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Abstract—Statistical inference can be computationally pro-
hibitive in ultrahigh-dimensional linear models. Correlation-based
variable screening, in which one leverages marginal correlations
for removal of irrelevant variables from the model prior to
statistical inference, can be used to overcome this challenge. Prior
works on correlation-based variable screening either impose strong
statistical priors on the linear model or assume specific post-
screening inference methods. This paper extends the analysis of
correlation-based variable screening to arbitrary linear models
and post-screening inference techniques. In particular, (i) it shows
that a condition—termed the screening condition—is sufficient for
successful correlation-based screening of linear models, and (ii) it
provides insights into the dependence of marginal correlation-based
screening on different problem parameters. Finally, numerical
experiments confirm that the insights of this paper are not mere
artifacts of analysis; rather, they are reflective of the challenges
associated with marginal correlation-based variable screening.

I. INTRODUCTION

Consider the ordinary linear model y = Xβ + noise where
the dimension, p, of β (henceforth, referred to as the number
of features/predictors/variables) greatly exceeds the dimension,
n, of y (henceforth, referred to as the sample size). While
this high-dimensional setting should ordinarily lead to ill-posed
problems, the principle of parsimony—which states that only
a small number of variables typically affect the response y—
helps obtain unique solutions to inference problems based on
high-dimensional linear models. Our focus in this paper is on
ultrahigh-dimensional linear models, in which the number of
variables can scale exponentially with the sample size: log p =
O(nα) for α ∈ (0, 1). Such linear models are increasingly be-
coming common in application areas ranging from genomics [1],
[2] and proteomics [3] to sentiment analysis [4], [5] and hy-
perspectral imaging [6], [7]. While there exist a number of
techniques in the literature—such as forward selection/matching
pursuit and backward elimination [8], least absolute shrinkage
and selection operator (LASSO) [9], elastic net [10], smoothly
clipped absolute deviation (SCAD) [11], bridge regression [12],
[13], adaptive LASSO [14], group LASSO [15], and Dantzig
selector [16]—that can be employed for inference from high-
dimensional linear models, all these techniques have super-
linear (in the number of variables p) computational complexity,
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and thus these methods can quickly become computationally
prohibitive in the ultrahigh-dimensional setting.

Variable selection-based dimensionality reduction, commonly
referred to as variable screening, has been put forth as a
practical means of overcoming this curse of dimensionality [17]:
since only a small number of (independent) variables actually
contribute to the response (dependent variable) in the ultrahigh-
dimensional setting, one can first—in principle—discard most of
the variables (the screening step) and then carry out inference on
a relatively low-dimensional linear model using any one of the
sparsity-promoting techniques. There are two main challenges
that arise in the context of variable screening in ultrahigh-
dimensional linear models. First, the screening algorithm should
have low computational complexity (ideally, O(np)). Second,
the screening algorithm should be accompanied with mathemat-
ical guarantees that ensure the reduced linear model contains all
relevant variables that affect the response. Our goal in this paper
is to revisit one of the simplest screening algorithms, which
uses marginal correlations between the variables {Xi}pi=1 and
the response y for screening purposes [18], [19], and provide
a theoretical understanding of its screening performance for
arbitrary ultrahigh-dimensional linear models.

A. Relationship to Prior Work

Researchers have long intuited that the (absolute) marginal
correlation |X>i y| is a strong indicator of whether the i-th
variable contributes to the response variable. One of the earliest
screening works in this regard that is agnostic to the choice of
the subsequent inference techniques is termed sure independence
screening (SIS) [20]. SIS is based on simple thresholding of
marginal correlations and satisfies the so-called sure screening
property—which guarantees that all important variables survive
the screening stage with high probability—for the case of
normally distributed variables. An iterative variant of SIS, termed
ISIS, is also discussed in [20], while [21] presents variants of
SIS and ISIS that can lead to reduced false selection rates of
the screening stage. Extensions of SIS to generalized linear
models are discussed in [21], [22], while its generalizations for
semi-parametric (Cox) models and non-parametric models are
presented in [23], [24] and [25], [26], respectively.

