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Abstract—Distributed averaging, or distributed average con-
sensus, is a common method for computing the sample mean of
the data dispersed among the nodes of a network in a decentral-
ized manner. By iteratively exchanging messages with neighbors,
the nodes of the network can converge to an agreement on
the sample mean of their initial states. In real-world scenarios,
these messages are subject to bandwidth and power constraints,
which motivates the design of a lossy compression strategy.
Few prior works consider the rate allocation problem from
the perspective of constrained optimization, which provides a
principled method for the design of lossy compression schemes,
allows for the relaxation of certain assumptions, and offers
performance guarantees. We show for Gaussian-distributed
initial states with entropy-coded scalar quantization and vector
quantization that the coding rates for distributed averaging can
be optimized through generalized geometric programming. In
the absence of side information from past states, this approach
finds a rate allocation over nodes and iterations that minimizes
the aggregate coding rate required to achieve a target mean
square error within a finite run time. Our rate allocation
is compared to some of the prior art through numerical
simulations. The results motivate the incorporation of side-
information through differential or predictive coding to improve
rate-distortion performance.

Index Terms—Compression, consensus, geometric program-
ming, optimization, source coding.

I. INTRODUCTION

The proliferation of wireless sensors and large distributed
data sets in recent years has provided significant motiva-
tion for the development of distributed computing methods.
In many distributed computing settings, it is necessary to
compute a function of data that may be dispersed among
a number of computing nodes. Examples include wireless
sensor networks (WSNs), where each agent observes a
different measurement of a physical process, and large-
scale server farms, where the size of the data set requires
distributed storage [1]. The class of distributed algorithms
considered in this paper computes these functions using only
interactions among local subsets of the network nodes. One
popular approach to distributed function computation, which
has many variants, is consensus [2, 3]. Consensus has found
applications in a wide variety of settings, including dis-
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tributed swarm control, sensor fusion, optimization, filtering,
environmental monitoring, and distributed learning [2, 4, 5].

As a motivating example for our lossy compression frame-
work, we consider the application of distributed averaging
in representation learning for the internet of things (IoT).
Distributed average consensus helps different nodes share
intermediate results within a distributed version of the power
method [6],1 which can be used in distributed dictionary
learning schemes such as cloud K-SVD [5]. Take face
recognition as an example. Powered by IoT, a camera net-
work can gather a large number of face images and train
a face recognition model using dictionary learning [7]. If
these cameras can share the data they gathered and re-
train their face recognition model, then they can improve
their performance over time. In fully connected networks,
the cameras would easily share newly gathered images and
re-train their face recognition model efficiently. However,
in IoT, the network is often ad-hoc and may have sparse
connectivity. Furthermore, in dictionary learning for images,
large quantities of data must be communicated among nodes,
which strains the energy constraints of IoT devices [8].

In this work, we propose a scheme that offers the potential
to balance the competing metrics of communication load,
estimation error, and execution time for such IoT applica-
tions. After running for a finite number of iterations T   8,
average consensus will produce an estimate of the mean that
has some associated mean square error (MSE), MSEpT q ¡ 0.
If the internode messages are quantized, this process will
require the transmission of a total or aggregate coding rate,
Ragg ¡ 0. Our goal is to minimize the communication load,
measured by Ragg, subject to a given number of iterations to
be carried out (T ) and a desired final accuracy, MSEpT q. To
perform this minimization, we use the theory of generalized
geometric programming (GGP) [9, 10] to formulate a convex
program that can find the global optimum solution for certain
lossy compression schemes.

A. Prior art

Many early works on consensus assumed that the nodes
could communicate real-valued data to one another [11].

1This distributed power method helps find the dominant singular vector
of a matrix when batches of its columns are stored among different nodes
of a network.



In realistic scenarios, the nodes must communicate within
bandwidth and energy constraints, which can have a sig-
nificant impact on the convergence of distributed averaging
algorithms. Although many papers have been published on
quantized consensus in recent years (e.g., [1, 4, 11–17]),2 a
large portion considers trade-offs among run time, commu-
nication load, and final accuracy without formulating the
problem as constrained optimization. Early publications on
quantized consensus (e.g., [11, 19]) show that introducing
perturbations of constant variance (such as quantization error)
into the traditional consensus state update prevents conver-
gence due to the limited precision of the quantizer. Due
to the difficulties associated with quantization error, many
works (e.g., [12–15, 20, 21]) address the incorporation of dy-
namic coding strategies into consensus protocols. However,
few prior schemes explicitly consider the rate-distortion (RD)
trade-off, and they instead offer heuristics to optimize their
respective performance metrics.

