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Abstract—The focus of this work is on derivation of conditions
for asymptotic recovery of Kronecker-structured dictionaries
underlying second-order tensor data. Given second-order tensor
observations (equivalently, matrix-valued data samples) that are
generated using a Kronecker-structured dictionary and sparse
coefficient tensors, conditions on the dictionary and coefficient
distribution are derived that enable asymptotic recovery of
the individual coordinate dictionaries comprising the Kronecker
dictionary within a local neighborhood of the true model. These
conditions constitute the first step towards understanding the
sample complexity of Kronecker-structured dictionary learning
for second- and higher-order tensor data.

I. INTRODUCTION

The age of big data has given rise to massive multi-
dimensional datasets that need to be processed, stored, and
communicated efficiently. In many applications, samples in
these datasets can be represented using a tensor structure.
Developing representation learning techniques that exploit this
structural correlation across dimensions will result in more
efficient data storage and processing. Our focus in this paper
is on two-dimensional data, such as images, that intrinsically
possess high spatial correlation. While there exist several
works that exploit this correlation for applications such as
image recognition and classification [1], [2], relatively less
attention has been paid to exploitation of this correlation for
representation learning. In particular, dictionary learning (DL)
is a (data-driven) representation learning technique that results
in sparse representations of data that can then be leveraged for
denoising, compression, classification, etc. But traditional DL
approaches do not account for the structure of tensor data and
instead rely on vectorization for tensor data representation [3]–
[5]. In contrast, notice that a second-order tensor data point
Y ∈ Rm1×m2 can usually be decomposed as Y = AXB>,
where X ∈ Rp1×p2 denotes the sparse coefficient tensor and
A ∈ Pm1×p1 and B ∈ Pm2×p2 denote transformations on the
columns and rows of X. We can rewrite this relation as

y = (B⊗A)x, (1)

where y and x are vectorized versions of Y and X, and
⊗ denotes the matrix Kronecker product [6]. Thus, the DL
problem for second-order tensors can be reformulated in terms
of (1), where the goal is to find the Kronecker-structured
(KS) dictionary underlying the data using training samples
{Yi = AXiB

>}i. In this work, we take a first step towards
understanding the advantages of learning KS dictionaries from
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second-order tensor data by deriving conditions on the dictio-
nary and coefficient distribution for asymptotic recovery of KS
dictionaries from noisy training samples.

A. Relationship to Previous Work

In terms of relation with prior work, there have been several
works that develop algorithms to learn KS dictionaries for
2nd-order [7]–[9] and 3rd-order tensors [10] based on the
Tucker decomposition of tensors [11]. Although these works
demonstrate the enhanced performance of KS-DL compared
to traditional vectorized DL schemes, they only focus on the
computational aspects of KS-DL and do not provide an under-
standing of the fundamental advantages and limits associated
with learning structured dictionaries for tensor data. There
are several works in the literature that study the unstructured
dictionary identifiability problem. In Jung et al. [12], minimax
lower bounds for dictionary reconstruction error (in the Frobe-
nius norm) are provided. These bounds show that the number
of samples for reliable reconstruction (up to a prescribed
mean squared error) of a m × p dictionary within its local
neighborhood is on the order of N = Ω(mp2). A competing
upper bound for the sample complexity of the DL problem
is obtained in [13], where it is shown that N = Ω(mp3)
samples is sufficient to guarantee (with high probability) the
existence of a local minimum of the DL cost function within
a neighborhood of the true reference dictionary.

In our previous works, we have obtained lower bounds on
the minimax risk of KS-DL for 2nd-order [14] and Kth-order
tensors [15], [16] and showed that the necessary number of
samples for reconstruction of the true KS dictionary within
its local neighborhood up to a given estimation error scales
with the sum of the product of the dimensions of the coor-
dinate dictionaries, i.e., N = Ω(p

∑K
k=1mkpk), compared to

N = Ω(p
∏K

k=1mkpk) for vectorized data [12]. Given this
significant reduction in the lower bound, we turn our attention
to the upper bound for the sample complexity of the KS-DL
problem and investigate if similar reductions appear there.

