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Abstract—We present and analyze two algorithms—termed
distributed stochastic approximation mirror descent (D-SAMD)
and accelerated distributed stochastic approximation mirror
descent (AD-SAMD)—for distributed, stochastic optimization
from high-rate data streams over rate-limited networks. Devices
contend with fast streaming rates by mini-batching samples in
the data stream, and they collaborate via distributed consensus to
compute variance-reduced averages of distributed subgradients.
This induces a trade-off: Mini-batching slows down the effective
streaming rate, but may also slow down convergence. We present
two theoretical contributions that characterize this trade-off: (i)
bounds on the convergence rates of D-SAMD and AD-SAMD,
and (ii) sufficient conditions for order-optimum convergence of
D-SAMD and AD-SAMD, in terms of the network size/topology
and the ratio of the data streaming and communication rates.
We find that AD-SAMD achieves order-optimum convergence in
a larger regime than D-SAMD. We demonstrate the effectiveness
of the proposed algorithms using numerical experiments.

I. INTRODUCTION

Machine learning at its core involves solving stochastic
optimization (SO) problems, where the task is to minimize
a stochastic loss function having access only to samples
from the (unknown) underlying data distribution. The resulting
minimizer is then used for tasks such as dimensionality reduc-
tion, classification, clustering, etc. The study of SO problems
has a long history, with recent results providing optimum
convergence rates for convex SO [1], [2]. There has been a
recent surge in works on distributed optimization, including
iterate/dual/subgradient averaging methods [3]–[9], alternating
direction method of multipliers or augmented Lagrangian
methods, [10], [11], and approaches to high-performance
distributed computing [12], [13].

In this work, we study the problem of distributed stochastic
convex optimization from high-rate data streams over rate-
limited communication links. This work is motivated by ma-
chine learning in networks of sensors and internet-of-things
(IoT) devices: as sensors become cheaper, smaller, and more
ubiquitous, networks of sensor and IoT devices will generate
and collect data at a rate that outstrips the communications
throughput of the network. Fast and efficient strategies are
needed for machine learning in such networks.

To this end, we present two strategies for distributed SO
from fast, streaming data: distributed stochastic approximation
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mirror descent (D-SAMD) and accelerated distributed stochas-
tic approximation mirror descent (AD-SAMD). These strate-
gies have three main components: (1) devices collect mini-
batches of samples from their data streams, which reduces
the effective streaming rate, (2) devices perform averaging
consensus on (sub)gradients of the mini-batches to reduce the
variance, and (3) devices update search points via stochastic
mirror descent on the averaged subgradients [2]. We bound the
convergence rates of D-SAMD and AD-SAMD and derive the
optimum mini-batch size. We further derive necessary condi-
tions, in terms of network size, topology, and communications
rate, for D-SAMD and AD-SAMD to converge as fast as the
centralized solution. The upshot is that if the communications
rate is not too slow, devices can learn via collaboration nearly
as quickly as if all the data were co-located. Finally, we
demonstrate the effectiveness of D-SAMD and AD-SAMD via
numerical experiments.

II. PROBLEM FORMULATION

The objective of this paper is distributed minimization of
the stochastic composite function

ψ(x) = Eξ[φ(x, ξ)] , f(x) + h(x), (1)

where x ∈ X ⊂ Rn, and X is convex and compact. The
space Rn is endowed with an inner product 〈·, ·〉 that need
not be the usual one and a norm ‖·‖ that need not be the
one induced by the inner product. The function f : X → R
is assumed convex with Lipschitz continuous gradients with
constant L. The function h : X → R is assumed convex and
Lipschitz continuous with constant M. The subdifferentials
of ψ and h are denoted by ∂ψ(x) and ∂h(x), respectively. In
the following, the minimizer and the minimum value of ψ are,
respectively, denoted by

x∗ , arg min
x∈X

ψ(x) and ψ∗ , ψ(x∗). (2)

A. Distributed Stochastic Composite Optimization

We consider the minimization of ψ(x) over a network of
m nodes, represented by the undirected graph G = (V,E).
Nodes minimize ψ collaboratively by exchanging subgradient
information with their neighbors at each communications
round. Specifically, each node i ∈ V transmits a message at
each communications round to its set of neighbors, defined as

Ni = {j ∈ V : (i, j) ∈ E}, (3)

where i ∈ Ni. Message passing between nodes takes place
without any error or distortion. Further, we constrain the



messages between nodes to be members of the dual space
of X and to satisfy causality.

