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Abstract—In a typical MIMO radar scenario, transmit nodes
transmit orthogonal waveforms, while each receive node performs
matched filtering with the known set of transmit waveforms, and
forwards the results to the fusion center. Based on the data it
receives from multiple antennas, the fusion center formulates
a matrix, which, in conjunction with standard array processing
schemes, such as MUSIC, leads to target detection and parameter
estimation. In MIMO radars with compressive sensing (MIMO-
CS), the data matrix is formulated by each receive node for-
warding a small number of compressively obtained samples. In
this paper, it is shown that under certain conditions, in both
sampling cases, the data matrix at the fusion center is low-
rank, and thus can be recovered based on knowledge of a small
subset of its entries via matrix completion (MC) techniques.
Leveraging the low-rank property of that matrix, we propose a
new MIMO radar approach, termed, MIMO-MC radar, in which
each receive node either performs matched filtering with a small
number of randomly selected dictionary waveforms or obtains
sub-Nyquist samples of the received signal at random sampling
instants, and forwards the results to a fusion center. Based on the
received samples, and with knowledge of the sampling scheme,
the fusion center partially fills the data matrix and subsequently
applies MC techniques to estimate the full matrix. MIMO-MC
radars share the advantages of the recently proposed MIMO-CS
radars, i.e., high resolution with reduced amounts of data, but
unlike MIMO-CS radars do not require grid discretization. The
MIMO-MC radar concept is illustrated through a linear uniform
array configuration, and its target estimation performance is
demonstrated via simulations.

Index Terms—Array signal processing, compressive sensing,
matrix completion, MIMO radar

I. INTRODUCTION

ULTIPLE-input and multiple-output (MIMO) radar

systems have received considerable attention in recent
years due to their superior resolution [1], [2], [4]. The MIMO
radars using compressed sensing (MIMO-CS) maintain the
MIMO radars advantages, while significantly reducing the
required measurements per receive antenna [5], [6]. In MIMO-
CS radars, the target parameters are estimated by exploiting
the sparsity of targets in the angle, Doppler and range space,
referred to as the rarget space; the target space is discretized
into a fine grid, based on which a compressive sensing
matrix is constructed, and the target is estimated via sparse
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signal recovery techniques, such as the Dantzig selector [6].
However, the performance of CS-based MIMO radars degrades
when targets fall between grid points, a case also known as
basis mismatch [7], [8].

In this paper, a novel approach to lower-complexity, higher-
resolution radar is proposed, termed MIMO-MC radars, which
stands for MIMO radars using matrix completion (MC).
MIMO-MC radars achieve the advantages of MIMO-CS radars
without requiring grid discretization. Matrix completion is of
interest in cases in which we are constrained to observe only
a subset of the entries of an n; X ny matrix, because the cost
of collecting all entries of a high dimensional matrix is high.
If a matrix is low rank and satisfies certain conditions [9],
it can be recovered exactly based on observations of a small
number of its randomly selected entries. There are several MC
techniques in the literature [9], [10], [11], [22], [23], [24].
For example, in [9], [10], [11], recovery can be performed by
solving a nuclear norm optimization problem, which basically
finds the matrix with the smallest nuclear norm out of all
possible matrices that fit the observed entries. Other matrix
completion techniques are based on non-convex optimization
using matrix manifolds, such as Grassmann manifold [22],
[23], and Riemann manifolds [24].

In a typical MIMO radar scenario [4], transmit nodes trans-
mit orthogonal waveforms, while each receive node performs
matched filtering with the known set of transmit waveforms,
and forwards the results to the fusion center. Based on the data
it receives from multiple antennas, the fusion center formulates
a matrix, which, in conjunction with standard array processing
schemes, such as MUSIC [28], leads to target detection and
estimation. In MIMO-CS radars, each receive nodes uses a
compressive receiver to obtain a small number of samples,
which are then forwarded to the fusion center [5][6]. Again,
the fusion center can formulate a matrix based on the data
forwarded by all receive nodes, which is then used for target
estimation. In the latter case, since no matched filtering is
performed, the waveforms do not need to be orthogonal. In
this paper, we show that under certain conditions, in both
aforementioned sampling cases, the data matrix at the fusion
center is low-rank, which means that it can be recovered
based on knowledge of a small subset of its entries via
matrix completion (MC) techniques. Leveraging the low-rank
property of that matrix, we propose MIMO-MC radar, in
which, each receive antenna either performs matched filtering
with a small number of dictionary waveforms or obtains
sub-Nyquist samples of the received signal and forwards the
results to a fusion center. Based on the samples forwarded
by all receive nodes, and with knowledge of the sampling
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scheme, the fusion center applies MC to estimate the full
matrix. Although the proposed ideas apply to arbitrary transmit
and receive array configurations, in which the antennas are
not physically connected, in this paper we illustrate the idea
through a linear uniform array configuration. The properties
and performance of the proposed scheme are demonstrated
via simulations. Compared to MIMO-CS radars, MIMO-MC
radars have the same advantage in terms of reduction of
samples needed for accurate estimation, while they avoid the
basis mismatch issue, which is inherent in MIMO-CS radar
systems.