B. Our Contributions

In this paper, we study the dictionary identification problem
for KS dictionaries given by the Kronecker product of two
coordinate dictionaries and derive conditions that ensure the
existence of a local minimum of the KS-DL objective function
within a small neighborhood of the underlying coordinate
dictionaries. Our focus in the analysis is on the asymptotic KS-
DL objective function. Our results can lead to an understanding
of the finite sample size case, and suggest that KS dictionary



identification can be done with smaller sample complexity
compared to traditional DL identification.

To the best of our knowledge, this is the first work
presenting KS-DL identification results. Our proof techniques
follow a similar approach as in [13] with the following key
distinctions: 1) we assume the reference dictionary underlying
the data and the recovered dictionary belong to the class of
KS dictionaries, 2) we assume dictionary coefficient vectors
follow the separable sparsity model that requires non-zero
coefficients to be grouped in blocks [15],1 and 3) we derive
conditions that ensure existence of a local minimum within
small neighborhoods of the reference coordinate dictionaries.

C. Notation Convention

Bold upper-case and lower-case letters are used to denote
matrices and vectors, respectively. Lower-case letters denote
scalars. The i-th element of v is denoted by vi. The elements
of the sign vector of v, denoted as sign(v), are equal to
sign(vi) = vi/|vi|. The k-th column of X is denoted by xk

and XI denotes the matrix consisting of the columns of X
with indices I. We use |I| for the cardinality of the set I.
Sometimes we use matrices indexed by numbers, such as X1,
in which case the second index denotes the column index.
Norms are given by subscripts, so ‖v‖0, ‖v‖1, and ‖v‖2
are the `0, `1, and `2 norms of v, while ‖X‖2 and ‖X‖F
are the spectral and Frobenius norms of X. We use [K] to
denote {1, 2, . . . ,K}. For matrices X1 and X2, we define
their distance to be ‖X1 − X2‖F . For X0 belonging to the
set X , we define Sr(X0) ,

{
X ∈ X : ‖X−X0‖F = r

}
,

Br(X0) ,
{
X ∈ X : ‖X−X0‖F < r

}
, and B̄r(X0) ,{

X ∈ X : ‖X−X0‖F ≤ r
}

. We use the standard “big-O”
notation for asymptotic scaling. We denote ∆f(X1;X2) ,
f(X1)−f(X2). We define HX , (X>X)−1, X+ , HXX>,
and PX , XX+.

II. SYSTEM MODEL

We assume observations y ∈ Rm are generated according
to a reference dictionary D0 = D0

1 ⊗D0
2:

y =
(
D0

1 ⊗D0
2

)
x + n, ‖x‖0 ≤ s, (2)

where x ∈ Rp denotes the sparse generating coefficient vector
and n ∈ Rm denotes the underlying noise vector. Here,
D0

k ∈ Dk = {Dk ∈ Rmk×pk , ‖dk,j‖2 = 1,∀j ∈ [pk]} for
k ∈ {1, 2}, and p1p2 = p and m1m2 = m. In this work,
we study the asymptotic KS-DL objective function. That is,
the goal is to recover the underlying KS dictionary by solving
the following regularized stochastic optimization program:

min
D1∈D1
D2∈D2

E
{

inf
x′∈Rp

1

2
‖y − (D1 ⊗D2)x′‖22 + λ‖x′‖1

}
, (3)

where λ is a regularization parameter and we have replaced
the `0 norm with its convex relaxation, the `1 norm. We denote
the expectation in (3) as fP(D1,D2) and the expression inside
the expectation as fy(D1,D2). Our main goal in this paper
is to derive conditions that ensure fP(D1,D2) has a local
minimum within some neighborhoods of coordinate reference
dictionaries D0

1 and D0
2.

1This model arises in processing of images and video sequences [17], [18].

