
STARK: Structured Dictionary Learning Through
Rank-one Tensor Recovery

Mohsen Ghassemi, Zahra Shakeri, Anand D. Sarwate, Waheed U. Bajwa
Dept. of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854

{mohsen.ghassemi, zahra.shakeri, anand.sarwate, waheed.bajwa}@rutgers.edu

Abstract—In recent years, a class of dictionaries have been
proposed for multidimensional (tensor) data representation that
exploit the structure of tensor data by imposing a Kronecker
structure on the dictionary underlying the data. In this work, a
novel algorithm called “STARK” is provided to learn Kronecker
structured dictionaries that can represent tensors of any order.
By establishing that the Kronecker product of any number of
matrices can be rearranged to form a rank-1 tensor, we show
that Kronecker structure can be enforced on the dictionary by
solving a rank-1 tensor recovery problem. Because rank-1 tensor
recovery is a challenging nonconvex problem, we resort to solving
a convex relaxation of this problem. Empirical experiments on
synthetic and real data show promising results for our proposed
algorithm.

I. INTRODUCTION

Sparse representations of data have been widely used
in a variety of information processing tasks such as data
compression, feature extraction, data classification, signal de-
noising and inpainting, and audio processing [1]–[3]. One of
the powerful techniques to obtain sparse representations is
dictionary learning (DL) which can be formulated as

min
D,X

1

2

L∑
i=1

‖yi −Dxi‖22 , s.t. ∀i ‖xi‖0 ≤ s. (1)

We wish to find an overcomplete basis D ∈ Rm×p with
unit-norm columns and dictionary coefficient matrix X =
[x1, . . . ,xL] ∈ Rp×L such that each observation yi is rep-
resented by a linear combination of no more than s columns
of D. Since this problem is not convex, it is typically solved
by alternating minimization; X is updated using a fixed D and
then, D is updated using a fixed X [3].

In traditional DL literature, when dealing with multidimen-
sional data, high order data {Yi}Li=1 (tensors of order 2 or
higher) are vectorized and stacked in columns of an observa-
tion matrix Y = [vec(Y1), · · · , vec(YL)]: the structure of the
data is not considered in the dictionary underlying the data. In
this case, any standard DL method can be used to find sparse
representations of data. This simplistic method disregards the
multidimensional structure in the data and does not capture the
correlation and structure along different dimensions in each
original “data point.”

On the other hand, in structured DL methods for tensor
data, the multidimentional structure in data is taken into
account. There exists a class of DL algorithms for tensor data

The work of the authors was supported in part by the National Science
Foundation under awards CCF-1525276 and CCF-1453073, and by the Army
Research Office under award W911NF-17-1-0546.

that are based on the Tucker decomposition [4] of tensors.
The resulting “Kronecker structured” DL methods (KS-DL)
assume the dictionary consists of the Kronecker product [5]
of smaller subdictionaries. Such algorithms represent tensor
data using many fewer parameters compared to vectorized DL
techniques [6]–[9]. This is due to the fact that the number
of degrees of freedom in the KS-DL problem is significantly
less than the traditional DL problem; this suggests that dic-
tionary recovery is possible with smaller sample complexity
using KS-DL methods [10], [11]. These works provide KS-
DL algorithms to represent second order [6]–[8] and 3rd-
order tensors [9]. In [6], for example, the KS-DL objective
function is minimized using a Riemannian conjugate gradient
method along with a nonmonotonic line search. In other
methods, the subdictionaries composing the KS dictionary are
updated alternately; in [7], an approach similar to K-SVD [3]
is employed that uses higher-order SVD (HOSVD) [12] to
alternately update coordinate dictionaries for second order
tensor data and in [9], gradient descent is used to alternately
update coordinate dictionaries for third order tensor data. The
dictionary update stage in these algorithms involves solving
a nonconvex minimization problem. The central challenge
in the theoretical analysis of such KS-DL solvers is that
the dictionary update stage is nonconvex. Furthermore, these
explicit models are specialized to KS problems: they do not
extend to more general structures in the underlying dictionary.
In contrast, Dantas et al. [8] recently proposed an algorithm to
learn the sum of KS dictionaries that represent second order
tensor data by adding a regularizer in the objective function.