We suppose that each node i ∈ V queries a first-order
stochastic “oracle” at a fixed rate—which may be different
from the rate of message exchange—to obtain noisy estimates
of the subgradient of ψ. We use ‘t’ to index time according
to data-acquisition rounds and define {ξi(t) ∈ Υ}t≥1 to
be a sequence of independent (with respect to i and t) and
identically distributed (i.i.d.) random variables with unknown
probability distribution P (ξ) that is supported on a subset of
the abstract space Υ. At each data-acquisition round t, node
i queries the oracle at search point xi(s) to obtain the point
G(xi(s), ξi(t)) that is a noisy version of the subgradient of ψ
at xi(s). We use ‘s’ to index time according to search-point
update rounds, with possibly multiple data-acquisition rounds
per search-point update. The reason for allowing the search-
point update index s to be different from the data-acquisition
index t is to accommodate the setting in which data arrive at
faster rate than the rate at which nodes can communicate with
each other. Mathematically, the stochastic subgradient G(x, ξ)
is a Borel function that satisfies the following properties:

E[G(x, ξ)] , g(x) ∈ ∂ψ(x), and (4)

E[‖G(x, ξ)− g(x)‖2∗] ≤ σ
2, (5)

where ‖ · ‖∗ denotes the dual norm induced by ‖ · ‖ and 〈·, ·〉,
and the expectation is with respect to the distribution P (ξ).

B. Mini-batching for Rate-Limited Networks
A common technique to reduce the variance of the

(sub)gradient noise and/or reduce the computational burden
in centralized SO is to average “batches” of oracle outputs
into a single (sub)gradient estimate. In this paper, we employ
this technique, called mini-batching, in order to reduce the
communications burden of distributed SO.

We use a simple communications model. Let ρ > 0 be the
communications ratio, i.e., the fixed ratio between the rate of
communications and the rate of data acquisition. That is, ρ ≥ 1
implies nodes engage in ρ rounds of message exchanges for
every data-acquisition round. Similarly, ρ < 1 means there
is one communications round for every 1/ρ data-acquisition
rounds. We ignore rounding issues for simplicity.

The mini-batching in our distributed problem proceeds as
follows. Each mini-batch round spans b ≥ 1 data-acquisition
rounds and coincides with the search-point update round, i.e.,
each node i updates its search point at the end of a mini-batch
round. In each mini-batch round s, each node i uses its current
search point xi(s) to compute an average of oracle outputs

θi(s) =
1

b

sb∑
t=(s−1)b+1

G(xi(s), ξi(t)). (6)

This is followed by each node computing a new search point
xi(s+1) using θi(s) and messages received from its neighbors.

In the following, we will use the notation zi(s) , θi(s) −
g(xi(s)). Then, one can show that E[‖zi(s)‖2∗] ≤ C∗σ

2/b,
where C∗ is a constant that depends on the norm ‖·‖. We
emphasize that the subgradient noise vectors zi(s) depend on
the search points xi(s); we suppress this notation for brevity.

C. Problem Statement
Mini-batching induces a performance trade-off: Averaging

reduces subgradient noise and processing time, but it also
reduces the rate of search-point updates (and hence, slows
down convergence). In order to carry out distributed SA in
an order-optimal manner, the nodes collaborate by carrying
out r ≥ 1 rounds of averaging consensus on their mini-
batch averages θi(s) in each mini-batch round s. This leads
to the constraint r ≤ bρ. If communications is faster, or if the
mini-batch rounds are longer, nodes can fit in more rounds
of information exchange between each mini-batch round. But
when ρ is small, the mini-batch size b needed to enable
sufficiently many consensus rounds may be so large that the
reduction in subgradient noise is outstripped by the reduction
in search-point updates and the resulting convergence speed
is sub-optimum. Therefore, our main goal is specification of
sufficient conditions for ρ such that the resulting convergence
speeds of the proposed distributed SA techniques are optimum.