Coefficient distribution: We assume the coefficient ten-
sor X follows the “separable sparsity” model. Specifically,
we sample sk elements uniformly at random from [pk], for
k ∈ {1, 2}. Then, the random support of x = vec(X) is
{J ⊆ [p], |J | = s} that is associated with {J1 × J2 : Jk ⊆
[pk], |Jk| = sk, k ∈ {1, 2}} via lexicographic indexing and
s = s1s2. We make the same assumptions as assumptions
A and B in [13] and we borrow much of the notation
from Gribonval et al. [13]. Some major ones include: x and
l = sign(x) are not correlated, the coefficient vectors are
bounded, i.e., ‖x‖2 ≤Mx, and the nonzero entries of x have a
minimum magnitude, i.e., minj∈J |xj | ≥ xmin. We also define
κx , E {|x|} /

√
E {x2} as a measure of flatness of x (κx ≤ 1

with κx = 1 when all nonzero coefficients are equal) [13].

Noise distribution: We assume additive white bounded
noise, i.e., ‖n‖2 ≤Mn.

We also use the following definitions throughout the paper:
δk(D) denotes the restricted isometry property (RIP) constant
of order s for matrix D [19]. For a matrix D, we define its
cumulative coherence as

µs(D) , sup
|J |≤s

sup
j 6∈J
‖D>Jdj‖1. (4)

Note that for s = 1, the cumulative coherence is equivalent to
the worst-case coherence [13].

III. DICTIONARY IDENTIFIABILITY RESULT

In this section, we provide a variant of [13, Theorem 1]
for the KS-DL objective function in (3).

Theorem 1. Suppose the observations are generated accord-
ing to (2) and the dictionary coefficients follow the separable
sparsity model of Section II. Further, assume the following
conditions are satisfied:

max
k∈{1,2}

{
µsk(D0

k)
}
≤ 1

4
, sk ≤

pk

8
(
‖D0

k‖2 + 1
)2 , (5)

and max {C1,min, C2,min} < Cmax, where

Ck,min ,

(
48√
1.5

)
κ2x
sk
pk

∥∥∥D0
k
>
D0

k − I
∥∥∥
F

(∥∥D0
k

∥∥
2

+ 1
)
,

Cmax ,
1

6
√

1.5

E {|x|}
Mx

(1− 2µs(D
0)). (6)

Then, the map (D1,D2) ∈ (D1,D2) → fP(D1,D2) admits
a local minimum D̂ = D̂1 ⊗ D̂2 such that D̂k ∈ Brk(D0

k),
k ∈ {1, 2}, for any rk > 0 as long as

λ ≤ xmin

8
√

1.5
, (7)

λCk,min < E {|x|} rk < λCmax, k ∈ {1, 2}, (8)

and

Mn < 3
√

1.5Mx

(
2
λCmax

E {|x|}
− (r1 + r2)

)
. (9)

The proof of Theorem 1 is provided in Section IV. Here,
we provide a brief outline of the formal proof.



For given radii 0 < rk < 2
√
pk, k ∈ {1, 2}, the spheres

Srk(D0
k) are non-empty.2 We derive conditions on the coef-

ficients, underlying coordinate dictionaries, noise energy, and
rk’s such that

∆fP(r1, r2) , inf
Dk∈Srk (D

0
k)

∆fP
(
(D1,D2); (D0

1,D
0
2)
)
> 0.

Moreover, the mapping (D1,D2) → fP(D1,D2) is continu-
ous w.r.t. the Frobenius norm ‖Dk −D′k‖F on all Dk,D

′
k ∈

Rmk×pk , k ∈ {1, 2}. Hence, it is also continuous on compact
constraint sets Dk’s. The compactness of closed balls B̄rk(D0

k)
and the continuity of the mapping (D1,D2) → fP(D1,D2)
imply the existence of a local minimum (D̂1, D̂2) in open
balls, Brk(D0

k)’s, k ∈ {1, 2}.
To find conditions that ensure ∆fP(r1, r2) > 0, we take the

next steps: given coefficients that follow the separable sparsity
model, we can decompose any DJ , |J | = s, as

DJ = D1,J1 ⊗D2,J2 , (10)

where |Jk| = sk and rank(Dk,Jk
) = sk for

k ∈ {1, 2}. Given generating l = sign(x), we obtain
x̂y((D1,D2)|l) by solving fy(D1,D2) conditioned on l,
hence eliminating the dependency of fP(D1,D2) on infx′

by finding a closed-form expression for fP(D1,D2) given
l, which we denote as φP ((D1,D2)|l). Then, assuming
sign(x̂y((D1,D2)|l)) = l̂ is equal to l and using (10), we
expand ∆φP

