
Geometric Manifold Approximation using
Union of Tangent Patches

Talal Ahmed and Waheed U. Bajwa
{talal.ahmed, waheed.bajwa}@rutgers.edu

Dept. of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854

Abstract— This paper addresses the problem of data-adaptive learning
of the ambient geometry of a nonlinear, non-intersecting submanifold of a
Euclidean space. It accomplishes this goal by exploiting the local linearity
of the (sub)manifold and approximating it using a union of tangent
patches (UoTP). In addition, it translates the problem of projecting a new
data point onto the learned UoTP into a series of convex optimization
problems. It then derives a procedure for encoding (projecting) data
points onto a UoTP that involves an efficient solution to each of the posed
optimization problems. Finally, it demonstrates the value of capturing the
geometry of manifolds by comparing the superior denoising performance
of the proposed framework on both synthetic and real data sampled from
nonlinear manifolds with that of stat-of-the-art denoising algorithms.

Index Terms—Data encoding, denoising, manifold learning, tangent
approximations

I. INTRODUCTION

Data models play an increasingly important role in information
processing. Owing to computational advances of recent years, clas-
sical linear models are slowly but surely being replaced by their
nonlinear generalizations. The union-of-subspaces (UoS) model and
the (nonlinear) manifold model in particular stand out among popular
nonlinear data models [1]. In order to incorporate any nonlinear
model into most information processing tasks, one requires scalable
algorithms for (i) data-adaptive learning of geometric structure of
the underlying model (structure learning) and (ii) projecting arbitrary
data onto the learned geometric structure (data encoding). Significant
progress has been made in this regard for the UoS model under
the rubrics of dictionary learning and sparse coding [2]–[4]. But
relatively less progress has been made toward these two goals for the
manifold model. Our focus in this paper is on the (nonlinear) manifold
model and we present novel algorithms for structure learning and
data encoding (i.e., projection/representation) in the following in this
nonlinear setting.

Relationship to prior work: While manifold data models have
been considered in the literature for more than a decade now, most
of that work focuses on dimensionality reduction and learns only
low-dimensional embedding of data [5]–[7]. Many other works that
focus on learning manifold structure in the ambient space assume
parametric manifolds [8]. Some recent works have tried to remedy
these shortcomings [9]–[12]. But the structures learned in [10], [11]
do not fully adapt to the underlying manifold curvature, while [10],
[12] lack algorithms for data encoding.

Finally, note that one can in principle use nonlinear models such
as the UoS model (and its variants such as the hybrid linear model
[13], [14]) for learning the structure of data sampled from a nonlinear
manifold. However, while such an approach will lead to small
approximation error for the training data, it will fail to capture the
exact geometry of the underlying manifold (cf. [12, Fig. 1(b)]). One
of the goals of this paper in this regard is demonstrating that capturing
the geometry of data is as important as approximating the data.

Our contributions: In this paper, we present algorithms for (i)
learning the structure of data sampled from a nonlinear, nonparamet-

ric submanifold of a Euclidean space, and (ii) encoding (projection)
of given data onto the learned structure. Instead of focusing on topo-
logical aspects and/or dimensionality reduction, we focus on learning
the manifold structure in the ambient space—an approach that we
term geometric manifold approximation (GMA) to differentiate it
from traditional manifold learning approaches [5]–[7]. Our approach
to GMA involves exploiting the local linearity of a manifold and
approximating it using a union of tangent patches (UoTP). Note
that [9]–[12] also make use of local linearity of manifolds and
approximate them using unions of tangent flats. However, the tangent
flats in [9]–[12] extend indefinitely in the ambient space, which
complicates the data encoding procedure. In contrast, our use of
tangent patches allows us to transform the problem of projecting data
onto a UoTP into a series of convex programs and we present efficient
means of solving these convex programs. Finally, we underscore
the importance of our proposed algorithms by demonstrating their
denoising performances on both synthetic and real data.