Several papers (e.g., [12, 20, 21]) consider the possibility
of using differential coding (also called difference quanti-
zation) [22] with a shrinking quantization range during the
transmission of messages between nodes. Of these, Thanou
et al. [13] demonstrated lower MSE than previous works
in this area (e.g., [12, 20]) with equal communication load.
Although these papers [12, 13, 20] exploit side-information
in their coding strategies, they study the simple fixed-rate
uniform quantizer and do not make effective use of lossy
compression to balance the trade-offs among T , MSEpT q,
and Ragg.

Yildiz and Scaglione [14, 15], unlike other authors, explic-
itly considered the RD trade-off to achieve an asymptotic
MSE value in consensus for the case of Gaussian initial
states. They proposed schemes based on differential [15],
predictive, and Wyner-Ziv coding [14]. Despite their sophis-
ticated coding approaches, the state update step they used can
only provide bounded steady-state error in the limit of many
consensus iterations, so that limTÑ8MSEpT q ¡ 0 [14].

In addition to these dynamic coding strategies [12–14,
20], a few works [4, 17] consider optimization strategies for
energy consumption in wireless sensor networks. However,
Nokleby et al. [4] require a specific topological evolution
of the network. Huang and Hua [17] keep the coding rates
for their fixed-rate uniform quantizers constant across both
nodes and iterations, which does not fully explore the more
general space of node- and time-varying rates.

A handful of works (e.g., [23–26]) analyze consensus
from the viewpoint of information theory. Yang et al. [26]
considered RD bounds for data aggregation, in which data
is routed through a tree network to a fusion center, and
consensus, in which each node forms an estimate of the
desired quantity. Although Yang et al. [26] provided bounds
on the RD relationship for consensus in trees and proved the
achievability of the derived bounds, their analysis is limited
to the setting where the network is tree structured. Often it
is beneficial to consider more flexible topologies, such as
random geometric graphs, which have been used to model

2For a more thorough literature review, see Pilgrim [18].

WSNs [27]. In general, random geometric graphs and their
real-world WSN counterparts have loops.

B. Our contributions

This paper presents a framework for attaining an esti-
mate of the network sample mean at each node, within a
desired average level of accuracy, with finite run time and
minimal total communication cost (measured by Ragg) using
either deterministic or dithered quantization. Our frame-
work is informed by the results of RD theory [28] and
convex optimization [9]. In the plethora of literature we
surveyed, a crucial problem that has not been addressed is
the optimization of quantization schemes for finite run-time
without a certain set of limiting assumptions. Prior works
restrict the topology to trees [26], assume a certain form
for the rate/distortion sequences [14, 15], restrict the rates
to be the same at each node and/or iteration [13, 15, 17], or
use bounds on the MSE or asymptotic MSE values, rather
than exact MSE quantities [15, 17], in their analyses. The
key contribution of this work is the use of GGP [10] to
minimize the communication load subject to an accuracy
constraint, which avoids the previously discussed restrictions.
The advantages of our approach are (i) ignorance about
the parametric form of the allocated rates, which avoids
the introduction of unjustified or unnecessary assumptions;
(ii) support for different rates at each node and iteration
of distributed average consensus; and (iii) optimization with
respect to exact MSE constraints (rather than bounds) for
finite iteration count.

C. Notation

We denote the positive-valued subset of a set S by S¡0

and the nonnegative-valued subset by S¥0. The integers are
denoted by Z, and the real numbers by R. Vectors are written
in boldface lowercase letters (e.g., x). Matrices are written
in boldface capital letters (e.g., A). The pi, jqth element of
matrix A is written rAsij . Quantities that vary with time
are written as functions of time (e.g., xptq). The `p-norm
is written ‖�‖p, matrix transpose is written t�uJ, and matrix
inverse is written t�u�1. The expectation operator is written
as E r�s, the mean of a time-dependent random variable xptq
is written µxptq, and its covariance is denoted by Σxptq. The
Kronecker product of two matrices A,B is written AbB.
A diagonal matrix is compactly specified as

diag

���x1...
xn

��� �

���x1 � � � 0
...

. . .
...