(
(D1,D2); (D0

1,D
0
2)|l
)

and separate the terms
that depend on each radius rk = ‖Dk − D0

k‖F to obtain
conditions for sparsity levels sk, k ∈ {1, 2}, and coordinate
dictionaries such that ∆φP

(
(D1,D2); (D0

1,D
0
2)|l
)
> 0. Fi-

nally, we derive conditions on noise, coordinate dictionary
coherences and rk’s that ensure ∆fP

(
(D1,D2); (D0

1,D
0
2)
)

=
∆φP

(
(D1,D2); (D0

1,D
0
2)|l
)
.

Remark 1. The key assumption in the proof of Theorem 1 is
expanding DJ according to (10). This is a consequence of
the separable sparsity model for dictionary coefficients. For a
detailed discussion on the case where sparse coefficients are
drawn uniformly at random (which differs from the separable
sparsity model), we refer readers to our earlier work [15].

IV. PROOF OF THEOREM 1

The proof of Theorem 1 relies on the following proposi-
tions and lemmas.

Proposition 1. Suppose the following inequalities hold for k ∈
{1, 2}:

max
k

{
δsk(D0

k)
}
≤ 1

4
and sk ≤

pk
8(‖D0

k‖2 + 1)2
. (11)

Then, for

λ̄ ,
λ

E {|x|}
≤ 1

8
√

1.5
, (12)

any rk ≤ 0.15, and for all Dk ∈ Srk(D0
k), we have :

∆φP
(
(D1,D2); (D0

1,D
0
2)|l
)
≥

E{x2}s
8

(
r1
p1

(
r1 − r1,min(λ̄)

)
+
r2
p2

(
r2 − r2,min(λ̄)

))
,

2This follows from the construction of dictionary classes, Dk’s.

where rk,min(λ̄) ,
(

1.5 + 8
√
1.5
3 λ̄

)
λ̄Ck,min . In addi-

tion, if λ̄ ≤ 0.15/maxk Ck,min, then rk,min < 0.15.
Thus, ∆φP

(
(D1,D2); (D0

1,D
0
2)|l
)
≥ 0 for all rk ∈

(rk,min(λ̄), 0.15], k ∈ {1, 2}.

The proof of Proposition 1 relies on the following definition
and lemmas as well as Lemmas 4–7,15, and 16 in [13].

Definition 1. Given (D1,D2) and (D0
1,D

0
2), we have

(D1 ⊗D2)− (D0
1 ⊗D0

2)

= (D1 −D0
1)⊗D2 + D0

1 ⊗ (D2 −D0
2)

= (D1 −D0
1)⊗D0

2 + D1 ⊗ (D2 −D0
2)

, (D1 −D0
1)⊗ D̃2 + D̃1 ⊗ (D2 −D0

2), (13)

where without loss of generality, we have defined D̃k to be
equal to either D0

k or Dk.

Lemma 1. Let l ∈ {−1, 0, 1}p be an arbitrary sign vector
and J = J (l) be its support. Define

φy((D1,D2)|l) = inf
x∈Rp

supp(x)⊂J

1

2
‖y − (D1 ⊗D2)x‖22 + λl>x.

Then, if D>k,Jk
Dk,Jk

is invertible for k ∈ {1, 2},
φy((D1,D2)|l) can be expressed in closed form:

φy((D1,D2)|l) =
1

2
‖y‖22 −

1

2
y>
(
PD1,J1

⊗PD2,J2

)
y

+ λl>J

(
D+

1,J1
⊗D+

2,J2

)
y − λ2

2
l>J
(
HD1,J1

⊗HD2,J2

)
lJ .