II. PROBLEM FORMULATION

We are interested in the problem of approximating the geometry of
a smooth d-dimensional Riemannian manifold M embedded in RD

using a collection of tangent patches. In addition, we need means of
projecting a new data sample x ∈ RD onto the learnt collection of
tangent patches. In order to learnM, we are given a collection of N
training data points sampled fromM: X = {x1, . . . , xN} ⊂ M. Our
main assumptions here are that M is not self-intersecting, and the
manifold dimension d� D is known a priori; see [15] for possible
means of estimating d from the data.

Mathematically, our goal is to use X to learn a set of tangent
patches, T , that provides a reasonable approximation of the data in
X . Specifically, let A be a set that indexes the set of tangent patches,
T . Then T can be mathematically expressed as T = {Tk}k∈A, where
each tangent patch Tk is defined as Tk = {φk, ck, rk, r

′
k, Ck}. Here,

φk ∈ RD×d denotes an orthonormal basis matrix that describes a
centered tangent plane, ck ∈ RD denotes offset of this tangent plane
from the origin, rk, r′k ∈ RD denote parameters that help define the
subset of the tangent plane that forms the k ∈ A tangent patch,
and Ck ⊂ X is the training data associated with this k-th patch.
Concretely, the set of points in tangent patch Tk, k ∈ A, can be
expressed using {φk, ck, rk, r

′
k} as:

M̂k = {y : y = φkw + ck, rk 4 y 4 r′k, w ∈ Rd}, k ∈ A, (1)

where 4 represents component-wise inequality. We can use this no-
tation to express the union of tangent patches (UoTP) approximation
of M as M̂ =

⋃
k∈A M̂k.

We are now ready to formalize the problem of geometric manifold
approximation (GMA). Given X ⊂ M, we need to find a UoTP-
based GMA M̂ of the manifold M such that the approximation

error ek associated with each tangent patch Tk, k ∈ A, is within ε:

ek =
1

|Ck|
∑
x∈Ck

‖x− φkφ
>
k (x− ck)− ck‖
‖x− ck‖

≤ ε, k ∈ A, (2)

where ‖.‖ denotes the Euclidean distance. In parallel, our goal is to
minimize the number of tangent patches, |A|, needed to approximate
M up to the accuracy described by (2). The rationale for this objec-
tive is that it will reduce storage costs, data encoding complexity, etc.
Stated differently, our goal in this paper is to minimize the number
of tangent patches needed to approximate the geometry of M up
to a certain accuracy level. Such an objective effectively makes the
final number of patches in an approximation adaptive to the manifold
curvature, which also addresses the problem of finding an appropriate
number of linear structures required for manifold approximation in
[9]–[11]. In the following, we present our approach to achieving this
objective. This approach will be termed geometry preserving union-
of-tangent-patches (GP-UoTP) learning to highlight the fact that the
learned collection of tangent patches is not an arbitrary one; rather,
it accurately captures the local manifold geometry.

III. APPROXIMATING MANIFOLD GEOMETRY USING

A UNION OF TANGENT PATCHES

In this section, we first derive our algorithm for GP-UoTP learning
of the manifold M (Sec. III-A). This will be followed by our for-
mulation of the data encoding/projection problem and our derivation
of an efficient solution to that problem (Sec. III-B).

A. GP-UoTP-based learning of (nonlinear) manifolds

To begin, we associate with each data sample x ∈ X a neigh-
borhood set NK(x), defined as a set of K nearest neighbors of
x in X with respect to the Euclidean distance. Next, we initialize
our algorithm by associating with each x ∈ X a tangent patch
Tx. This initial tangent patch Tx is characterized by an orthonormal
basis matrix φx ∈ RD×d, obtained via singular value decomposition
(SVD) of all the points in NK(x), a vector cx ∈ RD , which is the
mean of all the samples in NK(x), and a training subset Cx, which
is initialized as Cx = {x} to ensure all tangent patches have disjoint
training sets. The choice of parameters rx, r′x ∈ RD in this initial
phase is immaterial and we arbitrarily set them to rx = r′x = x. After
initialization, therefore, we obtain a collection of tangent patches T
given by: T = {Tj}j∈A, where Tj = {φj , cj , rj , r