Relation to prior work - Array signal processing with matrix
completion has been studied in [13], [14]. To the best of our
knowledge, matrix completion has not been exploited for target
estimation in colocated MIMO radar. Our paper is related to
the ideas in [14] in the sense that matrix completion is applied
to the received data matrix formed by an array. However, due
to the unique structure of the received signal in MIMO radar,
the problem formulation and treatment in here is different than
that in [14].

The paper is organized as follows. Background on noisy
matrix completion and colocated MIMO radars is provided
in Section II. The proposed MIMO-MC radar approach is
presented in Section III. Simulations results are given in
Section IV. Finally, Section V provides some concluding
remarks.

Notation: Lower-case and upper-case letters in bold denote
vectors and matrices, respectively. Superscripts (-)* and ()7
denote Hermitian transpose and transpose, respectively. O « as
and 17/ denote an L x M matrix with all “0” and all “1”
entries, respectively. I, represents an identity matrix of size
M. ® denotes the Kronecker tensor product. || X]||, is the
nuclear norm, i.e., sum of the singular values; ||X|| is the
operator norm; ||X|| . is the Frobenius norm; X* denotes the
adjoint of X.

II. PRELIMINARIES
A. Matrix Completion

In this section we provide a brief overview of the problem
of recovering a rank r matrix M € C™ *"2 based on partial
knowledge of its entries using the method of [9][10][11].

Let us define the observation operation Y = Pq (M) as

_J M, (4,5) €Q
[Y]i; = { 0, otherwise

where 2 is the set of indices of observed entries with cardi-
nality m. According to [10], when M is low-rank and meets
certain conditions (see (A0) and (A1), later in this section),
M can be estimated by solving a nuclear norm optimization
problem

(D

min || X|,
s.t. Pa (X) = Pq (M) )

where |||, denotes the nuclear norm, i.e., the sum of singular
values of X.

In practice, the observations are typically corrupted by
noise, ie., [Y];; = [M],; +[E],;, (4, j) € Q, where, [E],; rep-
resents noise. In that case, it holds that P (Y) = Pq (M) +

Pq (E), and the completion of M is done by solving the
following optimization problem [11]

min || X[,
st. [|Po (X —Y)| <6 3)

Assuming that the noise is zero-mean, white, 6 > 0 is a param-
eter related to the noise variance, 02, as 6% = (m + v/8m)o?
[9].

The conditions for successful matrix completion involve the
notion of incoherence, which is defined next [9].

Definition 1. Let U be a subspace of C"' of dimen-
sion r that is spanned by the set of orthogonal vectors
{w; € C™},_, .. Pu be the orthogonal projection onto U,

ie, Py = > uiuf{ , and e; be the standard basis vector
1<i<r
whose ith element is 1. The coherence of U is defined as

ny 2 ni
Uy=" Pye; [1,—}. 4
w(U) " igglll veil” € . 4

Let the compact singular value decomposition (SVD) of M

1<

beM= > pkukka, where pp,k = 1,...,r are the singular

values, ar’f(f hk and vy, the corresponding left and right singular
vectors, respectively. Let U, V be the subspaces spanned by uy
and vy, respectively. Matrix M has coherence with parameters
o and pp if

(A0) max (u (U), u(V)) < o for some positive fi.

(A1) The maximum element of the ny X ng matrix > w;v
1<i<lr

is bounded by p1+/7/(n1n2) in absolute value, for some
positive 1.
In fact, it was shown in [9] that if (AQ) holds, then (A1) also
holds with 1 < pg+/7.