In this paper, we propose a novel algorithm called
“STARK” to learn KS dictionaries for N th-order tensor data
(N ≥ 2). Our method involves adding a regularization term to
the objective function of the DL problem defined in (1). The
motivation for this term comes from the following realization:
elements of any KS matrix can be rearranged to form a
rank-1 tensor. Thus, enforcing a rank-1 constraint on such
rearrangement of the dictionary results in a KS dictionary.
To this end, we take advantage of low-rank tensor estimation
literature [13]–[17] to add a convex regularizer that imposes
low-rankness on the rearrangement tensor. This formulation
has the advantage that it can be used to learn KS dictionaries
as well as the case where the underlying dictionary is better
approximated by sum of KS dictionaries. Our method can learn
dictionaries of arbitrary tensor order; in the case of second
order tensor data our general formulation coincides with that
of Danita’s et al. [8].

We conduct numerical experiments to validate the perfor-
mance of our algorithm. We use STARK for representation of

third order synthetic and real tensor data and demonstrate that
STARK outperforms vectorized DL technique K-SVD [3] and
KS-DL technique K-HOSVD [7] for small sample sizes.

Notation Convention: Underlined bold upper-case, bold
upper-case and lower-case letters are used to denote tensors,
matrices and vectors, respectively. Lower-case letters denote
scalars. We denote the Kronecker product and outer product
by ⊗ and ◦, respectively, while ×n denotes the mode n product
between a tensor and a matrix [18]. Norms are given by
subscripts, so ‖v‖0 and ‖v‖2 are the `0 and `2 norms of v,
while ‖X‖2, ‖X‖F , and ‖X‖∗ are the spectral, Frobenius, and
nuclear norms of X, respectively. A slice of a tensor is a 2-
dimensional section defined by fixing all but two of its indices.
Particularly, a frontal slice of a 3-dimensional tensor is defined
by fixing the third index.

II. TUCKER-BASED KS-DL

According to the Tucker decomposition of tensors, an N -th
order data tensor Yi ∈ Rn1×n2×···×nN can be decomposed in
the following form:

Yi =Xi ×1 D1 ×2 D2 ×3 · · · ×N DN , (2)

where Xi ∈ Rp1×p2×···×pN denotes the core tensor and Di’s
denote transformation matrices along each mode of Yi. The
vectorized version of Yi can be written as

yi = (DN ⊗DN−1 ⊗ · · · ⊗D1)xi, (3)

where yi = vec(Yi) and xi = vec(Xi) [18]. Here, the
structure in tensor data is being exploited using the Kronecker
product of transformation matrices. Stacking L vectorized data
points {yi}Li=1 in columns of a matrix Y, we get

Y = (DN ⊗DN−1 ⊗ · · · ⊗D1)X, (4)

which is similar to the conventional DL problem, except that
the dictionary D is Kronecker structured.

In the next section, we present our proposed KS-DL algo-
rithm called “STructured dictionAry learning through RanK-1
Tensor recovery” (STARK), which implicitly enforces Kro-
necker structure on the dictionary being learned by means of
a regularizer in the DL objective function.

We note that STARK can be used to enforce a more general
structure called low-separation-rank (LSR) structure. An LSR
matrix can be written as sum of a few KS matrices:

D =

K∑
k=1

Dk
N ⊗Dk

N−1 ⊗ · · · ⊗Dk
1 , (5)

where the factor matrices {Dk
i ∈ Rmi×pi}Kk=1 have the same

size for a fixed i, and K is the separation rank of D [19].