′
j , Cj} and the set

A indexes the set of patches in T with |A| = |X | at this stage.
Our goal now is to minimize the number of tangent patches

in T while satisfying the constraint in (2). We adopt a greedy
procedure for this and greedily merge/fuse pairs of tangent patches
in T till any further fusion of any pair of tangent patches in T
violates (2). During this procedure, however, we must ensure that
only neighboring tangent patches are fused together. In this regard,
we leverage the notion of fusibility of clusters in [10] and define the
set of all pairs of fusible patches in T as

Ω = {(i, j) ∈ A×A : yi ∈ Ci, yj ∈ Cj such that

yi ∈ NK(yj) or yj ∈ NK(yi)}. (3)

In order to greedily fuse pairs of patches, we define the best fusible
pair as the one which gives the least approximation error smaller than
ε for the associated training dataset after fusion, i.e.,

(i∗, j∗) = argmin
(i,j)∈Ω

eproj(Ti, Tj) such that eproj(Ti, Tj) ≤ ε, (4)

where the “fused” approximation error eproj(Ti, Tj) is defined as

eproj(Ti, Tj) =
1

|Ck|
∑
x∈Ck

‖x− φkφ
>
k (x− ck)− ck ‖2
‖x− ck ‖2

. (5)

To understand the notation in (5), let us use Tk to denote the tangent
patch obtained by merging Ti and Tj . Then, Ck = Ci∪Cj is the set of
training data associated with Tk, ck is the empirical mean of all the
samples in Ck, and φk corresponds to the d dominant eigenvectors
of the matrix Uk = 1

2
(φiφ

>
i + φjφ

>
j).

1 Note that the matrix Uk can
also be defined as in terms of an optimization problem:

Uk = argmin
U∈RD×D

1

2
(‖φiφ

>
i − U‖2F + ‖φjφ

>
j − U‖2F). (6)

Finally, we merge the best pair of patches (Ti∗ , Tj∗) to obtain a new
tangent patch Tk∗ , resulting in a reduced-cardinality set of patches:

T = (T \ {Ti∗ , Tj∗}) ∪ {Tk∗}, and

A = (A \ {i∗, j∗}) ∪ {k∗}. (7)

Once we carry out this greedy merging of one pair of patches and
redefine our collection of tangent patches T and the corresponding
index set A, we again return to evaluation of (3), followed by
the optimization problem (4) and the redefinition of T and A in
(7). We repeat this procedure till the feasible set in (4) becomes
empty. Finally, once that happens, we re-evaluate the parameters
rk, r

′
k to completely characterize the subset of the tangent plane

{φkw + ck}, w ∈ Rd, k ∈ A, that describes the tangent patch Tk.
Specifically, we define these parameters as rk,i = min

x∈Ck
xi, and

r′k,i = max
x∈Ck

xi, i ∈ {1, ..., D}, k ∈ A. Here, rk,i, r′k,i, and xi

denote the i-th element of rk, r′k, and x, respectively. After updating
our collection of tangent patches with these parameters, we can
approximate the manifold M in terms of the following GP-UoTP:

M̂ =
⋃
k∈A

{y : y = φkw + ck, rk 4 y 4 r
′
k, w ∈ Rd}. (8)

Our complete GP-UoTP learning procedure is outlined in Algo-
rithm 1. We conclude by pointing out that the level at which M̂
approximates M depends on the parameter ε: the smaller the value
of ε, the more accurate the approximation and vice versa.