Now, suppose that matrix M € C™ *"2 gsatisfies (A0) and
(A1). The following lemma gives a probabilistic bound for
the number of entries, m, needed to estimate M.

H

%

Theorem 1. [9] Suppose that we observe m entries of the
rank—r matrix M € C™*™2 with matrix coordinates sampled
uniformly at random. Let n = max{ni,na}. There exist
constants C and c such that if

m > C max {uf, 1o * uon1/4} nrflogn

for some 3 > 2, the minimizer to the program of (2) is unique
and equal to M with probability at least 1 — cn™".
For v < pg Yn1/5 the bound can be improved to

6/57"6 logn,

without affecting the probability of success.

m > Cugn

Theorem 1 implies that the lower the coherence parameter
Lo, the fewer entries of M are required to estimate M. The
smallest possible value for pg is 1.

Further, [11] establishes that, when observations are cor-
rupted with white zero-mean Gaussian noise with variance o2,

when solving (3), the recovery error is bounded as

HM - MHF < 4\/;(2 4 p)min (n1,12)8 + 25, (5)

where p = ”TLLQ is the fraction of observed entries, and §2 =

(m+ \/8%522.




IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS

Transmitters

5,(1) Sy, (1)

Sy, ( t )

Receivers

Fig. 1. Colocated MIMO radar system under ULA model. There are M transmit antennas and M, receive antennas. The target is in direction 6 and moving

with speed ¥.

B. Colocated MIMO Radars

Let us consider a MIMO pulse radar system that employs
colocated transmit and receive antennas, as shown in Fig. 1.
We use M; and M, to denote the numbers of transmit and
receive antennas, respectively. Although our results can be
extended to an arbitrary antenna configuration, we illustrate
the ideas for uniform linear arrays (ULAs). The inter-element
spacing in the transmit and receive arrays is denoted by d;
and d,., respectively. The pulse duration is 7}, and the pulse
repetition interval is Tpry. The waveform of the ith transmit
antenna is s; (7) = %qﬁi (1), where E is the total energy
for all the transmit antennas, and ¢; (7), ¢ = 1,..., M, are
orthonormal. The waveforms are transmitted over a carrier
with wavelength . Let us consider a scenario with K point
targets in the far field at angles 0, k = 1, ..., K, each moving
with speed V.

The following assumptions are made:

e The transmit waveforms are narrowband, i.e., T%, < §
where c is the speed of light.

o The target reflection coefficients {8}, k=1,..., K are
complex and remain constant during a number of pulses,
Q. Also, all parameters related to the array configuration
remain constant during the @ pulses.

o The delay spread in the receive signals is smaller than
the temporal support of pulse 7T},.

o The Doppler spread of the receive signals is much smaller
than the bandwidth of the pulse, i.e., % < T%}

Under the narrowband transmit waveform assumption, the
delay spread in the baseband signals can be ignored. For
slowly moving targets, the Doppler shift within a pulse can
be ignored, while the Doppler changes from pulse to pulse.
Thus, if we express time as ¢ = ¢I'prr + 7, where ¢ is the
pulse index (or slow time) and 7 € [0,T,] is the time within
a pulse (or fast time), the Doppler shift will depend on ¢
only, and the received signal at the [-th receive antenna can

be approximated as [4]
2d
x] <quR1 + 74+ C)

K
~ Z Bped T @0na=DTrrr+1-1drsin@0) 5T (9, ) 5 (1)
k=1

2d
+ wy <qTPRI +7+ C) , (6)

where d is the distance of the range bin of interest; w; contains
both interference and noise;

s (D

a (ek;) — |:17 ejQTﬂ-dt Sil’l(ek)7 . )ejQTw(Mt—l)dt Sin(gk)j| T

and s(7) = [s1(7),...,sn, (7)]". For convenience, the
signal parameters are summarized in Table 1.