The defining characteristics of the works referenced above is
that they are agnostic to the inference technique that follows



the screening stage. In recent years, screening methods have
also been proposed for specific optimization-based inference
techniques. To this end, [27] formulates a marginal correlations-
based screening method, termed SAFE, for the LASSO problem
and shows that SAFE results in zero false selection rate. In [28],
the so-called strong rules for variable screening in LASSO-
type problems are proposed that are still based on marginal
correlations and that result in discarding of far more variables
than the SAFE method. The screening tests of [27], [28] for the
LASSO problem are further improved in [29]–[31] by analyzing
the dual of the LASSO problem.

Notwithstanding these prior works, we have holes in our un-
derstanding of variable screening in ultrahigh-dimensional linear
models. Works such as [27]–[31] necessitate the use of LASSO-
type inference techniques after the screening stage. In addition,
these works do not help us understand the relationship between
the problem parameters and the dimensions of the reduced
model. Similar to [20], [21], [32], [33], and in contrast to [27]–
[31], our focus in this paper is on screening that is agnostic to
the post-screening inference technique. To this end, [32] lacks
a rigorous theoretical understanding of variable screening using
the generalized correlation. While [20], [21], [33] overcome this
shortcoming of [32], these works have two major limitations.
First, their results are derived under the assumption of restrictive
statistical priors on the linear model (e.g., normally distributed
Xi’s). In many applications, however, it can be a challenge to
ascertain the distribution of the independent variables. Second,
the analyses in [20], [21], [33] assume the variance of the
response variable to be bounded by a constant; this assumption,
in turn, imposes the condition ‖β‖2 = O(1). In contrast, defining
βmin := mini |βi|, we establish in the sequel that the ratio βmin

‖β‖2
(and not ‖β‖2) directly influences the performance of marginal
correlation-based screening procedures.

B. Our Contributions

Our focus in this paper is on marginal correlation-based
screening of high-dimensional linear models that is agnostic to
the post-screening inference technique. To this end, we provide
an extended analysis of the thresholding-based SIS procedure
of [20]. The resulting screening procedure, which we term
extended sure independence screening (ExSIS), provides new
insights into marginal correlation-based screening of arbitrary
high-dimensional linear models. Specifically, we first provide
a simple, distribution-agnostic sufficient condition—termed the
screening condition—for (marginal correlation-based) screening
of linear models. This sufficient condition, which succinctly
captures joint interactions among both the active and the inactive
variables, is then leveraged to explicitly characterize the perfor-
mance of ExSIS as a function of various problem parameters,
including noise variance, the ratio βmin

‖β‖2 , and model sparsity.
The numerical experiments reported at the end of this paper
confirm that the dependencies highlighted in this screening result
are reflective of the actual challenges associated with marginal
correlation-based screening and are not mere artifacts of our
analysis.

C. Notation and Organization

The following notation is used throughout this paper. Lower-
case letters are used to denote scalars and vectors, while upper-
case letters are used to denote matrices. Given a ∈ R, dae
denotes the smallest integer greater than or equal to a. Given
q ∈ Z+, we use [[q]] as a shorthand for {1, . . . , q}. Given
a vector v, ‖v‖p denotes its `p norm. Given a matrix A, Aj
denotes its j-th column. Further, given a set I ⊂ Z+, AI (resp.,
vI) denotes a submatrix (resp., subvector) obtained by retaining
columns of A (resp., entries of v) corresponding to the indices in
I. Finally, the superscript (·)> denotes the transpose operation.

The rest of this paper is organized as follows. We formulate
the problem of marginal correlation-based screening in Sec. II.
Next, in Sec. III, we define the screening condition and present
our main result that establishes the screening condition as a
sufficient condition for successful variable screening. Finally,
results of numerical experiments are reported in Sec. IV, while
concluding remarks are presented in Sec. V.