B. Projecting new data onto a UoTP

Our next goal is to develop a computational approach for projecting
a new (possibly noisy) data sample x 6∈ X onto the learned
structure M̂. Mathematically, we are interested in solving the fol-
lowing problem: x̂ = argminz∈M̂ ‖x − z‖, x ∈ RD . This can
be accomplished in principle by first projecting the sample x onto
each of the tangent patches M̂k, k ∈ A, identifying the patch
M̂k∗ , k

∗ ∈ A, that results in the smallest projection error, and then
defining x̂ = argminz∈M̂k∗

‖x − z‖. The first two steps of this
procedure correspond to the following two problems:

∀k ∈ A, wk = argmin
w∈Rd

‖φkw + ck − x‖22 subject to

rk 4 φkw + ck 4 r′k, and (9)

k∗ = argmin
k∈A

‖φkwk + ck − x‖22. (10)

Once we have identified the index k∗ using (10), we can simply write
the final projection step as x̂ = φk∗wk∗ + ck∗ . In term of encoding

1An alternative strategy for defining Uk is to take a weighted mean of the
projection matrices φiφ>i and φjφ>j .

Algorithm 1: Learning Geometry-Preserving Union of Tangent
Patches (GP-UoTP)

Input: Dataset: X ⊂M ⊂ RD; manifold dimension: d� D;
neighborhood size: K; maximum approximation error: ε

Initialization of collection of tangent patches
1: ∀x ∈ X , NK(x)← {K nearest neighbors of x in X}
2: ∀x ∈ X , cx ← 1

|NK(x)|
∑

y∈NK(x)

y

3: ∀x ∈ X , [N 0
x] ∈ RD×|NK(x)| ← {y − cx : y ∈ NK(x)}

4: ∀x ∈ X , φx ∈ RD×d ← left singular vectors of [N 0
x]

corresponding to its d-largest singular values
5: ∀x ∈ X , rx ← x, r′x ← x, and Cx ← {x}
6: Let A : |A| = |X | be a set that indexes all tangent patches in

the collection T ← {Tj}j∈A with Tj ← {φj , cj , rj , r
′
j , Cj}

Merging of the tangent patches
7: loop
8: Ω← {(i, j) ∈ A×A : yi ∈ Ci, yj ∈ Cj such that

yi ∈ NK(yj) or yj ∈ NK(yi)}
9: (i∗, j∗)← argmin

(i,j)∈Ω
eproj(Ci, Cj)

10: if eproj(Ci∗ , Cj∗) < ε then
11: Tk∗ ← merge(Ti∗ , Tj∗),A ← (A \ {i∗, j∗}) ∪ {k∗},

and T ← (T \ {Ti∗ , Tj∗}) ∪ {Tk∗}
12: else
13: break the loop
14: end if
15: end loop
16: ∀j ∈ A, rj = {min

x∈Cj
xi}Di=1, and r′j = {max

x∈Cj
xi}Di=1

Output: A final set of patches: Tj = {φj , cj , rj , r
′
j , Cj}j∈A

requirements, note that we need to store a total of d+1 parameters,
given by (k∗, wk∗), to represent any x ∈ RD in terms of a GP-UoTP.

It can be seen from this discussion that our problem of projection
onto a GP-UoTP is effectively reduced to solving a series of convex
optimization problems, one for each k ∈ A, described by (9). In order
to solve these problems, notice that each tangent patch M̂k, k ∈ A,
can be written as the intersection of an affine subspace Bk, defined
as Bk = {y : y = φkw + ck, w ∈ Rd}, and a polyhedron Dk,
defined as Dk = {y : rk 4 y 4 r′k}. Accordingly, (9) can be
replaced with the problem of projection of x onto the intersection of
convex sets Bk and Dk. Note that while this hints toward the possible
use of projection onto convex sets methods [16], such methods only
guarantee a point—instead of the closest point to a given sample—in
the intersection of closed convex sets.