III. DISTRIBUTED STOCHASTIC APPROXIMATION
MIRROR DESCENT

In this section we present distributed stochastic approxima-
tion mirror descent (D-SAMD). This algorithm is based upon
stochastic approximated mirror descent, which is a generalized
version of stochastic subgradient descent.

A. Stochastic Mirror Descent Preliminaries
Stochastic mirror descent, presented in [2], is a generaliza-

tion of stochastic subgradient descent. This generalization is
characterized by a distance-generating function ω : X → R
that generalizes the Euclidean norm. The distance-generating
function must be continuously differentiable and strongly
convex with modulus α. We require two measures of the
“radius” of X that will arise in the convergence analysis,
defined as follows:

Dω ,
√

max
x∈X

ω(x)− min
x∈X

ω(x), Ωω ,

√
2

α
Dω.

The distance-generating function induces the prox function,
or the Bregman divergence V : X × X → R+, which
generalizes the Euclidean distance:

V (x, z) = ω(z)− (ω(x) + 〈∇ω(x), z− x〉). (7)

The prox function V (x, ·) inherits strong convexity from ω(·),
but it need not be symmetric or satisfy the triangle inequality.
We define the prox mapping Px : Rn → X as

Px(y) = arg min
z∈X

〈y, z− x〉+ V (x, z). (8)

The prox mapping generalizes the usual subgradient descent
step, in which one minimizes the local linearization of the
objective function regularized by the Euclidean distance of
the step taken.

To guarantee convergence for our problem, we require that
the resulting prox mapping be 1-Lipschitz continuous in x,y
pairs, i.e.,

‖Px(y)− Px′(y′)‖ ≤ ‖x− x′‖+‖y − y′‖ ,∀ x,x′,y,y′ ∈ Rn.

This condition clearly holds in the Euclidean setting.



B. Description of D-SAMD

Let W be a symmetric, doubly-stochastic matrix consistent
with the network graph G, i.e., [W]ij = 0 if (i, j) /∈ E. Also
set the constant step size 0 < γ ≤ α/(2L). For simplicity,
we suppose that there is a predetermined number of data-
acquisition rounds T , which leads to S = T/b mini-batch
rounds. We detail the steps of D-SAMD in Algorithm 1.

Algorithm 1 Distributed stochastic approximation mirror de-
scent (D-SAMD)

Require: Doubly-stochastic matrix W, step size γ, number
of consensus rounds r, batch size b, and stream of mini-
batched subgradients θi(s).

1: for i = 1 : m do
2: xi(1)← minx∈X ω(x) . Initialize search points
3: end for
4: for s = 1 : S do
5: ∀i,h0

i (s)← θi(s), . Get mini-batched subgradients
6: for q = 1 : r, i = 1 : m do
7: hqi (s)←

∑
j∈Ni

wijh
q−1
j (s) . Consensus rounds

8: end for
9: for i = 1 : m do

10: xi(s+ 1)← Pxi(s)(γh
r
i (s)) . Prox mapping

11: xav
i (s+ 1)← 1

s

∑s
k=1 xi(k) . Average iterates

12: end for
13: end for
return xav

i (S + 1), i = 1, . . . ,m

C. Convergence Analysis

The convergence rate of D-SAMD depends on the bias and
variance of the approximate subgradient averages hri (s). In
principle, averaging subgradients together reduces the noise
variance and speeds up convergence. However, because aver-
aging consensus results in approximate averages, each node
takes a slightly different mirror prox step and therefore ends
up with a different iterate. At each mini-batch round s, nodes
then compute subgradients at different search points, leading
to bias in the averages hri (s).

