.
Our algorithm is outlined in Algorithm 1.

4. EXPERIMENTAL RESULTS

In all our experiments, we compare our algorithm with the state-
of-the-art algorithm for learning manifold geometry in the ambient
space using tangent spaces [11]. Because the method in [11] uses
difference of tangents to merge neighboring tangent planes, we dub it
as the ‘Merging based on Difference of Tangents’ (MDOT) method.
To compare the performance of the two algorithms, we sample 1800
data points from different number of half-turns of a swiss roll. We
fix the final number of tangents planes for MDOT algorithm at 10,
whereas our algorithm adapts the number of planes required to ap-
proximate manifold geometry according to the manifold curvature.
The following error is used as an approximation accuracy metric:

error =
∑
j∈A

1

|Cj |
∑
x∈Cj

‖x− φjφ
>
j x‖

‖x− cj‖
.

The results reported in Table 1 show that the approximation error for
MDOT algorithm increases with the increasing number of turns of
the swiss roll, whereas our algorithm adapts to the increasing man-
ifold curvature by increasing the number of tangent planes used to
learn the swiss roll geometry. An example of union of tangent planes
approximation of 3 half turns of a swiss roll using our algorithm is
shown in Fig. 1(a).

Algorithm 1: Learning Geometry-Preserving Union of Affine
Subspaces

1: Input: Dataset: X ; maximum error in Stage 1: ε0; starting
neighborhood size in Stage 1: Kin; neighborhood increment
size: K∆; neighborhood size in Stage 2: K; maximum error in
Stage 2: ε; dimension of tangent planes: d

2: Output: Final set of tangent planes representing the manifold:
Tj = {φj , cj}j∈A
Stage 1 (Subsampling the dataset):

3: Initialize: Xred ← X , Xred1 ← X , φ← {}, c← {}
4: while Xred1 6= {} do
5: Uniformly at random select x ∈ Xred1

6: K0 ← Kin; Nx ← K0 nearest neighbors of x in X
7: cx ← 1

|Nx|
∑

y∈Nx

y; [N0
x ]← {y − cx : y ∈ Nx}

8: Ux ← left singular vectors of [N0
x ] corresponding to its

d-largest singular values

9: error = 1
|Nx|

∑
y∈Nx

‖y−UxUT
x y‖

‖y−cx‖ ; N∗x ← Nx

10: while error < ε0 do
11: Nx ← N∗x ; K0 ← K0 +K∆

12: N∗x ← K0 nearest neighbors of x in X
13: error = 1

|N∗
x |

∑
y∈N∗

x

‖y−UxUT
x y‖

‖y−cx‖

14: end while
15: φ← {φ,Ux}; c← {c, cx}
16: Xred ← Xred \Nx; Xred1 ← Xred1 \ {Nx, x}
17: end while

Stage 2 (Merging the tangent planes):
18: NK(x)← {K nearest neighbors of x in Xred}, x ∈ Xred

19: C ← {{x} : x ∈ Xred}; Let A be a set of indices such that the
set of tangent planes from stage 1 can be written as

20: T ← {Tj}j∈A such that Tj = {φj ∈ φ, cj ∈ c, Cj ∈ C}
21: loop
22: Ω← {(i, j) : yi ∈ NK(yj) or yj ∈ NK(yi),

where yi ∈ Ci, yj ∈ Cj such that (i, j) ∈ A}
23: (i∗, j∗, ē∗proj) = arg min

(i,j)∈Ω
ēproj(Ci, Cj)

24: if ē∗proj < ε then
25: T ← (T \ {Ti∗ , Tj∗}) ∪ {Tk∗}, where Tk∗ is the plane

obtained from merging planes Ti∗ and Tj∗
26: else
27: break the loop
28: end if
29: end loop

To compare the computational complexity of the two algorithms,
3 half turns of a swiss roll are sampled with varying sampling den-
sity. For the MDOT algorithm, the number of tangent planes are
set to 14. The results for this experiment are given in Table 2. Re-
sults show more than 2 orders of magnitude difference in the com-
putational time of the two algorithms for similar approximation ac-
curacy, and the computational advantage of our algorithm becomes
more significant as sampling density on the manifold increases.

We also test our algorithm on a high-dimensional dataset – the
MNIST database [10]. Setting d = 5, we run both algorithms
on 1000 images of digit zero randomly selected from the MNIST
database. For our algorithm, we set Kin = 5, K∆ = 1, K = 6 and
we vary the value of ε to approximate the manifold of digits with



(a) (b)

Fig. 1. (a) Data sampled from a swiss roll projected onto the union
of 17 tangent planes learnt using our proposed algorithm. (b) Flat
approximation of swiss roll using median K-flats algorithm [13].

Half-
turns
of Roll

Tangent
Planes
(MDOT)

Error
(MDOT)

Tangent
Planes
(GP
UoAS)

Error
(GP
UoAS)

1 10 0.027 5.8 0.078
2 10 0.066 10.9 0.084
3 10 0.137 16.4 0.084
4 10 0.187 21.3 0.089
5 10 0.247 26.7 0.091

Table 1. Approximation of the underlying structure of 1800 data
points randomly sampled from different turns of a swiss roll using
the ‘MDOT’ algorithm with 10 planes and our manifold adaptive
‘GP UoAS’ algorithm.

Points
sampled
from the
swiss roll

Time in
seconds
(MDOT)

Error
(MDOT)

Time in
seconds
(GP
UoAS)

Error
(GP
UoAS)

1800 2.3×103 0.090 13.8 0.080
3000 1× 104 0.091 30.6 0.104
4200 3× 104 0.097 65.1 0.079
5400 5.5×104 0.092 86.9 0.078
6600 9.6×104 0.091 185.9 0.085

Table 2. Time taken to learn the manifold structure with respect to
the sampling density on the manifold, which is 3 half turns of a swiss
roll in this experiment.

different number of tangent planes. The results in Fig. 2 show sim-
ilar approximation performance for both the algorithms for different
number of planes.

5. CONCLUSIONS

We have proposed a bottom-up approach to learning manifold struc-
ture using union of tangent planes. Our algorithm shows particu-
larly impressive computational complexity performance when learn-
ing manifold geometry using dense training datasets. More impor-
tantly, our algorithm adapts the number of tangent planes required
for manifold geometry approximation with curvature of the man-
ifold to ensure the approximation error remains within acceptable
threshold.

Fig. 2. Approximation of the underlying manifold structure of 1000
images of digit ‘0’ – extracted from the MNIST database – using
different number of tangent planes.
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