III. ENFORCING STRUCTURE VIA REGULARIZATION

To motivate the idea behind STARK, let us consider D =
D1⊗D2. It turns out that the elements of D can be rearranged
to form Dπ = d2 ◦ d1, where di = vec(Di) for i = 1, 2 [5].
Figure 1 illustrates this rearrangement for D. Similarly, for
D = D1⊗D2⊗D3, we can write Dπ = d3 ◦d2 ◦d1, where
each frontal slice of the tensor Dπ is a scaled copy of d3 ◦
d2. Following a similar procedure, we can show that if D =

Kronecker-structured Matrix Rearranged Rank-1 Matrix

Fig. 1: Example of rearranging a KS matrix into a rank-1
matrix.

∑K
k=1 Dk

1 ⊗Dk
2 ⊗ · · · ⊗Dk

N , then a certain “rearrangement”
of D is the rank-K tensor Dπ =

∑K
k=1 dkN ◦dkn−1 ◦ · · · ◦dk1 ,

where di = vec(Di) for i ∈ [N]. This suggests that in the
structured DL problem, we can impose the LSR structure (KS
when K = 1) on the dictionary D being learned by minimizing
the rank of Dπ .

Since tensor rank is a nonconvex function, in order to
make this DL problem convex with respect to D, we use a
commonly used convex proxy for the tensor rank function,
the sum-trace-norm [15], which is defined as the average of
the trace (nuclear) norms of the unfoldings of the tensor:
‖D‖tr =

1
N

∑N
n=1

∥∥D(n)

∥∥
∗ . Using this convex relaxation for

the rank function, the KS-DL problem has the following form:

min
D,X

1

2
‖Y −DX‖2F + λ ‖Dπ‖tr , s.t. ∀i ‖xi‖0 ≤ s, (6)

where the columns of D have unit norm. We use alternating
minimization to solve this nonconvex problem. To minimize
the objective function in (6) with respect to X, we can use any
of the standard sparse coding methods. In simulations, we use
orthogonal matching pursuit (OMP) [20], [21]. To update the
KS dictionary D, we use the alternating direction method of
multipliers (ADMM) [22]. We describe this dictionary update
step in the next section.

IV. STRUCTURED DICTIONARY UPDATE USING ADMM

In this section, we discuss the dictionary update step of
solving problem (6), which can be stated as

min
D∈Rm×p

1

2
‖Y −DX‖2F + λ

N∑
n=1

∥∥∥Dπ
(n)

∥∥∥
∗
. (7)

The main issue in solving the convex dictionary update prob-
lem (7) is dealing with the interdependent nuclear norms.
This makes optimization methods that use gradient information
challenging. Inspired by many works in the literature on
low-rank tensor estimation [13]–[16], we instead suggest the
following reformulation of (7):

min
D,W1,··· ,WN

1

2
‖Y −DX‖2F + λ

N∑
n=1

∥∥(Wn)(n)
∥∥
∗

s.t. ∀n Wn = Dπ. (8)

In this formulation, although the nuclear norms are associated
with one another through the introduced constraint, we can

decouple the minimization problem into separate subproblems.
In particular, we can solve the objective function (8) using
ADMM, which involves decoupling the problem into inde-
pendent subproblems by forming the following augmented
Lagrangian function:

Lγ(Dπ,W̃, Ã) =
1

2
‖Y −DX‖2F +

N∑
n=1

(
λ
∥∥(Wn)(n)

∥∥
∗

− 〈An, Dπ −Wn〉+
γ

2
‖ Dπ −Wn‖

2
F

)
, (9)

where W̃ =
[
WT

1 , · · · , WT
N

]T
and Ã =

[
AT

1 , · · · , AT
N

]T
.

Here, the inner product of two tensors is defined as the inner
product of their vectorizations.

Finally, to find the gradient of (9) with respect to Dπ , we
rewrite the Lagrangian function in the following form

Lγ(Dπ,W̃, Ã) =
1

2
‖y − T (Dπ)‖22 +

N∑
n=1

(
λ
∥∥(Wn)(n)

∥∥
∗

− 〈An, Dπ −Wn〉+
γ

2
‖ Dπ −Wn‖

2
F

)
. (10)

Here, we defined y = vec(Y) and T (Dπ) = vec(DX) =
X̃TΠ vec(Dπ), where X̃ = X ⊗ Im and Π is a permutation
matrix such that Π vec(Dπ) = vec(D).