The following result bounds the expected gap to optimality
of D-SAMD iterates. The proof involves bounding the bias
and variance of subgradient estimates, bounding the distance
between iterates at different nodes, and calculating their impact
on convergence speed.

Theorem 1: For D-SAMD, the expected gap to optimality
at each node i satisfies

E[ψ(xav
i (S + 1))]− ψ∗ ≤

2LΩ2
ω

αS
+

√
2(4M2 + 2∆2

S)

αS
+

√
α

2

ΞSDω

L
,

where

Ξs , (M+ σ/
√
b)(1 +m2

√
C∗λ

r
2)×

((1 + αm2
√
C∗λ

r
2)s − 1) + 2M, and

∆2
s , 2(M+ σ/

√
b)2((1 + αm2

√
C∗λ

r
2)s − 1)2×

(1 +m4C∗λ
2r
2 ) + 4C∗σ

2/(mb) + 4λ2r2 C∗σ
2m2/b+ 4M

quantify the moments of the effective subgradient noise. Here,
λ2 ∈ [0, 1) denotes the second-largest eigenvalue of W.

The above convergence rate is akin to that provided in [2],
with ∆2

s taking the role of the subgradient noise variance.
The critical question is how fast communications needs to
be for order-optimum convergence speed. After S mini-batch
rounds, the network has processed mT data samples. By [2],
the gap to optimality for centralized SO is no faster than
O((M + σ)/

√
mT ) if σ2 > 0. In the following we state

optimality conditions for the convergence rate of D-SAMD.
Corollary 1: The optimality gap for D-SAMD satisfies

E[ψ(xav
i (t+ 1))]− ψ∗ = O

(
M+ σ√
mT

)
, (9)

provided the mini-batch size b, the communications ratio ρ,
the number of users m, and the Lipschitz constant M satisfy

b = Ω

(
1 +

log(mT )

ρ log(1/λ2)

)
, ρ = Ω

(
m1/2 log(mT )

σT 1/2 log(1/λ2)

)
,

m = O(σ2T ), M = O

(
min

{
1

m
,

1√
mσ2T

})
.

IV. ACCELERATED DISTRIBUTED STOCHASTIC
APPROXIMATION MIRROR DESCENT

Here we present accelerated distributed stochastic approx-
imation mirror descent (AD-SAMD), which distributes the
accelerated stochastic approximation mirror descent proposed
in [2]. In centralized settings, accelerated mirror descent
achieves a slightly faster convergence rates. In the distributed
setting, this allows for more aggressive mini-batching, and
order-optimum convergence is possible with smaller rate ρ.

A. Description of AD-SAMD
The setting for AD-SAMD is the same as for D-SAMD,

with a distance function ω : X → R, its associated prox
function V : X ×X → R, and the resulting (Lipschitz) prox
mapping Px : Rn → X . We again suppose a mixing matrix
W ∈ Rm×m that is symmetric, doubly stochastic, and con-
sistent with G. The main distinction between accelerated and
standard mirror descent is that one maintains several distinct
sequences of iterate averages. This involves two sequences
of step sizes βs ∈ [1,∞) and γs ∈ R, which are not held
constant. We detail the steps of AD-SAMD in Algorithm 2.

B. Convergence Analysis
As with D-SAMD, the convergence analysis relies on

bounds on the bias and variance of the averaged subgradients.
Theorem 2: For AD-SAMD, the expected gap to optimality

satisfies

E[Ψ(xag
i (S + 1))]−Ψ∗ ≤ 8LD2

ω

αS2
+

4Dω

√
4M + ∆2

S

αS
+

√
32

α
DωΞS , (10)

where

∆2
s = 2(M+ σ/

√
b)2((1 + 2γsm

2
√
C∗Lλ

r
2)s − 1)2+

4C∗σ
2

b
(λ2r2 m

2 + 1/m) + 4M,



Algorithm 2 Accelerated distributed stochastic approximation
mirror descent (AD-SAMD)

Require: Doubly-stochastic matrix W, step size sequences
γs, βs, number of consensus rounds r, batch size b, and
stream of mini-batched subgradients θi(s).