In order to motivate our solution to the problem of projection of
x onto Bk ∩Dk, we define

fk(x) =

{
0, x ∈ Bk,

+∞, otherwise, and
(11)

gk(x) =

{
0, x ∈ Dk;

+∞, otherwise.
(12)

Using this notation, we can replace (9) and (10) with the following
two problems:

∀k ∈ A, yk = argmin
y∈RD

fk(y) + gk(y) + ‖y − x‖22, and (13)

k∗ = argmin
k∈A

‖yk − x‖22. (14)

Note that since fk(y) + gk(y) 6= ∞ only when y ∈ Bk ∩Dk, it is
easy to convince oneself that (13) results in projection of x onto the
set M̂k = Bk ∩Dk. We also have from [17] that (13) has a unique
solution, given by yk = proxfk+gk (x) with proxfk+gk (·) denoting
the proximity operator of the sum of the functions fk(·) and gk(·).
Note that proxfk+gk (·) can be considered a generalization of the
notion of projection onto the underlying convex set Bk ∩Dk.

We now need means of computing proxfk+gk (·). To the best of our
knowledge, proxfk+gk (·) cannot be calculated directly for our choice
of fk(·) and gk(·). Nonetheless, we can use one of the proximal
methods described in [17], which is termed Dykstra’s projection
algorithm [18], to split the problem of projecting onto Bk ∩Dk into
a series of projections onto the convex sets Bk and Dk separately.
This is useful since the projection operators for Bk and Dk have
closed-form expressions. Specifically, the projection operator PBk (·)
for set Bk can be expressed as:

PBk (z) = φkφ
>
k (z − ck) + ck, z ∈ RD . (15)

Similarly, the projection operator PDk (·) for set Dk is defined as:

PDk (z) = {vi}
D
i=1, z ∈ RD , (16)

where

vi =

 zi, rk,i ≤ zi ≤ r′k,i;
argmin

q∈{rk,i,r
′
k,i
}
|zi − q|, otherwise.

Using this notation, we now outline Dykstra’s projection algorithm
for projecting x ∈ RD onto M̂k = Bk ∩Dk in Algorithm 2.

Algorithm 2: Dykstra’s Projection Algorithm
Initialize: x0 = x, p0 = 0, q0 = 0

1: for n = 0, 1, 2, ... do
2: yn = PBk (xn + pn)
3: pn+1 = xn + pn − yn
4: xn+1 = PDk (yn + qn)
5: qn+1 = yn + qn − xn+1

6: end for

Note that the sequence {xn}, n = 1, 2, 3, . . . , generated by
Dykstra’s algorithm is guaranteed to converge to the projection of x
onto M̂k [19]. We have now described means of efficiently solving
(13) and (14), which return the index of the “encoding patch” k∗

and the projection of x ∈ RD onto the encoding patch, given by
yk∗ ∈ RD . Finally, the encoding coefficients wk∗ ∈ Rd in this setting
can be calculated from these parameters as wk∗ = φ>k∗(yk∗ − ck∗).

IV. NUMERICAL RESULTS

In order to demonstrate value of the manifold learning and data
encoding framework developed in this paper, we perform denoising
experiments for manifold-sampled noisy data. In these experiments,
we focus on both synthetic data, which helps us appreciate the value
of geometry preservation in manifold learning, and real data. In the
case of synthetic data, the (noiseless) training data X is generated
by sampling 1200 data points uniformly at random from 3 half-turns
of a Swiss roll in R3. We then use Algorithm 1 to learn a GP-UoTP
approximation of X . For comparison purposes, we use the K-SVD
algorithm [4] to approximate X using an overcomplete dictionary
with 20 atoms and sparse codes with with at most 2 nonzero entries.

Next, we sample another N = 1200 test data points uniformly at
random from 3 half-turns of the same Swiss roll. We collect these

(a) (b)

(c) (d)

Fig. 1. (a) Noisy data sampled from 3-half turns of a Swiss roll (SNR = 10
dB). Denoised data using (b) GP-UoTP (MSE = 9.69 dB), (c) K-SVD (MSE
= 11.88 dB) and (d) Haar wavelet thresholding (MSE = 10.98 dB).