II. PROBLEM FORMULATION

Our focus in this paper is on the ultrahigh-dimensional ordi-
nary linear model y = Xβ + η, where y ∈ Rn, X ∈ Rn×p
and p ≫ n. In the statistics literature, X is referred to as
data/design/observation matrix with the rows of X correspond-
ing to individual observations and the columns of X correspond-
ing to individual features/predictors/variables, y is referred to as
observation/response vector with individual responses given by
{yi}ni=1, β is referred to as the parameter vector, and η is referred
to as modeling error or observation noise. Throughout this paper,
we assume X has unit `2-norm columns, β ∈ Rp is k-sparse
with k < n (i.e.,

∣∣{i ∈ [[p]] : βi 6= 0}
∣∣ = k < n), and η ∈ Rp

is a zero-mean Gaussian vector with (entry-wise) variance σ2

and covariance Cη = σ2I . Here, η is taken to be Gaussian with
covariance σ2I for the sake of this exposition, but our analysis is
trivially generalizable to other noise distributions and/or covari-
ance matrices. Further, we make no a priori assumption on the
distribution of X . Finally, we define S := {i ∈ [[p]] : βi 6= 0}
to be the set that indexes the non-zero components of β. Using
this notation, the linear model can equivalently be expressed as

y = Xβ + η = XSβS + η. (1)

Given (1), the goal of variable screening is to reduce the
number of variables in the linear model from p (since p≫ n) to
a moderate scale d (≪ p) using a fast and efficient method. Our
focus here is on screening methods that satisfy the so-called sure
screening property [20]; specifically, a method is said to carry
out sure screening if the d-dimensional model returned by it is
guaranteed with high probability to retain all the columns of X
that are indexed by S. In this paper, we study sure screening
using marginal correlations between the response vector and the
columns of X . The resulting screening procedure is outlined in
Algorithm 1.

The term sure independence screening (SIS) was coined
in [20] to refer to screening of ultrahigh-dimensional Gaussian



Algorithm 1: Marginal Correlation-based Screening
Input: X ∈ Rn×p, y ∈ Rn, and d ∈ Z+

1: w ← X>y
2: Ŝd ← {i ∈ [[p]] :
|wi| is among the d largest of all correlations}

Output: Ŝd ⊂ [[p]] such that |Ŝd| = d

linear models using Algorithm 1. Our goal in this paper is
to provide an understanding of the screening performance of
Algorithm 1 for arbitrary (and, thus, not just Gaussian) design
matrices. We use the term extended sure independence screening
(ExSIS) to refer to screening of arbitrary linear models using
Algorithm 1.

Before proceeding further, it is worth highlighting the com-
putational savings associated with the use of Algorithm 1. To
this end, we make use of the IMDb movie reviews dataset [34],
with the response being either a positive or a negative review and
the features extracted using the term frequency-inverse document
frequency method [35]. The original dataset of 25K reviews is
first randomly divided into five bins for five independent trials,
with each bin further divided into 3K train and 2K test reviews.
We then use LASSO and elastic net, both with and without
screening, for training a linear data model for movie reviews.
In each of the four cases, Table I summarizes both the average
predictive power of the trained model in terms of the percentage
of correctly classified reviews for train and test data and the
average computational time needed for training the model. It can
be seen from this table that Algorithm 1 reduces the training time
by a factor of more than two, while there is negligible change
in predictive power of the trained model. This is despite the
fact that the design matrix in this problem is non-Gaussian, as
verified by the Q–Q (quantile–quantile) plot (not shown here due
to space limitations).

TABLE I
AVERAGE TRUE POSITIVE (TP) RATES AND COMPUTATIONAL TIMES FOR

EXPERIMENTS ON THE IMDB DATASET.