In the rest of this section, we briefly discuss derivation of
the permutation matrix as well as the update steps of ADMM.
Due to lack of space, we leave the details to an extended
version of this paper.

A. The Permutation Matrix

The permutation matrix Π represents a linear transforma-
tion that maps the elements of vec(D) to vec(Dπ). Given
index l of vec(D) and the corresponding mapped index l′ of
vec(Dπ), our strategy for finding the permutation matrix is
to define l′ as a function of l. To this end, we first find the
the corresponding row and column indices (i, j) of matrix D
from the lth element of vec(D). Then, we find the index of
the element of interest on the N th order rearranged tensor Dπ ,
and finally, we find its location l′ on vec(Dπ). Note that the
permutation matrix is only a function of the dimensions of
the factor matrices. We leave the formal explanation of this
procedure to an extended version of this paper.

B. ADMM Update Rules

Recall that each iteration of ADMM consists of the fol-
lowing steps [22]:

Dπ(t+ 1) = argmin
Dπ

Lγ(Dπ,W̃(t), Ã(t)), (11)

W̃(t+ 1) = argmin
W̃

Lγ(Dπ(t+ 1),W̃, Ã(t)), (12)

Ã(t+ 1) = Ã(t)− γ
(
HDπ(t+ 1)− W̃(t+ 1)

)
, (13)

where H is the vertical concatenation of N instances of I, the
identity operator on ∈ Rm1p1×···×mNpN .

The solution to problem (11) is found by taking the gradient
of Lγ(·) with respect to Dπ and setting it to zero. Suppressing

the iteration index t for ease of notation, we have

∂Lγ
∂Dπ = T ∗(T (Dπ)− y)−

N∑
n=1

An +

N∑
n=1

γ (Dπ −Wn) ,

where T ∗ denotes the adjoint of the linear operator T [13].
Setting the gradient to zero results in

T ∗(T (Dπ)) + γN Dπ = T ∗(y) +
N∑
n=1

(An + γWn) . (14)

Equivalently, we have,

vec−1
([

ΠT X̃X̃TΠ + γNI
]
vec(Dπ)

)
= vec−1(ΠT X̃y) +

N∑
n=1

(An + γWn) . (15)

Therefore, the update rule for Dπ is

Dπ(t+ 1) = vec−1
([

ΠT X̃X̃TΠ + γNImp

]−1
·
[
ΠT X̃y + vec

(N∑
n=1

(An(t) + γWn(t))
)])

. (16)

To update W̃, we can break the second step (12) into solving
N independent subproblems (suppressing the index t):

min
Wn

LW =λ
∥∥(Wn)(n)

∥∥
∗ − 〈An, Dπ −Wn〉

+
γ

2
‖ Dπ −Wn‖

2
F .

The objective function of this problem can be reformulated as

LW =λ
∥∥(Wn)(n)

∥∥
∗ +

γ

2

∥∥(Wn)(n) −
(
Dπ

(n) −
(An)(n)

γ

)∥∥2
F

+ const. (17)

The minimizer of an objective function of the form (17) is

shrink

(
(Dπ)(n) −

1

γ
(An)(n),

λ

γ

)
, (18)

where shrink(M, τ) is the shrinkage operator that applies
soft-thresholding at level τ on the singular values of M (see
Theorem 2.1 in [23] for details). Therefore,

Wn(t+ 1) = refold

(
shrink

((
Dπ(t+ 1)

)
(n)

− 1

γ
(An(t))(n) ,

λ

γ

))
. (19)

where refold(·) is the inverse of the unfolding operator. The
summary of our DL method is provided in Algorithm 1.