Fig. 2. Noise is added to 1000 images of digit 0 extracted from the
MNIST database (SNR = 10dB). Noisy data is projected onto the learnt
flats/planes/patches for denoising.

test samples into a matrix Y ∈ R3×N and then add additive white
Gaussian noise to Y to obtain noisy test data Yn (see Fig. 1(a)). In
these experiments, we set the noise variance to be such that the signal-
to-noise ratio (SNR) is 10 dB, where SNR = 10 log

‖Y ‖2F
E[‖Y−Yn‖2F]

.
We then denoise Yn using our GP-UoTP framework as follows: we
project each sample in Yn onto our GP-UoTP approximation using
the procedure of Sec. III-B to obtain denoised data Ŷ . In addition,
we also denoise Yn using the dictionary obtained through K-SVD by
sparsely coding the samples in Yn via orthogonal matching pursuit
[20]. Finally, we also denoise Yn using wavelet denoising, which
involves working with the Haar wavelet at a scale of 2 and a hard
threshold of 1.26. Note that we chose these values for the scale and
threshold after an exhaustive search over the choice of parameters
for the best possible denoising results.

Our denoising results for GP-UoTP, K-SVD, and wavelet denoising
are reported in Figs. 1(b), 1(c), and 1(d), respectively. It can be seen
from these figures that denoising using our framework preserves the
geometric structure of the original data, which can be attributed to our
focus on geometry preservation. We also report quantitative results

Fig. 3. Noise is added to 1000 images of digit 0 extracted from the MNIST
database (SNR = 10dB). For denoising, the noisy data is sparse coded on the
dictionary learnt using K-SVD.

for denoising using the metric of mean squared error (MSE), defined
as MSE = 1

N
‖Y −Ŷ ‖2F . While the MSE of our denoised data is 9.69

dB, it is 11.88 dB for K-SVD and 10.98 dB for wavelet denoising.
In the case of denoising using real-world data, we focus on the

MNIST database [21]. The noiseless data in this case corresponds to
random sampling of N = 1000 images of digit 0 from the database.
We vectorize each one of these images and then column-wise arrange
them into a matrix Y . We then use GP-UoTP (our method), merging
based on difference of tangents (MDoT) [9], and the median K-flats
(MKF) [22] algorithms to approximate the geometry underlying Y
in terms of a UoTP, a union of tangent planes, and a union of affine
spaces, respectively. In all these algorithms, we select d = 5 for
the dimension of the tangent patches/tangent planes/affine spaces.
Similar to the case of synthetic data, we add noise to Y to obtain
noisy data Yn with SNR = 10 dB. We then denoise this noisy Yn by
projecting each sample in it onto its corresponding patch/plane/flat
to obtain Ŷ .2 We repeat this learning and denoising procedure for
varying number of patches, planes, and flats, respectively, so that
the MSE results for these algorithms can be plotted as functions
of number of patches/planes/flats. Our final results, averaged over
50 noise realizations, are reported in Fig. 2, which illustrate the
superiority of our framework over the other two approaches.

We conclude this discussion by also reporting the denoising
performance of K-SVD on digit ‘0’ images. In this case, we set
the sparsity to 5 and then report the K-SVD denoising performance
in Fig. 3 as we vary the number of dictionary atoms. (Note that
the number of dictionary atoms has to be less than N = 1000
for meaningful results.) Comparing Fig. 2 with Fig. 3 shows that
GP-UoTP based denoising with large enough number of patches has
better performance than K-SVD based denoising.

V. CONCLUSION

In this paper, we revisited the problem of data-adaptive learning
of the ambient geometry of a nonlinear, non-intersecting submanifold
of a Euclidean space. In this regard, we developed a framework that
approximates the geometry of a nonlinear manifold from training data
using a union of tangent patches (UoTP). In addition, we developed
an efficient approach to projecting/encoding new data points onto
the UoTP learned from training data. Finally, we demonstrated the
value of our learning and encoding frameworks by comparing their
denoising performance on both synthetic and real data with that of
state-of-the-art methods in the literature.

2Note that we rely on our framework of Sec. III-B for these projections,
whereas we have to rely on side knowledge for both MDoT and MKF due to
the lack of explicit projection algorithms developed in [9] and [22].