0 � � � xn

��� .
II. PROBLEM FORMULATION

A. System model

In this paper, communication links are bidirectional, and
we model the network as an undirected graph, G � tV, Eu,
comprised of a set of m vertices (nodes) V and a set of edges
E between pairs of vertices [29]. Because the communication
links are bidirectional, each edge pi, jq P E is represented as
an unordered pair of vertices, i, j P V [30].



In the simplest case of the consensus problem, each node
i P t1, . . . ,mu has an initial scalar quantity zip0q P R, and
the goal is to have all nodes of the network agree upon the
sample mean of these quantities by iteratively exchanging
messages with their neighbors [30]. The quantities ziptq,
t ¥ 0, will be referred to as “states,” which in this paper
are assumed to be real-valued scalar random variables (RVs)
with joint Gaussian distribution for t � 0. More formally,
let the (discrete) iteration index be a nonnegative integer,
t P Z¥0. At t � 0, the states tziptqu

m
i�1 are the initial

values to be averaged by the consensus algorithm. For t ¥ 1,
the state ziptq represents the estimate of the sample averagesz :� 1

m

°m
i�1 zip0q at node i. The objective of consensus is

for the state ziptq to eventually equal the sample mean of the
initial states: limtÑ8 ziptq � sz, @i P t1, . . . ,mu [30]. In this
paper, we restrict our attention to deterministic, synchronous-
update consensus algorithms. We assume the following: (i)
the communication link topology of the network is fixed
and does not change with time; (ii) at each iteration, ev-
ery node exchanges messages with only its neighbors; (iii)
communication channels are noiseless; (iv) initial states of all
nodes are Gaussian with a known joint distribution; (v) each
node can use a different rate at each consensus iteration;
(vi) internode messages are broadcast to all neighbors at
once; and (vii) states are stored with infinite precision, but
communicated with limited precision. The last point is well-
motivated for nodes with 32- or 64-bit floating-point support.

Given the above assumptions on communication, one
popular algorithm for consensus relies on linear updates [2,
30]. Each node updates its state by forming a weighted sum
of its own state with those of its neighbors [30],

zipt� 1q � wiiziptq �
¸
jPNi

wijzjptq, (1)

where wij ¡ 0, @i, j,
°m
k�1 wik �

°m
k�1 wkj � 1, and

Ni � tj|pi, jq P Eu denotes the neighborhood of node i. The
weights wij are designed such that limtÑ8 ziptq � sz [30].
The above update equation (1) can be written as [30]

zpt� 1q � Wzptq. (2)

The asymptotic convergence condition is then limtÑ8 zptq �
1
m11Jzp0q � sz 1. The interested reader is referred to Xiao
and Boyd [30] for a study of weight matrix design.

When quantization error is present within the internode
messages, the simple linear iteration (2) is not guaranteed to
converge [19]. Instead, we use the modified iteration used
by Frasca et al. [11], which allows the sample average to be
preserved in the presence of quantization errors.

Let Q : Rm Ñ Xm represent quantization to a finite
set of representation levels Xm � Rm (i.e., Qpzptqq �
rQ1pz1ptqq, . . . , Qmpzmptqqs

J). The associated quantization
error is given by εptq :� Qpzptqq � zptq. We define the
distortion at node i and iteration t as Diptq :� E

�
ε2i ptq

�
. The

subscripts on Q indicate that each node can use a different
quantizer in general. To allow the algorithm to converge to

zero steady-state estimation error, we use the update proposed
by Frasca et al. [11], which is

zpt� 1q � zptq � pW � IqQpzptqq, (3)

where I is the identity matrix. The key advantage of this
update is that the average 1

m

°m
i�1 ziptq of the states ziptq

is preserved at each step t, despite quantization error [11].
Because the average is preserved at each iteration, the esti-
mation error from the average consensus state sz1 is [11]

eptq �
�
I�m�111J

�
zptq. (4)

The MSE at node i corresponding to an estimation error
eptq at iteration t is given by

MSEipd, tq :� E
�
e2i ptq

�
,

where d is a vector of all distortions introduced by all nodes
throughout the consensus process. The average MSE across
the network at the end of iteration t is given by

MSEptq :�
1

m

m̧

i�1

MSEiptq.