V. NUMERICAL EXPERIMENTS

We compare the performance of STARK with two meth-
ods: KSVD [3], as a non-structured DL method, and K-
HOSVD [7], which is a structured DL method that explicitly
enforces Kronecker structure on the dictionary. We compare
the performance of these methods are compared for synthetic
2-dimensional and 3-dimensional data as well as 3-dimensional
real-world data.

a) Synthetic Data: For synthetic data, we randomly
generate the dictionary D and the sparse coefficient matrix
X to construct the observation matrix Y = DX. We generate
a KS dictionary as D = D1 ⊗D2 ⊗D3 (and D = D1 ⊗D2

for 2-dimensional data) with unit-norm columns according to
the following procedure. The elements of the subdictionaries
D1 through D3 are chosen i.i.d from a Gaussian distribution
N (0, 1), and then the columns of the subdictionaries are
normalized. For generating X, we select the locations of the
s nonzero elements of each column uniformly at random. The
values of those elements are sampled i.i.d. from N (0, 1). In the
learning process, the dictionary D is initialized using random
columns of the observation matrix Y. The experiments were
run for 20 Monte Carlo iterations and for various training
sample sizes and the resulting dictionaries were tested on a set
of 10000 test samples. For 2nd-order tensor data we selected
m1 = 4, p1 = 12, m2 = 6, p2 = 8, s = 5, and for 3rd-order
tensor data we selected m1 = 2, p1 = 4, m2 = 5, p2 = 10,
m3 = 5, p3 = 5, and s = 10.

The results of our experiments on synthetic data are shown
in Figure 2. We compared our method to K-SVD and K-
HOSVD. For K-HOSVD, we used algorithm provided by the
authors, which actually enforces a Khatri-Rao structure on the
dictionary rather than KS. STARK outperforms both K-SVD
and K-HOSVD for all training sample sizes, especially when
the number of training samples is small. The improvement over
K-SVD can be attributed to the lower sample complexity of
structured DL models. We conjecture that one reason for the
improvement over K-HOSVD is that the dictionary update in
STARK is a convex problem and thus the algorithm is less
prone to getting stuck in a poor local minimum.

b) Real Data: For these experiments, we compare the
denoising performance of the three methods on two RGB
images, Peppers and Lena, which are 512 × 512 × 2 and
512×512×3 tensors, respectively. We corrupt the images using
additive white Gaussian noise with σ = 50. To construct the

Algorithm 1 Structured Dictionary Learning through Rank-1
Tensor Recovery (STARK)

Require: Y, Π, s > 0, λ > 0, γ > 0
1: initialize: D(0), X(0), , Ã(0), W̃(0)
2:
3: while ‖Y −D(τ)X(τ)‖F > ε do
4: Sparse coding stage: Use OMP to update X(τ).
5: Dictionary update stage:
6: while

∥∥∥Ã(t)− Ã(t− 1)
∥∥∥
F
> ε do

7: Update Dπ(t) according to update rule (16)
8: for all i ∈ [N] do
9: Update W̃n(t) according to update rule (19)

10: end for
11: for all n ∈ [N] do
12: An(t + 1) = An(t) −

γ (Dπ(t+ 1)−Wn(t+ 1))
13: end for
14: end while
15: Normalize columns of D(τ)
16: end while
17: return D(τ), X(τ)

0 1000 2000 3000 4000 5000

Sample Size

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

N
o

rm
a

li
z
e

d
 R

e
p

re
s

e
n

ta
ti

o
n

 E
rr

o
r

2-Dimensional Synthetic Data

K-HOSVD

K-SVD

START

0 2000 4000 6000 8000 10000

Sample Size

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

N
o

rm
a

li
z
e

d
 R

e
p

re
s

e
n

ta
ti

o
n

 E
rr

o
r

10
-3 3-Dimensional Synthetic Data

K-HOSVD

K-SVD

START

Fig. 2: Normalized Representation Error on Synthetic Data.