Training method Train TP rate Test TP rate Training time
LASSO 91.35 % 83.01 % 388.35 s
ExSIS-LASSO 98.39 % 82.23 % 177.43 s
Elastic net 96.69 % 84.35 % 272.46 s
ExSIS-Elastic net 99.71 % 82.06 % 111.20 s

III. MAIN RESULT

In this section, we derive the most general sufficient conditions
for ExSIS of ultrahigh-dimensional linear models. The result
reported in this section provides important insights into the
workings of ExSIS without imposing any statistical priors on
X and β. We begin with a definition of the screening condition
for the design matrix X .

Definition 1 ((k, b)-Screening Condition). Fix an arbitrary β ∈
Rp that is k-sparse. The (normalized) matrix X satisfies the

(k, b)-screening condition if there exists 0 < b(n, p) < 1√
k

such
that the following hold:

max
i∈S
|
∑
j∈S
j 6=i

X>i Xjβj | ≤ b(n, p)‖β‖2, (SC-1)

max
i∈Sc
|
∑
j∈S

X>i Xjβj | ≤ b(n, p)‖β‖2. (SC-2)

The screening condition is a statement about the collinearity of
the independent variables in the design matrix. The parameter
b(n, p) in the screening condition captures the similarity between
(i) the columns of XS , and (ii) the columns of XS and XSc ; the
smaller the parameter b(n, p) is, the less similar the columns are.
Furthermore, since k < (b(n, p))−2 in the screening condition,
the parameter b(n, p) also reflects constraints on the sparsity
parameter k.

We now present our main screening result for arbitrary design
matrices, which highlights the significance of the screening
condition and the role of the parameter b(n, p) within ExSIS.
The proof of the following theorem is omitted in this paper for
the sake of brevity, but it can be found in the journal version [36]
of this work.

Theorem 1 (Sufficient Conditions for ExSIS). Let y = Xβ+ η
with β a k-sparse vector and the entries of η independently
distributed as N (0, σ2). Define βmin := min

i∈S
|βi|. Suppose X

satisfies the screening condition and assume βmin

‖β‖2 > 2b(n, p) +

4

√
σ2 log p

‖β‖2 . Then, Algorithm 1 satisfies Pr(S ⊂ Ŝd) ≥ 1− 2p−1

as long as d ≥

⌈
√
k

βmin
‖β‖2

−2b(n,p)− 4
√
σ2 log p
‖β‖2

⌉
.

A. Discussion

Theorem 1 highlights the dependence of ExSIS on the obser-
vation noise, the ratio βmin

‖β‖2 , the parameter b(n, p) and model
sparsity. We further note from the statement of Theorem 1
that the higher the signal-to-noise ratio (SNR), defined here
as SNR := ‖β‖2

σ , the more Algorithm 1 can screen irrel-
evant/inactive variables. It is also worth noting here trivial
generalizations of Theorem 1 for other noise distributions. In the
case of η distributed as N (0, Cη), Theorem 1 has σ2 replaced
by the largest eigenvalue of the covariance matrix Cη . In the
case of η following a non-Gaussian distribution, Theorem 1
has 2

√
σ2 log p replaced by distribution-specific upper bound

on ‖X>η‖∞ that holds with high probability.
In addition to the noise distribution, the performance of ExSIS

also seems to be impacted by the minimum-to-signal ratio
(MSR), defined here as MSR := βmin

‖β‖2 ∈
(
0, 1√

k

]
. Specifically,

the higher the MSR, the more Algorithm 1 can screen inactive
variables. Stated differently, the independent variable with the
weakest contribution to the response determines the size of the
screened model. Finally, the parameter b(n, p) in the screening
condition also plays a central role in characterization of the
performance of ExSIS. First, the smaller the parameter b(n, p),



the more Algorithm 1 can screen inactive variables. Second, the
smaller the parameter b(n, p), the more independent variables
can be active in the original model; indeed, we have from the
screening condition that k < (b(n, p))−2. Third, the smaller
the parameter b(n, p), the lower the smallest allowable value
of MSR; indeed, we have from the theorem statement that
MSR > 2b(n, p) + 4

√
σ2 log p

‖β‖2 .