The communication cost of consensus becomes substantial
when nodes exchange vector states ziptq P Rn, rather than
scalars. In this case, all entries can be collected into a vector
ζptq :� rz1ptq, � � � , zmptqs P Rmn, and a matrix is defined
Ω :� W b In P Rmn�mn [17], so that (3) becomes

ζpt� 1q � ζptq � pΩ� ImnqQ pζptqq . (5)

This work assumes that ζptq has a known joint Gaussian
distribution, and that the ziptq are distributed such that
µziptq � µziptq1, and the diagonal of Σzi

ptq is σ2
i ptq1.

This means that the marginal mean and variance can be
extracted from any of the elements corresponding to ziptq
from the joint mean µζptq and joint covariance Σζptq,
respectively. The marginal means and variances can thus be
derived in our case from (3), without considering the higher-
dimensional (5). The following statistical analysis will focus
on this scalar case.

B. Main objective

At every iteration t P t0, . . . , T � 1u (where T is the
total number of iterations) of the consensus process, each
node i P t1, . . . ,mu uses a rate Riptq to encode its state for
transmission to neighboring nodes. This rate is the average
number of bits used per symbol. That is, if node i sends a
length-liptq binary encoding of its scalar state ziptq to node
j, then the corresponding rate is given by Riptq � E rliptqs,
where the expectation is taken over the distribution of ziptq.
In general, Riptq can vary across both nodes and iterations,
so that it is not necessary that Riptq � Rjpsq for any i �
j, t � s. We simplify notation by defining the rate vector

r :�rR1p0q, ...,Rmp0q, ...,R1pT�1q, ...,RmpT�1qs
J
.

Denote the distortions per entry, Diptq :� E
�
ε2i ptq

�
, incurred

using rates r by the distortion vector

d :�rD1p0q, ...,Dmp0q, ...,D1pT�1q, ...,DmpT�1qs
J
. (6)



One key quantity we use to determine the cost of running
the consensus process is the aggregate coding rate [31, 32]:

Ragg :�
T�1̧

t�0

m̧

i�1

Riptq, (7)

which represents the total rate used over the T iterations of
the consensus algorithm by all m nodes of the network.

Our main objective is to derive minimization strategies for

Cpr, T q :� Ragg (8)

for fixed- and variable-length codes for Gaussian-distributed
sources using a variety of quantizers.

To efficiently encode the data stored across the network,
it is necessary to know the distribution of ziptq for all
i P t1, . . . ,mu and t ¥ 0. To determine these distributions
from (3) and the distributions of the initial states tzip0qumi�1

is difficult in general. Instead, we propose an optimiza-
tion scheme for entropy-coded uniform scalar quantization
(ECSQ) [22] of stationary Gaussian states and RD-optimal
vector quantization (VQ) [28] of memoryless Gaussian-
distributed states.3 Because (3) consists of a linear combi-
nation of jointly Gaussian RVs and independent quantization
errors, it can be proven that the states will remain Gaussian
for all t ¥ 0 [18], and thus the mean and covariance of zptq
are sufficient to describe its distribution.

It can be shown that, for additive quantization noise and
symmetric weight matrices [18]:

µzpt� 1q � Wµzptq, (9)

µept� 1q �
�
I�m�111J

�
Wµeptq, (10)

Σzpt� 1q � WΣzptqW � pW � IqΣεptqpW � Iq, (11)

Σeptq �
�
I�m�111J

�
Σzptq

�
I�m�111J

�
, (12)

where eptq is the estimation error (4) and the covariance
Σεptq is diagonal, Σεptq � diagrD1ptq, � � � , Dmptqs

J. Us-
ing these definitions, we present the following mathematical
relationships, which we term the state evolution equations.
These equations allow us to perform the optimization of the
rate vector r using the cost function (8). The marginal source
variance νipd, tq at node i and iteration t is given by

νipd, tq � rΣzptqsii ,

the MSE at node i and iteration t is given by

MSEipd, tq �
�
Σeptq � µeptqµ

J
e ptq

�
ii
, (13)

and the average MSE across the network at iteration t is

MSEpd, tq �
1

m
tr
�
Σeptq � µeptqµ

J
e ptq

�
, (14)

where tr p�q denotes the trace of a matrix.

3For the scalar quantization schemes, we assume that the state of each
node is a sample from a stationary, ergodic Gaussian random process. We
expect the performance of ECSQ to be the same as in the memoryless case.