0 2000 4000 6000 8000 10000

Sample Size

21

21.5

22

22.5

23

23.5

24

24.5

P
S

N
R

 (
d

B
)

Lena

K-HOSVD

K-SVD

STARK

0 2000 4000 6000 8000 10000

Sample Size

24.5

25

25.5

P
S

N
R

 (
d

B
)

Peppers

K-HOSVD

K-SVD

STARK

Fig. 3: Denoising Performance on Real Data (PSNR).

training data set, we extract overlapping 6 × 6 patches from
each image and treat each patch as a data point. Then we
compare the denoising performances of the methods based
on the resulting peak signal to noise ratio (PSNR) of the
reconstructed images [24].

Figure 3 shows the results averaged over 10 Monte Carlo
iterations. We can see the denoising performance of STARK is
superior to both K-SVD and K-HOSVD for all training sample
sizes. This is in part due to the fact that for real-world data,
the underlying dictionaries may not be KS. STARK allows
Dπ to have rank higher than 1, meaning the algorithm can
use a larger number of parameters (K times as many when
rank(Dπ) = K) to approximate the true dictionary.

VI. CONCLUSION

In this paper we showed that the Kronecker product of
N matrices can be rearranged to form an N th order rank-1
tensor. Based on this, we proposed a novel structured dictio-
nary learning method for multidimensional data that enforces
LSR structure in the dictionary through imposing a low-rank
structure on the rearranged tensor. In particular, Kronecker
structure can be enforced by imposing a rank-1 constraint
on the rearranged tensor. Since the low-rank tensor recovery
problem is a nonconvex problem, we resort to solving its
convex relaxation, namely, minimizing the sum-trace-norm of
the rearranged tensor, which is a convex proxy for tensor rank.
We used ADMM for solving the dictionary update stage of
this structured DL problem. Our experiments on both synthetic
and real data showed that when the sample size is small, our
method considerably outperforms both K-SVD, which returns
unstructured dictionaries, and K-HOSVD, a KS-DL method
that directly finds the subdictionaries.

REFERENCES

[1] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T.-W.
Lee, and T. J. Sejnowski, “Dictionary learning algorithms for
sparse representation,” Neural computation, vol. 15, no. 2, pp.
349–396, February 2003. [Online]. Available: https://doi.org/10.1162/
089976603762552951

[2] M. Elad, J.-L. Starck, P. Querre, and D. L. Donoho, “Simultaneous
cartoon and texture image inpainting using morphological component
analysis (MCA),” Appl. and Computational Harmonic Anal., vol. 19,
no. 3, pp. 340–358, November 2005. [Online]. Available: https:
//doi.org/10.1016/j.acha.2005.03.005

[3] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, November
2006. [Online]. Available: https://doi.org/10.1109/TSP.2006.881199

[4] L. R. Tucker, “Implications of factor analysis of three-way matrices for
measurement of change,” Problems in Measuring Change, pp. 122–137,
1963.

[5] C. F. Van Loan, “The ubiquitous Kronecker product,” J. Computational
and Appl. Math., vol. 123, no. 1, pp. 85–100, November 2000.
[Online]. Available: https://doi.org/10.1016/S0377-0427(00)00393-9

[6] S. Hawe, M. Seibert, and M. Kleinsteuber, “Separable dictionary
learning,” in Proc. IEEE Conf. Comput. Vision and Pattern
Recognition (CVPR), June 2013, pp. 438–445. [Online]. Available:
https://doi.org/10.1109/CVPR.2013.63

[7] F. Roemer, G. Del Galdo, and M. Haardt, “Tensor-based algorithms for
learning multidimensional separable dictionaries,” in Proc. IEEE Int.
Conf. Acoustics, Speech and Signal Process. (ICASSP), May 2014, pp.
3963–3967. [Online]. Available: https://doi.org/10.1109/ICASSP.2014.
6854345

[8] C. F. Dantas, M. N. da Costa, and R. da Rocha Lopes, “Learning
dictionaries as a sum of Kronecker products,” IEEE Signal Process.
Lett., vol. 24, no. 5, pp. 559–563, March 2017. [Online]. Available:
https://doi.org/10.1109/LSP.2017.2681159