REFERENCES

[1] R. G. Baraniuk, V. Cevher, and M. B. Wakin, “Low-dimensional
models for dimensionality reduction and signal recovery: A geometric
perspective,” Proc. of the IEEE, vol. 98, no. 6, pp. 959–971, 2010.

[2] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T. Lee, and T. J.
Sejnowski, “Dictionary learning algorithms for sparse representation,”
Neural Computation, vol. 15, no. 2, pp. 349–396, 2003.

[3] J. Mairal et al., “Online dictionary learning for sparse coding,” in Proc.
of the 26th Annu. Int. Conf. on Mach. Learning. ACM, 2009, pp. 689–
696.

[4] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, 2006.

[5] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[6] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, 2000.

[7] L. J. van der Maaten, E. O. Postma, and H. J. van den Herik, “Di-
mensionality reduction: A comparative review,” J. Machine Learning
Research, vol. 10, no. 1-41, pp. 66–71, 2009.

[8] Z. Zhang and H. Zha, “Principal manifolds and nonlinear dimensionality
reduction via tangent space alignment,” SIAM J. Sci. Comput., vol. 26,
no. 1, pp. 313–338, 2004.

[9] S. Karygianni and P. Frossard, “Linear manifold approximation based
on differences of tangents,” in Proc. IEEE Int. Conf. Acoustics, Speech
and Signal Processing, 2011, pp. 973–976.

[10] S. Karygianni and P. Frossard, “Tangent-based manifold approximation
with locally linear models,” Signal Processing, vol. 104, pp. 232 – 247,
2014.

[11] W. K. Allard, G. Chen, and M. Maggioni, “Multi-scale geometric

methods for data sets II: Geometric multi-resolution analysis,” Appl.
and Computational Harmonic Anal., vol. 32, no. 3, pp. 435–462, 2012.

[12] T. Ahmed and W. U. Bajwa, “A greedy, adaptive approach to learning
geometry of nonlinear manifolds,” in Proc. IEEE Workshop on Statistical
Signal Process., June 2014.

[13] R. Vidal, “A tutorial on subspace clustering,” IEEE Signal Process.
Mag., vol. 28, no. 2, pp. 52–68, 2010.

[14] T. Zhang, A. Szlam, Y. Wang, and G. Lerman, “Hybrid linear modeling
via local best-fit flats,” Int. J. Computer Vision, vol. 100, no. 3, pp.
217–240, 2012.

[15] B. Kégl, “Intrinsic dimension estimation using packing numbers,” in
Proc. Adv. Neural Inform. Process. Syst., 2002, pp. 681–688.

[16] H. H. Bauschke and J. M. Borwein, “On projection algorithms for
solving convex feasibility problems,” SIAM review, vol. 38, no. 3, pp.
367–426, 1996.

[17] P. L. Combettes and J. Pesquet, “Proximal splitting methods in signal
processing,” in Fixed-Point Algorithms for Inverse Problems in Science
and Eng., pp. 185–212. Springer, 2011.

[18] J. P. Boyle and R. L. Dykstra, “A method for finding projections onto
the intersection of convex sets in Hilbert spaces,” in Advances in Order
Restricted Statistical Inference, pp. 28–47. Springer, 1986.

[19] H. H. Bauschke and P. L. Combettes, “A Dykstra-like algorithm for
two monotone operators,” Pacific J. of Optimization, vol. 4, no. 3, pp.
383–391, 2008.

[20] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Conf. Rec. of The Twenty-Seventh Asilomar Conf. on
Signals, Syst. and Comput. IEEE, 1993, pp. 40–44.

[21] Y. LeCun and C. Cortes, “The MNIST database of handwritten digits,”
http://yann.lecun.com/exdb/mnist/, 1998.

[22] T. Zhang, A. Szlam, and G. Lerman, “Median k-flats for hybrid linear
modeling with many outliers,” in Proc. IEEE 12th Int. Conf. Comput.
Vision Workshops, 2009, pp. 234–241.