C. Rate-distortion theory

For encoders operating on real-valued sources, the quan-
tization process necessarily introduces a certain expected
distortion D into their representation of the input signal [22].
This distortion can be quantified using a number of metrics,
but for the purpose of this paper, we use the square error

δpzptq, ẑptqq � ‖zptq � ẑptq‖22,

so that the expected distortion per node per dimension is
given by D � 1

mE
�
‖zptq � ẑptq‖22

�
[22]. In general, using

a higher coding rate R results in a lower distortion D, with
the drawback of greater communication load. RD theory [28]
quantifies the best possible trade-off between coding rate
and distortion. The minimum coding rate R required for any
compression scheme to produce an expected distortion less
than or equal to a particular value D is given by the RD
function RpDq [28].

III. RATE ALLOCATION VIA GGP

The key insight of this work is the ability to pose the
optimization of the rate vector r as a GGP, for which the
global optimum can be found [10]. The resulting scheme
finds an efficient rate vector r that achieves a target value of
MSEpd, T q, given by (14).4

When a particular quantizer is used in our problem, it
will often have an RD performance trade-off that differs
from RpDq, which is a bound on the best possible perfor-
mance [22]. In this paper, we term such a trade-off curve for a
particular practical quantizer an operational RD relationship.

For ECSQ and uniform quantization followed by fixed-rate
coding in the case of Gaussian sources, the operational RD
relationship in the high-rate regime is

RpDq �

$&
%

1

2
log2

�
σ2

D



�Rc, D P p0, σ2Dmaxs

0, otherwise
, (15)

where σ2 represents the variance of the data to be encoded,
and Rc and Dmax are constants [33]. In some cases, such as
infinite-dimensional VQ with memoryless Gaussian sources
and dithered [34] scalar uniform quantization [35], the rela-
tionship (15) holds for all rates.

The source variance νipd, tq is a function of the initial state
vector covariance Σzp0q (see (11)) and the distortion vector
d in (6); it evolves as described by (11). The operational
RD relationship at all nodes i P t1, . . . ,mu and iterations
t P t0, . . . , T � 1u can be expressed as

Ripd, tq �
1

2
log2

�
max

"
νipd, tq

Diptq
, 2�2Rc

*

�Rc. (16)

The max in (16) encapsulates the saturation of the RD
relationship at R � 0 in (15). Given T iterations, the
goal is to minimize the aggregate coding rate (7), sub-
ject to a constraint on the final MSE, MSEpd, T q ¤
MSE� (14). For a target MSE of MSE�, the minimum

4Note that the final network MSE corresponds to iteration index T , and
not T � 1. This is because MSEpd, tq is the network MSE after the end
of t iterations, or before the execution of the pt� 1qth iteration.



number of iterations required to achieve that MSE, Tmin �
argminT

 
T | MSEpd, T q   MSE�,d � 0

(
, can be readily

obtained using the state-evolution equations (9)–(12). More
formally, using the operational RD relationship (16), the
optimization problem is

minimize
d

T�1̧

t�0

m̧

i�1

1

2
log2

�
max

"
νipd, tq

Diptq
, 2�2Rc

*

�Rc,

subject to the constraints

MSEpd, T q ¤ MSE�, (17)

Diptq ¡ 0, @i, t. (18)

Note that the above optimization is equivalent to

minimize
d

ln

�
T�1¹
t�0

m¹
i�1

max

"
νipd, tq

Diptq
, 2�2Rc

*�
,

subject to (17) and (18).

(19)

We will now introduce the concept of GGP and show that
the optimization (19) reduces to such a problem.

A. Basics of GGP

The following information can be found in Boyd and
Vandenberghe [9]. For this subsection, we stay close to
the authors’ original notation. In the language of geometric
programming, a function of the form

fpxq � cxa11 x
a2
2 � � �xann , c ¡ 0, xi ¡ 0, ai P R, @i,

is called a monomial [9, 10]. Similarly, a function of the form

fpxq �
ķ

i�1

gipx1, . . . , xnq,

is a posynomial [9, 10], where gipx1, . . . , xnq are monomials.
Generalized posynomials are functions formed from posyn-
omials by operations including addition, multiplication, and
maximum [10].

A standard inequality-constrained GGP has the form

minimize
x1,...,xn

Cpx1, . . . , xnq,

subject to fipx1, . . . , xnq ¤ 1, @i P t1, . . . , nfu,

gipx1, . . . , xnq � 1, @i P t1, . . . , ngu,

xi ¡ 0 @i P t1, . . . , nu,

where the cost Cpx1, . . . , xnq and all the inequality con-
straints fipx1, . . . , xnq are generalized posynomials, and all
the equality constraints gipx1, . . . , xnq are monomials [10].
Applying some function transformations, GGPs can be cast
in convex form and efficiently solved numerically [10].