Lemma 2. Assume max
{
δsk(D0

k), δsk(Dk)
}
< 1 for k ∈

{1, 2}. For φP ((D1,D2)|l) , E {φy((D1,D2)|l)}, we have

∆φP
(
(D1,D2); (D0

1,D
0
2)|l
)

=
E{x2}

2[
E
{

Tr
[
D0

1
>
PD̃1,J1

D0
1

]}
E
{

Tr
[
D0

2
>

(I−PD2,J2
)D0

2

]}
+E

{
Tr
[
D0

1
>

(I−PD1,J1
)D0

1

]}
E
{

Tr
[
D0

2
>
PD̃2,J2

D0
2

]}]
− λE{|x|}

[
E
{

Tr
[
D̃+

1,J1
D0

1

]}
E
{

Tr
[
I−D+

2,J2
D0

2

]}
+E

{
Tr
[
I−D+

1,J1
D0

1

]}
E
{

Tr
[
D̃+

2,J2
D0

2

]}]
+
λ2

2

[
E
{

Tr
[
HD̃1,J1

]}
E
{

Tr
[
HD0

2,J2
−HD2,J2

]}
+E

{
Tr
[
HD0

1,J1
−HD1,J1

]}
E
{

Tr
[
HD̃2,J2

]}]
. (14)

Lemma 3. For any Jk ⊂ [pk], |Jk| = sk, the following
relations hold:

‖Dk,Jk
‖2 ≤

√
1 + δsk(Dk),∥∥D>k,Jk

∥∥
2
≤
√

1 + µsk−1(Dk),

δsk(Dk) ≤ µsk−1(Dk). (15)

Lemma 4. Suppose that (D1,D2) and (D0
1,D

0
2) are such that

Ak ≥ max
{∥∥D>k Dk − I

∥∥
F
,
∥∥D0

k
>
D0

k − I
∥∥
F

}
,

Bk ≥ max
{
‖Dk‖2, ‖D0

k‖2
}
,

δk ≥ max
{
δsk(Dk), δsk(D0

k)
}
. (16)



Then, we have

∆φP
(
(D1,D2); (D0

1,D
0
2)|l
)
≥ E{x2}

2

2∑
k=1

s

pk
‖Dk −D0

k‖F[
‖Dk −D0

k‖F
(

1− sk
pk

B2
k

1− δk
− λ̄κ2x

(√
1 + δk′

1− δk′

))
−
(√

1 + δk′

1− δk′
+

2λ̄

(1− δ1)(1− δ2)

)
λ̄κ2x

sk
pk

2AkBk

1− δk

]
,

where k′ = 1 if k = 2 and k′ = 2 if k = 1.

Proposition 1 shows ∆φP((D1,D2); (D0
1,D

0
2)|l) ≥ 0.

However, given x̂y((D1,D2)|l) the solution of
φy((D1,D2)|l), l̂ = sign (x̂y((D1,D2)|l)) is not necessarily
equal to l. We derive conditions that ensure x̂y((D1,D2)|l) is
almost surely the unique minimizer of fy(D1,D2) and l̂ = l.
We introduce the following proposition for this purpose.

Proposition 2. Let the reference coordinate dictionaries D0
1

and D0
2 satisfy:

max
k
{δsk(D0

k)} ≤ 1

4
and max

k
{µsk(D0

k)} ≤ 1

2
. (17)

Suppose λ̄ ≤ xmin

2E {|x|}
and max{r1, r2} ≤ λ̄Cmax. If the

noise level satisfies

Mn < 3
√

1.5Mx

(
2λ̄Cmax − (r1 + r2)

)
, (18)

then, for any (D1,D2) such that Dk ∈ Srk(D0
k), for k ∈

{1, 2}, x̂y((D1,D2)|l) is almost surely the minimizer of x→
1
2 ‖y − (D1 ⊗D2)x‖22 + λ‖x‖1, l̂ = l and

∆φP
(
(D1,D2), (D0

1,D
0
2)|l
)

= ∆fP
(
(D1,D2), (D0

1,D
0
2)
)
.

The proof of Proposition 2 relies on the following lemma
and Lemmas 10–13 in [13]:

Lemma 5. For any D0 = D0
1 ⊗D0

2 and D = D1 ⊗D2 such
that Dk ∈ B̄rk(D0

k), for k ∈ {1, 2}, suppose the following
inequalities are satisfied:

max
k
{µsk(D0

k)} ≤ 1

2
and max

k
{δsk(D0

k)} ≤ 1

4
. (19)

Then, we have

µs(D) ≤ µs(D
0) + 2

√
1.5s (r1 + r2) . (20)