TABLE I

LIST OF PARAMETERS USED IN THE SIGNAL MODEL
di spacing between the transmit antennas
dr spacing between the receive antennas
M, number of transmit antennas
M, number of receive antennas
Q number of pulses in a coherent processing interval
Tprr | radar pulse repetition interval
q index of radar pulse (slow time)
T time in one pulse (fast time)
[ speed of target
bm baseband waveform
d distance of range bin of interest
c speed of light
0 direction of arrival of the target
5] target reflect coefficient
A wavelength of carrier signal
wy interference and white noise in the [th antenna
Tp duration of one pulse
Ts Nyquist sampling period

At the [-th receive node, for (I = 1,...,M,), a matched
filter bank [4] is used to extract the returns due to each transmit
antenna [4] (see Fig. 2 (a)). Consider a filter bank composed of
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K

xq(l7 Z) — Z Bkejo"(2l9k(q—l)TpR[+(l—1)dr Sin(gk)+(i—1)dt Sin(ek)) + wq(l, 7/) (8)

k=1

M; filters, corresponding to the M; orthogonal transmit wave-
forms. The receive node performs M; correlation operations
and the maximum of each matched filter is forwarded to the
fusion center. At the fusion center, the received signal due to
the i-th matched filter of the [-th receive node, during the ¢-th
pulse, can be expressed in equation (8) for [ = 1,..., M,,
it =1,...,M;, and ¢ = 1,...,Q, where wy(l,7) is the
corresponding interference plus white noise.

Based on the data from all receive antennas, the fusion
center can construct a matrix X', of size M, x M;, whose
({,7) element equals x4(l, ¢). That matrix can be expressed as

=BID,AT +W)'F, ©)
N—_———

MF
Zq

MF
XCI

where W) is the filtered noise; D, = diag(d,), with

d, = el F201 (g~ 1)TPRI e 2220k (q— 1)TPRI:|T; >y =
diag ([B1,-..,0Kk]); Ais the Mt x K transmit steering matrix,
defined as A = [a(#1),...,a(0k)]; B is the M, x K di-

mensional receive steering matrix, defined in a similar fashion
based on the receive steering vectors

b (0y) = [1 eI X dr S‘n(("‘),...,ejow(MT*l)d’“Si“(g’“)}T. (10)

1) MIMO-CS Radars: MIMO-CS radars [5],[6] differ from
conventional MIMO radars in that they use a compressive
receiver at each receive antenna to obtain a small number
of samples, which are then forwarded to the fusion center
(see Fig. 2 (b)). Let L denote the number of samples that are
forwarded by each receive node. If the data forwarded by the
l[-th antenna (I = 1,...,M,) are inserted in the [-th row of
an M, x L matrix, Xy, then, an equation similar to (9) holds,
except that now the transmit waveforms also appear in the
expression, i.e., [15]

X, =BED,ATS+W,,
N——
Zq

(L —1)Ty,)] € CMexEL,

(1)

where S = [s (07%),...,s

III. THE PROPOSED MIMO-MC RADAR APPROACH

Looking at (9), if M; > K and M, > K, both matrices 3
and D, are rank-K. Thus, the rank of the noise free matrix
ZfIWF € CM-xM: ig K which implies that matrix ZéV[F is
low-rank if both M; and M, are much larger than K.

Similarly, looking at (11), both matrices 3 and D,, are rank-
K. The rank of matrix S is min { M, L}. Let us assume that
L > M;. For M; > K, the rank of the noise free data matrix
Z, € CM-xL js K. In other words, for M, > K the data
matrix Z, is low-rank.

Therefore, in both sampling schemes, assuming that the
conditions (A0) and (A1) are satisfied, the fusion center matrix
can be recovered from a small number of its entries. The

Receivers \( \(

Matched Matched
filterbank filterbank | | filterbank

T~

Fusion center

Matched

(a)

Receivers

Fusion center

Matched
filterbank

(b)

Fig. 2. Two sampling schemes in the colocated MIMO radar system: (a)
Sampling scheme I; (b) Sampling scheme II.

estimated matrices corresponding to several pulses can be used
to estimate the target parameters via MUSIC [28], for example.
In the following, we leverage the low-rank property of the
data matrices at the fusion center to propose a new MIMO
radar approach. Since both Z, and Z,"*" are formulated based
on different sampling schemes at the receive nodes, we will
study two cases, namely, sampling scheme I, which gives rise
to ZqM F and sampling scheme II, which gives rise to Z,.