B. Generalized posynomial form of cost function

Applying a monotone increasing function to the cost
function (19) results in an equivalent problem to (19) [9],
so we apply the exponential function to obtain

minimize
d

T�1¹
t�0

m¹
i�1

max

"
νipd, tq

Diptq
, 2�2Rc

*
,

subject to (17) and (18).

(20)

The above optimization problem (20) is a GGP, which is
formally shown in Pilgrim [18].

Two aspects of the above optimization (20) should be
highlighted. Because the constraints are allowed to be gen-
eralized posynomials, one could also optimize with respect
to a constraint on the maximum node MSE, for example,

max
i

tMSEipd, T qumi�1 ¤ MSE�,

or constraints on each of the node MSE values,

MSEipd, T q ¤ MSE�i , @i P t1, . . . ,mu,

where MSEipd, tq is defined in (13). Also, in its most general
form, the optimization allows each node to use a different
rate or distortion. In the interest of designing a distributed
protocol (or for computational efficiency), one may wish
to constrain the rates or distortions at each node to be the
same. The constraint that all distortions be the same is a
straightforward modification of (20) and is also a GGP.

C. Constant distortion simplification

Solving the exact optimization problem (20) naively re-
quires explicit representation of all mT distortions Diptq
and all the coefficients of the log-sum-exp (LSE) model5

required to compute MSEipd, tq and νipd, tq from d. The
result of this explicit representation is large computational
time and memory complexity. In this section, we explore a
simplification of (20) to combat these issues.

In practice, as the network grows (specifically, m ¡ 20 and
T ¥ 6), the memory and time requirements of the optimiza-
tion (20) seem to grow quickly. If explicit representation of
LSE parameters can be avoided, it is possible to apply other
convex optimization methods without these scaling issues. To
provide a program that is more easily solvable in practice, we
constrain the distortions to be equal at each node, which is
equivalent to redefining d :� rDp0q, . . . , DpT � 1qs

J. The
optimization is then

minimize
d

T�1¹
t�0

m¹
i�1

max

"
νipd, tq

Dptq
, 2�2Rc

*
,

subject to (17) and (18).

(21)

In the following section, the results of solving the simplified
problem (21) are compared to the solutions of the exact
program (20) and the prior art [13, 14]. Surprisingly, the
above simplified optimization provides competitive results
for random geometric networks [38], with significant re-
duction in memory and run-time requirements. We conclude

5GGPs are converted to convex LSE form for solution [36, 37].
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Fig. 1 Optimal rates and MSE se-
quences from the solution of (20)
(T � 5, ρc � 0.35, σ2

x � 1,
σ2
n � 0.5, m � 20). Left: Optimal

rate sequences for (20). Right: Op-
timal rate sequences for (21). The
rates are plotted against iteration
indices, and each line represents
the rates used by a different sen-
sor. Note that because variable-
length coding is used [22], the
rates can be non-integer-valued.

by noting that in practical implementation, it is anticipated
that the optimization (20) will be run offline with a priori
knowledge of the network topology and initial state statistics.

IV. NUMERICAL EXPERIMENTS

In this section, we present numerical results that provide
insight into the optimal rate sequences that result from
solving (20). We further compare the performance of the pro-
posed GGP optimizations (20) and (21) to the prior art [13,
14]. To test the effectiveness of the proposed approach, we
used the CVX toolbox [36, 37] to solve (20) and (21).

Due to scaling issues, only the fixed-distortion prob-
lem (21) was solved for prior art comparison. The bin size
of all fixed-rate uniform quantizers was set to 12 times the
standard deviation of the data to prevent clipping.

In the results presented, the networks were generated by
random geometric graph (RGG) models [38], and each node
state was initialized with the same independent and identi-
cally distributed (i.i.d.) variance-σ2

x zero-mean Gaussian vec-
tor x P RL corrupted by a different variance-σ2

n, zero-mean
Gaussian noise ni P RL, i P t1, . . . ,mu. Incorporating noise
is important so that the nodes have different estimates of the
signal x to average together. The consensus process averages
the states elementwise, so this is the same as running L trials
of consensus on scalar states zip0q at once. The random
geometric graphs (RGGs) [38] were generated on the unit
torus (i.e., edge effects were neglected by “wrapping” edges
of r0, 1s2) [39]. The RGGs provide a model of networks
where location determines topology, such as WSNs [40]. An
RGG is one for which each node Vi P V is associated with a
coordinate vi. For a given connectivity radius ρc, two nodes
Vi, Vj are connected if ‖vi � vj‖2 ¤ ρc [27].