Proof of Theorem 1: The assumptions in (5) ensure that
the conditions in (11) are satisfied for Proposition 1 and the
conditions in (17) hold for Proposition 2 . The assumption in
(6) implies

E
{
x2
}

MxE {|x|}
>

(
288

(1− 2µs(D0))

)
max

k={1,2}

{
sk
pk

∥∥∥D0
k
>
D0

k − I
∥∥∥
F

(∥∥D0
k

∥∥
2

+ 1
)}

. (21)

Equation (21) and (7) ensure that the condition in
(12) is satisfied for Proposition 1 and λ̄ ≤ xmin

2E {|x|}
holds for Proposition 2. Hence, according to
Proposition 1, ∆φP

(
(D1,D2); (D0

1,D
0
2)|l
)
≥ 0 for all

rk ∈ (λ̄Ck,min, 0.15], k ∈ {1, 2}. Finally, according
to Proposition 2, the assumption in (9) implies
∆φP

(
(D1,D2); (D0

1,D
0
2)|l
)

= ∆fP
(
(D1,D2); (D0

1,D
0
2)
)

for all rk ≤ λ̄Cmax, k ∈ {1, 2}. Furthermore, the
assumption in (7) implies Cmaxλ̄ ≤ 0.15. Consequently,
for any rk > 0, k ∈ {1, 2} satisfying conditions in (8),
(D1,D2) ∈ (D1,D2)→ fP(D1,D2) admits a local minimum
D̂ = D̂1 ⊗ D̂2 such that D̂k ∈ Brk(D0

k), k ∈ {1, 2}.

V. DISCUSSION

In this section, we discuss the implications of Theorem 1.
Comparing this result with the results of [13, Theorem 1] for
vectorized observations, we see that our result captures the de-
pendence of the local minimum on the coordinate dictionaries
and, also, demonstrates that there exists a local minimum of
fP(D1,D2) that is in a local neighborhood of the coordinate
dictionaries. This ensures recovery of coordinate dictionaries
(within some local neighborhood of true coordinate dictionar-
ies), as opposed to KS dictionary recovery [13], suggesting
that we can obtain smaller sample complexity results for KS-
DL that depend on the neighborhood radii around coordinate
dictionaries and their dimensions.

Comparing our conditions for Theorem 1 with [13, The-
orem 1], given coefficients drawn from the separable sparsity
model, the sparsity constraints for the coordinate dictionaries
in (5) translate into

s

p
=
s1s2
p
≤ 1

64
(
‖D0

1‖2 + 1
)2 (‖D0

2‖2 + 1
)2 . (22)

Therefore, we have O
(
s

p

)
=

1

‖D0
1‖

2
2 ‖D0

2‖
2
2

=
1

‖D0‖22
.

Using the fact that
∥∥D0

∥∥
2
≥ ‖D0‖F /

√
m =

√
p/
√
m, this

translates into sparsity order s = O (m). This scaling is similar
to the scaling of the sparsity level in [13]. Moreover, looking
at the left hand side of the condition in (21), it is less than 1.
According to the Welch bound [20], we have∥∥∥D0

k
>
D0

k − I
∥∥∥
F
≥

√
pk(pk −mk)

mk
. (23)

The fact that
∥∥D0

k

∥∥
2
≥ √

pk/
√
mk and the assumption

µsk(D0
k) ≤ 1/4 imply that the right hand side of (21) is

lower bounded by Ω
(

maxk sk
√

(pk −mk)/m2
k

)
. Therefore,

Theorem 1 applies to coordinate dictionaries with dimensions
pk ≤ m2

k and subsequently, KS-dictionary with p ≤ m2. This
is in line with the scaling results in [13] for vectorized signals.

VI. CONCLUSION

In this work, we addressed the KS-DL identification prob-
lem and obtained conditions on the dictionary coefficients,
noise level, and the underlying KS dictionary that ensure
existence of a local minimum of the KS-DL asymptotic
objective function within local neighborhoods of the coor-
dinate dictionaries. Future work includes providing sample
complexity results for the KS dictionary identification problem,
generalizing the analysis to KS-DL for Kth-order tensor data,
extension of the results to randomly sparse distributed coef-
ficient models, and providing KS-DL algorithms that achieve
the sample complexity scaling.
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