A. MIMO-MC with Sampling Scheme 1

Suppose that the Ith receive node uses a random matched
filter bank (RMFB), as shown in Fig. 3, in which, a random
switch unit is used to turn on and off each matched filter.
Suppose that L; matched filters are selected at random out of
the M; available filters, according to the output of a random
number generator, returning L; integers in [0, M; — 1] based
on the seed s;. Let 7! denote the set of indices of the selected
filters. The same random generator algorithm is also available
to the fusion center. The [-th receive antenna forwards the L4
samples along with the seed s; to the fusion center. Based on
the seed s;, the fusion center generates the indices J' !, Then,
it places the j-th sample of the [-th antenna in the M, x M,
matrix Z,"* at location (I, 7'(j)). In total, L, M, entries of
the matrix are filled. The fusion center declares the rest of the
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Fig. 3. Structure of the random matched filter bank (RMFB).

entries as “missing,” and assuming that ZqM F meets (A0) and
(A1), applies MC techniques to estimate the full data matrix.

Since the samples forwarded by the receive nodes are
obtained in a random sampling fashion, the filled entries of
ZMF will correspond to a uniformly random sampling of
Z%“? In order to show that Z)'*" indeed satisfies (A0), and as
a result (A1), we need to show that the maximum coherence
of the spaces spanned by the left and right singular vectors of
ZMF is bounded by a number, po. The smaller that number,
the fewer samples of Z)'* will be required for estimating
the matrix. The theoretical analysis is pursued separately in
[27]. Here, we confirm the applicability of MC techniques via
simulations.

We consider a scenario with K = 2 point targets. The DOA
of the first target, 61, is taken to be uniformly distributed in
[—90°,90°], while the DOA of the second target is taken to
be 6 = 01 + A6. The target speeds are taken to be uniformly
distributed in [0,500] m/s, and the target reflectivities, S) are
taken to be zero-mean Gaussian. Both the transmit and receive
arrays follow the ULA model with d; = d,, = % The carrier

frequency is taken as f = 1 x 10°Hz.

The left and right singular vectors of ZM " were computed

for 500 independent realizations of 6; and target speeds.
Among all the runs, the probability that max (p (U) , pu (V)) >
1o is shown in Fig. 4 (a) for Af = 5° and different values
of M,,M;. One can see from the figure that in all cases,
the probability that the coherence is bounded by a number
less than 2 is very high, while the bound gets tighter as the
number of receive or transmit antennas increases. On the aver-
age, over all independent realizations, the max (u (U) , 1 (V))
corresponding to different number of receive and transmit
antennas and fixed A#, appears to decrease as the number of
transmit and receive antennas increases (see Fig. 4 (b)). Also,
the maximum appears to decrease as A# increases, reaching 1
for large A@ (see Fig. 4 (¢)). The rate at which the maximum
reaches 1 increases as the number of antennas increases.

It is interesting to see what happens at the limit A§ = 0,
i.e., when the two targets are on a line in the angle plane.
Computing the coherence based on the assumption of rank
2, i.e., using two eigenvectors, the coherence shown in Fig.
5 appears unbounded as M,. changes. However, in this case,
the true rank of Z)¥ is 1, and Z)'* has the best possible
coherence. Indeed, as it is shown in the Appendix A, for
a rank-1 Zé‘/[F , it holds that py = p; = 1. Consequently,
according to Theorem 1, the required number of entries

10

Pr(max(u(U).u(V)) > Ky
=
1S

M =40, M=10
— = —M=40, M =40
T t

1 12 14 16 18 2
uO

(a)

10%2

T T
—— M‘:10
—6— M=40

i i i i i i i
0 50 100 150 200 250 300 350 400
Mr

(b)

10%2

—— M =40, M=10
— = —M=40,M=40

Fig. 4.

Scheme I, K = 2
Pr (max (1 (U), 1 (V)) > po) of ZYT for A =
max (u (U), pu(V)) of ZLII”F as function of number of transmit and receive
antennas, and for Af = 5°; (c) the average max (p (U), u (V) of ZMF
as function of DOA separation.

targets: (a) the probability of

5°; (b) the average

to estimate Z¥ is minimal. This explains why in Fig. 9

(discussed further in Section IV) the relative recovery error of
Z)'F goes to the reciprocal of SNR faster when the two targets
have the same DOA. Of course, in this case, the two targets
with the same DOA appear as one, and cannot be separated in
the angle space unless other parameters, e.g., speed or range



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS

max(u(U)u(v))

0 50 100 150 200 250 300 350 400
Mr

Fig. 5. Scheme I, K = 2 targets: The max (u (U), u (V)) in terms of M,
for AG = 0°, My = M.

are used. For multiple targets, i.e., for K > 3, if there are
n (n < K) targets with the same DOA, the rank of Z}'*" is
K — n, which yields a low coherence condition since these
K — n DOAs are separated.