[9] S. Zubair and W. Wang, “Tensor dictionary learning with sparse
Tucker decomposition,” in Proc. IEEE 18th Int. Conf. Digital
Signal Process. (DSP), July 2013, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/ICDSP.2013.6622725

[10] Z. Shakeri, W. U. Bajwa, and A. D. Sarwate, “Minimax lower bounds
for Kronecker-structured dictionary learning,” in Proc. 2016 IEEE Int.
Symp. Inf. Theory, July 2016, pp. 1148–1152. [Online]. Available:
https://doi.org/10.1109/ISIT.2016.7541479

[11] ——, “Minimax lower bounds on dictionary learning for tensor data,”
arXiv preprint arXiv:1608.02792, August 2016. [Online]. Available:
https://arxiv.org/abs/1608.02792

[12] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear
singular value decomposition,” SIAM J. Matrix Analy. and Applicat.,
vol. 21, no. 4, pp. 1253–1278, 2000. [Online]. Available: https:
//doi.org/10.1137/S0895479896305696

[13] S. Gandy, B. Recht, and I. Yamada, “Tensor completion and low-
n-rank tensor recovery via convex optimization,” Inverse Problems,
vol. 27, no. 2, p. 025010, January 2011. [Online]. Available:
https://doi.org/10.1088/0266-5611/27/2/025010

[14] B. Romera-Paredes, H. Aung, N. Bianchi-Berthouze, and M. Pontil,
“Multilinear multitask learning,” in Proc. 30th Int. Conf. Mach.
Learn. (ICML), vol. 28, no. 3, Atlanta, Georgia, USA, June 2013,
pp. 1444–1452. [Online]. Available: http://proceedings.mlr.press/v28/
romera-paredes13.html

[15] K. Wimalawarne, M. Sugiyama, and R. Tomioka, “Multitask
learning meets tensor factorization: Task imputation via convex
optimization,” in Proc. Advances in Neural Inform. Process.
Syst. (NIPS), 2014, pp. 2825–2833. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2969033.2969142

[16] B. Huang, C. Mu, D. Goldfarb, and J. Wright, “Provable low-rank
tensor recovery,” Optimization-Online, vol. 4252, p. 2, February
2014. [Online]. Available: http://www.optimization-online.org/DB
FILE/2014/02/4252.pdf

[17] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, no. 1, pp. 208–220, January 2013. [Online].
Available: http://doi.org/10.1109/TPAMI.2012.39

[18] T. G. Kolda and B. W. Bader, “Tensor decompositions and
applications,” SIAM Review, vol. 51, no. 3, pp. 455–500, August 2009.
[Online]. Available: https://doi.org/10.1137/07070111X

[19] T. Tsiligkaridis and A. O. Hero, “Covariance estimation in high
dimensions via Kronecker product expansions,” IEEE Trans. Signal
Process., vol. 61, no. 21, pp. 5347–5360, November 2013. [Online].
Available: https://doi.org/10.1109/TSP.2013.2279355

[20] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal
matching pursuit: recursive function approximation with applications
to wavelet decomposition,” in Proc. 27th Asilomar Conf. Signals, Syst.
and Comput., November 1993, pp. 40–44 vol.1. [Online]. Available:
https://doi.org/10.1109/ACSSC.1993.342465

[21] J. A. Tropp and A. C. Gilbert, “Signal recovery from random
measurements via orthogonal matching pursuit,” IEEE Trans. Inf.
Theory, vol. 53, no. 12, pp. 4655–4666, December 2007. [Online].
Available: https://doi.org/10.1109/TIT.2007.909108

[22] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
January 2011. [Online]. Available: https://doi.org/10.1561/2200000016

[23] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM J. Optimization, vol. 20,
no. 4, pp. 1956–1982, March 2010. [Online]. Available: https:
//doi.org/10.1137/080738970

[24] A. Hore and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” in
Proc. IEEE int. conf. Pattern recognition (ICPR), August 2010, pp.
2366–2369. [Online]. Available: https://doi.org/10.1109/ICPR.2010.579