To better understand the structure of the solutions to
the optimization problems (20) and (21), we present some
simulation results. Each of these results is taken from single
instantiations of the optimization problem (i.e., they are not
averaged over multiple trials).

The optimal rate sequences, tRiptquT�1
t�0 , i P t1, . . . ,mu,

for both the variable-distortion (20) and constant-distortion
(21) problems typically exhibit monotonically nondecreasing
structure, with an increasing rate of change toward the final
iterations. In the constant-distortion case, the rates Riptq �
1
2 log2

�
max

!
νipd,tq
Diptq

, 2�2Rc

)	
�Rc are similar because the

ratios νipd,tq
Diptq

in the Gaussian operational RD relationship (15)

are similar across the network. Examples of optimal rate
sequences are provided for both variants of the optimization
problem (20) and (21) in Fig. 1.

The pattern of these rate sequences is intuitive, and it mir-
rors the results of Zhu and coauthors’ study of multiprocessor
approximate message passing [31, 32, 41]. As the estimate
of the sample mean at each node increases in precision,
higher-resolution messages must be exchanged among nodes
to achieve increasing estimation quality. In the case of coding
without side information, this improving precision requires
using larger coding rates in the later iterations.

To compare our work to the prior art [13, 14], we generated
32 RGGs [38] with connectivity radius ρc P t0.35, 0.45u on
a two-dimensional unit torus. For each of these networks,
consensus was run on 1,000 realizations of the initial states,
which were length-10,000 i.i.d. Gaussian vectors zip0q �
x � ni, @i P t1, . . . ,mu, x � N p0, Iq,ni � N p0, 0.5Iq.
This corresponds to SNR :�

σ2
x

σ2
n
� 2, which is 3.01 dB. We

simulated ProgQ [13] and order-one predictive coding [14],
using initial rates Rip0q P t4, . . . , 7u and Rip0q P t3, . . . , 6u,
@i, respectively. The measured final MSE values (13) for
these schemes were set as the target values for the GGP.

For all schemes, MSEpd, T q and Ragg were computed.
These values were averaged over all 32 realizations of each
(ρc, Rip0q, T ) setting, and the resulting averages were plotted
against each other. Looking at (11), it seems that the MSE
for quantized consensus, where Diptq ¥ 0,@i, t, is greater
than in unquantized consensus, where Diptq � 0,@i, t.

We therefore introduce two terms to define the MSE
performance relative to the ideal, unquantized algorithm. To
compensate for the effect of network topology on the MSE,
we define the lossless MSE,

MSElosslessptq :� MSEpd, tq
���
d�0

.

Next, define the final excess MSE (EMSE) as

EMSEpT q :� 10 log10
MSEpd, T q

MSElosslesspT q
,

which represents the increase in MSE over lossless consen-
sus resulting from distortion. The EMSE was used for the
generation of RD trade-off curves.

In the case of very low rates using ECSQ on zero-mean
Gaussian sources, all elements decoded at a receiving node
would be zeros. To prevent this behavior, the maximum
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Fig. 2 Left: RD trade-off curves
for the proposed GGP-optimized
ECSQ versus ProgQ [13] and
order-one predictive coding [14]
(ρc � 0.45, T � 7). Right:
Comparison of the proposed GGP-
optimization versus order-one pre-
dictive for a single realization of
the RGG (ρc � 0.35, T �

7), where both schemes use RD-
optimal VQ. The corresponding
quantization error was simulated
by adding white Gaussian noise.

normalized distortion Dmax allowed was set such that the
recieved elements were nonzero at least 1% of the time.

Because of stability issues with the GGP solvers used,
Yildiz and Scaglione’s order-one predictive coding imple-
mentation [14], which was provided by the authors, was
modified to use fixed-rate uniform quantization but allow
for the rate to vary with iteration and node indices. This
capability was implemented by running two rate update
recursions—one to keep track of the ideal (real-valued) rates
given by the quantization noise variance recursion [14], and
another to perform the predictive coding using rates that were
rounded to the nearest integral value.