B. MIMO-MC with Sampling Scheme II

Suppose that the Nyquist rate samples of signals at the
receive nodes correspond to sampling times t; = 15, ¢ =
0,...,N —1 with N = T,/T. Instead of the receive nodes
sampling at the Nyquist rate, let the [-th receive antenna
sample at times T} = jT,, j € J', where J! is the output
of a random number generator, containing Lo integers in the
interval [0, N — 1] according to a unique seed s;. The [-th
receive antenna forwards the Lo samples along with the seed
s; to the fusion center. Under the assumption that the fusion
center and the receive nodes use the same random number
generator algorithm, the fusion center places the j-th sample of
the I-th antenna in the M, x N matrix Z, at location (I, 7(5)),
and declares the rest of the samples as “missing”.

The full Z, equals:

Z,=BXD,ATS, (12)

where S = [s (0T%),...,s ((N — 1) T)]. Per the discussion
on Zg,, assuming that N > M; > K, Zq will be low-rank,
with rank equal to K. Therefore, under conditions (A0) and
(A1), Zq can be estimated based on m = Lo M, elements, for
m sufficiently large.

The left singular vectors of Zq are the eigenvectors of
7,7 = HSSYHY, where H = BXD,A”. The right
singular vectors of Z, are the eigenvectors of SYHHS.
Since the transmit waveforms are orthogonal, it holds that
SSH I [15]. Thus, the left singular vectors are only
determined by matrix H, while the right singular vectors are
affected by both transmit waveforms and matrix H.

Again, to check whether Zq, satisfies the conditions for
MC, we resort to simulations. In particular, we show that the
maximum coherence of Zq is bounded by a small positive
number po. Assume there are K = 2 targets. The DOA of the
first target, 1, is uniformly distributed in [—90°,90°] and the

10 - T T : T
: —— M40, M=10
— - —M=40,M=40
_____ M=10, M=40
210 k|
X
s
4
S
=
=
£
£ 107 1
n
TR
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100 6] o
S
3
=)
S
3
E
—e— M,=40, M=10
10050 g —o— M =40, M=40 |
—8— M =10, M=40
8

i i i i i
0 100 200 300 400 500 600
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(b)

M =40, M =10
T t

el — M=40, M=40

10067‘ g E ’ %EE*"C gDt nurainsy v {

max(u(U)H(V))
80

N=256

10%4) i

0 10 20 30 40 50 60 70 80 920
JAt]

(©)

Fig. 6. Scheme II, K = 2 targets, and G-Orth waveforms: (a) The probability
of Pr (max (u (U), 1 (V)) > po) of Zg for A = 5° and N = 256; (b)
The average max (i (U) , u (V)) of Z as function of N, for Af = 5° and
different values of My, My; (c) The average max (i (U), u (V) of Zq as
function of A6, for N = 128, 256, and different combinations of M., M.

DOA of the second target is set as 67 + Af. The correspond-
ing speeds are uniformly distributed in [150,450] m/s. The
target reflectivities, Ok, are zero-mean Gaussian distributed.
The transmit waveforms are taken to be complex Gaussian
orthogonal (G-Orth). The carrier frequency is f = 10° Hz,
resulting in A = ¢/f = 0.3 m. The inter-spacing between
transmit and receive antennas is set as d;y = d, = /2,
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Hadamard
10+ = = = G-Orth

Max Power Spectrum Magnitude (dB)
»

100

Fig. 7. The maximal power spectrum of the orthogonal waveforms over
N = 32 snapshots for My = 10.

respectively.

The left and right singular vectors of Zq are computed for
500 independent realizations of ¢, and target speeds. Among
all the runs, the probability that the max (1 (U), (V) > o
is shown in Fig. 6, for different values of M;, M,., A8 = 5°,
and N = 256. One can see from the figure that in all cases,
the probability that the coherence is bounded by a number less
than 7 is very high, while the bound gets tighter as the number
of receive or transmit antennas increases. On average, over all
independent realizations, the max (u (U), u (V')) correspond-
ing to different values of M;, M, and a fixed A6 appears to
increase with N, (see Fig. 6 (b)), while the increase is not
affected by the number of transmit and receive antennas. The
average maximum does not appear to change as Af increases,
and this holds for various values of M;, N (see Fig. 6 (c)).