IV. NUMERICAL EXPERIMENTS

In order to ensure the insights offered by Theorem 1 are not
mere artifacts of our analysis, we carry out numerical experi-
ments to study the impact of relevant parameters on the screening
performance of an oracle that has perfect knowledge of the
minimum value of d required in Algorithm 1 to ensure S ⊂ Ŝd.
In particular, we use these oracle-based experiments to verify
the role of b(n, p) and MSR in screening using Algorithm 1, as
specified by Theorem 1. Before we describe our experiments,
let us define the notion of worst-case coherence, µ, of X as
defined in [37]: µ := max

i,j:i6=j

∣∣X>i Xj

∣∣. Since worst-case coherence

is an indirect measure of pairwise similarity among the columns
of X , we use µ as a surrogate for the value of b(n, p) in our
experiments.

The design matrix X ∈ Rn×p in our experiments is generated
such that it consists of independent and identically distributed
Gaussian entries, followed by normalization of the columns of
X . Among other parameters, n = 500, p = 2000, k = 5, and
σ = 0 in the experiments. The entries of S are chosen uniformly
at random from [[p]]. Furthermore, the non-zero entries in the
parameter vector β are sampled from a uniform distribution
U [a, e]; the value of a is set at 1 whereas e ∈ [2, 10]. Finally, the
experiments comprise the use of an oracle to find the minimum
possible value of d that can be used in Algorithm 1 while
ensuring S ⊂ Ŝd. We refer to this minimum value of d as the
minimum model size (MMS), and we use median of MMS over
400 runs of the experiment as a metric of difficulty of screening.

To analyze the impact of increasing µ (equivalently, b(n, p))
and MSR on screening using Algorithm 1, the numerical ex-
periments are repeated for various values of µ and MSR. In
particular, the worst-case coherence of X is varied by scaling its
largest singular value, followed by normalization of the columns
of X , while the MSR is increased by decreasing the value of e. In
Fig. 1(a), we plot the median MMS against µ for different MSR
values. The experimental results of the oracle performance offer
two interesting insights. First, the median MMS increases with
µ; this shows that any analysis for screening using Algorithm 1
needs to account for the similarity between the columns of
X . This relationship is captured by the parameter b(n, p) in
Theorem 1. Second, the difficulty of screening for an oracle
increases with decreasing MSR values. This relationship is also
reflected in Theorem 1: as ‖β‖2 increases for a fixed e, MSR
decreases and the median MMS increases.

More interestingly, if we focus on the plot in Fig. 1(a) for
b = 10, and we plot the relationship between µ and median
MMS along with the interquartile range of MMS for each value

(a)

(b)

Fig. 1. Understanding the limitations of correlation-based screening through
the use of an oracle. (a) Relationship between the worst-case coherence and the
MMS for various values of MSR. (b) Boxplot of the MMS versus the worst-case
coherence for e = 10.

of µ, it can be seen that there are instances when the oracle
has to select all 2000 predictors to ensure S ⊂ Ŝd (see boxplot
for µ = 0.65 and 0.75). In other words, no screening can be
performed at all in these cases. This phenomenon is also reflected
in Theorem 1: when b(n, p) becomes too large, the condition
imposed on MSR is no longer true and our analysis cannot be
used for screening using Algorithm 1.

V. CONCLUSION

In this paper, we provided mathematical guarantees for vari-
able screening of arbitrary linear models using a marginal
correlation-based approach, without imposing any statistical
prior on the linear model. Moreover, our experiments demon-
strated that the insights from the main result are reflective of
the actual challenges involved with screening of arbitrary linear
models using marginal correlations.
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