V. DISCUSSION

To adequately discuss the RD results, we first comment
on some properties of each prior art scheme presented. The
ProgQ algorithm [13] uses a time- and node-invariant fixed-
rate uniform quantizer (i.e., Riptq � R, @i P t1, . . . ,mu, t P
t0, . . . , T �1u), whereas Yildiz and Scaglione [14] allow the
use of different rates at each node and iteration.

Thanou et al. [13] use the same state update as ours (3),
but Yildiz and Scaglione [14] use a different update that is
incapable of truly converging in the presence of quantization
error. The final asymptotic MSE for the predictive scheme
depends on the sum of distortions, Diptq, t P Z¥0. If these
distortions are chosen to form a convergent series, then
the MSE will converge to a nonzero, but bounded, value.
Because of this limitation, the predictive scheme [14] is
heavily dependent on the starting rates, Rip0q.

In some cases, such as the bottom right of the ECSQ
curve in Fig. 2, the predicted performance and measured
performance of ECSQ do not match. Because the ECSQ used
in the simulations is not dithered [34], the additive quanti-
zation model only holds approximately. As Ragg increases,
the performance improves, and better adherence to predicted
performance can be accomplished using dithering [34].

The RD performance of the proposed optimization
scheme (21) for ECSQ is compared to the predictive coding
scheme of Yildiz and Scaglione [14] and the ProgQ algorithm
of Thanou et al. [13] in Fig. 2. For our scheme, the predicted
RD performance (as computed by the state evolution equa-
tions (9)–(12)) is compared to the actual performance. The
distortion (measured by the EMSE) is given by the horizontal
axis, and the aggregate rate Ragg by the vertical axis. The

predicted performance is denoted by a dashed line, while
the simulated performance is represented as a solid line.
Alongside our approaches, we plot the RD performance of
both of the comparators. A curve closer to the bottom left
corner of these figures indicates better performance, meaning
lower aggregate rate Ragg to achieve the same EMSE, or
lower EMSE for a particular Ragg.

The numerical results in the left panel of Fig. 2 suggest that
our GGP approach outperforms that of Yildiz and Scaglione
and Thanou et al. However, a closer look reveals that much
if not all of the gain is due to our using variable rate coding,
whereas the implementations for the comparators use fixed
rate coding. When we evaluated our approach with fixed rate
coding using a heuristic proposed in Pilgrim [18], our re-
sults were typically somewhat weaker than the comparators.
We attribute the performance advantage of ProgQ [13] and
predictive coding [14] to their use of side information from
previous iterations.

For a fairer comparison to the predictive approach of
Yildiz and Scaglione [14], we also simulated their approach
against ours (21) for RD-optimal vector quantizers, which use
variable coding rates. The simulations were run on a single
instance of the RGG by varying the initial coding rate of the
predictive scheme [14] and setting the resulting EMSEpT q as
the target for the optimization (21). Because the quantization
error of infinite-dimensional lattice quantizers approaches an
additive white Gaussian noise process [35], these experi-
ments simulated quantization by adding independent noise
of variance Dptq to the states. This plot demonstrates the
advantage of predictive quantization on an even playing field
by allowing both our approach and the predictive scheme [14]
to use variable-rate coding.

The ProgQ scheme [13], unlike predictive coding [14], is
capable of converging in the limit due to its different state
update strategy. Both ProgQ [13] and predictive coding [14]
are capable of using constant or even shrinking coding rates
to achieve good performance. It is clear from Fig. 1 that
our rates grow with t. Therefore, as T Ñ 8, we expect
that ProgQ will outdo our proposed schemes in all settings,
despite our constrained optimization, because it can converge
in the limit of large T with constant rates.

VI. CONCLUSION

In conclusion, this paper presented a framework for opti-
mizing the source coding performance of distributed average



consensus. The key insight of our approach is the formulation
of the problem as a GGP [10]. Our framework allows the
problem to be transformed to a convex program [9] and
solved for the global optimum. Although we do not incor-
porate knowledge from past iterations, our numerical results
are competitive with prior art that uses more sophisticated
side information strategies, which motivates the study of
optimization for predictive coding schemes.

In light of the performance gain from predictive coding
strategies, we feel that future work should focus on variable
rate strategies. Moreover, we aim to optimize the predictive
approach of Yildiz and Scaglione using our GGP formulation
and the state update (5).
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