Based on our simulations, the MC reconstruction depends
on the waveform. In particular, the coherence bound is related
to the power spectrum of each column of the waveform
matrix (each column can be viewed as a waveform snapshot
across the transmit antennas). Let S (w) denote the power
spectrum of the i-th column of S € CM*N_ If §;(w)
is similar for different ¢’s, the MC recovery performance
improves with increasing M, (or equivalently, the coherence
bound decreases) and does not depend on N; otherwise, the
performance worsens with increasing N (i.e., the coherence
bound increases). When the 51‘ (w) has peaks at certain w’s
that occur close to targets, the performance worsens. In Fig. 7,
we show the maximum power spectra values corresponding to
Hadamard and G-Orth waveforms for M; = 10 and N = 32. It
can be seen in Fig. 7 that the maximum power spectrum values
corresponding to the Hadamard waveform have strong peaks
at certain w’s, while those for the G-Orth waveforms fluctuate
around a low value. Suppose that there are two targets at angles

01 = 20° and 65 = 40°, corresponding to w; = %Sin (g)
and wy = 1sin(2F), respectively. From Fig. 7 one can

see that the targets fall under low power spectral values for
both waveform cases. The corresponding MC recovery error,
computed based on 50 independent runs is shown in Fig. 8 (a).
One can see that the error is the same for both waveforms. As
another case, suppose that the two targets are at angles 0°, 80°,
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Fig. 8. The comparison of matrix completion in terms of relative recovery
errors with M, = 128, My = 10, N = 32, SNR = 25dB. There are K = 2
targets located at (a) 20° and 40°; (b) 0° and 80°.

corresponding to wy; = 0, wg = % sin (%T), respectively. Based
on Fig. 7, one can see that w; and ws fall under high spectral
peaks in the case of Hadamard waveforms. The corresponding
MC recovery error is shown in Fig. 8(b), where one can see

that Hadamard waveforms yield higher error.

C. Discussion of MC in Sampling Schemes I and 11

To apply the matrix completion techniques in colocated
MIMO radar, the data matrices Zq € CM-xN gpnd Zé” F e
CMr>xM: need to be low-rank, and satisfy the coherence
conditions with small u;,7 =0, 1.

We have already shown that the rank of the above two
matrices equals the number of targets. In sampling scheme
I, to ensure that matrix Z}*" is low-rank, both M; and M,
need to be much larger than K, in other words, a large transmit
as well as a large receive array are required. This, along with
the fact that each receiver needs a filter bank, make scheme 1
more expensive in terms of hardware. However, the matched
filtering operation improves the SNR in the received signals.
Although in this paper we use the ULA model to illustrate
the idea of MIMO-MC radar, the idea can be extended to
arbitrary antenna configurations. One possible scenario with a
large number of antennas is a networked radar system [16][17],
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in which the antennas are placed on the nodes of a network.
In such scenarios, a large number of collocated or widely
separated sensors could be deployed to collaboratively perform
target detection.

In sampling scheme II, assuming that more samples (V) are
obtained than existing targets (K), Zq will be low-rank as long
as there are more receive antennas than targets, i.e., M, >
K. For this scheme, there is no condition on the number of
transmit antennas M; if G-Orth waveform is applied.

Based on Figs. 4 and 6, it appears that the average coherence
bound, 1, corresponding to Z, is larger than that of ZME.
This indicates that the coherence under scheme II is larger
than that under scheme I, which means that for scheme II,
more observations at the fusion center are required to recover
the data matrix with missing entries.

D. Target Parameters Estimation with Subspace Methods

In this section we describe the MUSIC-based method that
will be applied to the estimated data matrices at the fusion
center to yield target information.

Let Zq denote the estimated data matrix for sampling
scheme II, during pulse ¢. Let us perform matched filtering
on Z, to obtain

Y, = %ZqSH =BEXD,AT + W, (13)
where Wq is noise whose distribution is a function of the
additive noise and the nuclear norm minimization problem in
(3). For sampling scheme I, a similar equation holds for the
recovered matrix without further matched filtering.