1: for i = 1 : m do
2: xi(1),xmd

i (1),xag
i (1)← minx∈X ω(x) . Initialize

search points
3: end for
4: for s = 1 : S do
5: for i = 1 : m do
6: xmd

i (s)← β−1s xi(s) + (1− β−1s )xag
i (s)

7: h0
i (s)← θi(s) . Get mini-batched subgradients

8: end for
9: for q = 1 : r, i = 1 : m do

10: hqi (s)←
∑
j∈Ni

wijh
q−1
j (s) . Consensus rounds

11: end for
12: for i = 1 : m do
13: xi(s+ 1)← Pxi(s)(γsh

r
i (s)) . Prox mapping

14: xag
i (s+ 1)← β−1s xi(s+ 1) + (1− β−1s )xag

i (s)
15: end for
16: end for
return xag

i (S + 1), i = 1, . . . ,m

and

Ξs = (M+ σ/
√
b)(1 +

√
C∗m

2λr2)×
((1 + 2γsm

2
√
C∗Lλ

r
2)s − 1) + 2M.

As with D-SAMD, we study the conditions under which
AD-SAMD achieves order-optimum convergence speed.

Corollary 2: The optimality gap satisfies

E[ψ(xag
i (S + 1)]− ψ∗ = O

(
M+ σ√
mT

)
,

provided

b = Ω

(
1 +

log(mT )

ρ log(1/λ2)

)
, ρ = Ω

(
m1/4 log(mT )

σT 3/4 log(1/λ2)

)
m = O(σ2T ), M = O

(
min

{
1

m
,

1√
mσ2T

})
.

Because AD-SAMD has a convergence rate of 1/S2 in the
absence of noise and non-smoothness, it tolerates more ag-
gressive mini-batching without impact on the order of the
convergence rate. As a result, the condition on ρ is relaxed
by 1/4 in the exponents of m and T .

V. NUMERICAL EXAMPLE: LOGISTIC REGRESSION

We demonstrate the performance of D-SAMD and AD-
SAMD on supervised learning by considering binary logistic
regression. A learning machine observes a stream of pairs
ξ(t) = (y(t), l(t)) of data points y(t) ∈ Rd and their labels
l(t) ∈ {0, 1}, from which it learns a classifier by minimizing
the cross-entropy loss.

We consider a synthetic example in which the data follow
a Gaussian distribution with known, identity covariance but

unknown means µ0 and µ1. We generate µ0 and µ1 randomly
from the standard normal distribution. We pick m = 20 and
draw a graph at random from the Erdős-Rényi distribution
with connection probability 0.1. We choose W to be the
Metropolis weights [14] associated with the resulting graph;
it turns out here that λ2 = 0.9436. For T = 5000, we
choose step-size γ = 0.005 and b = log(Tm2)/(ρ log(1/λ2)),
which guarantees that the equivalent gradient noise variance
is O(σ2/(mT )).

In Figure 1 we plot the optimality gap for communications
ratios ρ ∈ {1, 10}. For ρ = 1 the mini-batch size b is
rather large, so D-SAMD and AD-SAMD only update their
search points every few data-acquisition rounds. While one
can clearly see the advantage of AD-SAMD over D-SAMD,
both centralized algorithms converge much more quickly.
By contrast, for ρ = 10 the resulting mini-batch size is
smaller, and the gap between centralized and decentralized
performance is comparable.

(a) ρ = 1

(b) ρ = 10

Fig. 1: Performance of D-SAMD and AD-SAMD on a syn-
thetic logistic regression problem.

VI. CONCLUSION

We have presented two distributed schemes, D-SAMD and
AD-SAMD, for convex stochastic optimization over networks
of nodes that collaborate via rate-limited links. Further, we
have derived sufficient conditions for the order-optimum con-
vergence of D-SAMD and AD-SAMD, showing that acceler-
ated mirror descent provides a foundation for distributed SO
that better tolerates slow communications links. These results
characterize relationships between network communications
speed and the convergence speed of stochastic optimization.
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