Then, let us stack the matrices into vector y, = vec (Yq),
for sampling scheme II, or y, = vec (Zé\/f B ), for sampling
scheme 1. Based on @) pulses, the following matrix can be

formed: Y = [y1,...,yq] € CMM-*Q_ for which it holds

that
Y=V X+W, (14)

where X = [X1,...,Xg] is a K x @ matrix containing
target reflect coefficient and Doppler shift information; X, =

[jl,q, e ,i’Kﬂ]T and i‘k’q = ﬁkej%2ﬂk(q_1)TPRI; Vv ((9) =
[Vv(01),...,v(0K)] is a My M, x K matrix with columns
v(f)=a(d) @b (0) (15)
and W = [vec (Wl) ..., vec (WQ)]
The sample covariance matrix can be obtained as
R=_ zQ: o Lyyn (16)
Q& Q

According to [28], the pseudo-spectrum of MUSIC estimator
can be written as

1
vH (0) E,Ellv (6)
where E,, is a matrix containing the eigenvectors of the noise

subspace of R. The DOAs of target can be obtained by finding
the peak locations of the pseudo-spectrum (17).

P(9) = (17)

_ For joint DOA and speed estimation, we reshape Y into
Y € COMixMr and get

Y =FX[b(f),....,b(0k)+ W, (18)
where F = [d (9;) ®a(91),...,d(197;§) ®a(lk)], d(®) =

S 27 S 27 .
1,ed X2 err eI X20(Q=1Trri|  The sampled covari-

ance matrix of the receive data signal can then be obtained
as Ry = 7 YY", based on which DOA and speed joint
estimation can be implemented using 2D-MUSIC. The pseudo-
spectrum of 2D-MUSIC estimator is

P(6,9) = !
T [dW) @a(0)"E.EY [d(Y) ©al(b)

where E,, € C@M:x(QM:—K) jg the matrix constructed by the
eigenvectors corresponding to the noise-subspace of R

19)

IV. NUMERICAL RESULTS

In this section we demonstrate the performance of the
proposed approaches in terms of matrix recovery error and
DOA resolution.

We use ULAs for both transmitters and receivers. The
inter-node distance for the transmit array is set to M,.\/2,
while for the receive antennas is set as \/2. Therefore, the
degrees of freedom of the MIMO radars is M, M; [3], i.e.,
a high resolution could be achieved with a small number of
transmit and receive antennas. The carrier frequency is set to
f =1 x 10°Hz, which is a typical radar frequency. The noise
introduced in both sampling schemes is white Gaussian with
zero mean and variance ¢2. The data matrix recovery is done
using the singular value thresholding (SVT) algorithm [18].
Nuclear norm optimization is a convex optimization problem.
There are several algorithms available to solve this problem,
such as TFOCS [19]. Here, we chose the SVT algorithm
because it is a simple first order method and is suitable for
a large size problem with a low-rank solution. During every
iteration of SVT, the storage space is minimal and computation
cost is low.

We should note that in the SVT algorithm, the matrix rank,
or equivalently, the number of targets, is not required to be
known a prior. The only requirement is that the number of
targets is much smaller than the number of TX/RX antennas,
so that the receive data matrix is low-rank. To make sure the
iteration sequences of SVT algorithm converge to the solution
of the nuclear norm optimization problem, the thresholding
parameter 7 should be large enough. In the simulation, 7 is
chosen empirically and set to 7 = 5¢, where ( is the dimension
of the low-rank matrix that needs to be recovered.

A. Matrix Recovery Error under Noisy Observations

We consider a scenario with two targets. The first target
DOA, 6 is generated at random in [—90°, 90°], and the second
target DOA, is taken as 0y = 6y + A6. The target reflection
coefficients are set as complex random, and the corresponding
speeds are taken at random in [0, 500] m/s. The SNR at each
receive antenna is set to 25dB.

In the following, we compute the matrix recovery error as
function of the number of samples, m, per degrees of freedom,
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Fig. 9. Scheme I, K = 2 targets: the relative recovery error for Zf]” P under
different values of DOA separation. M, = My = 40.

df, i.e., m/df, a quantity also used in [11]. A matrix of size
ny X ng with rank r, has r (ny + ng — r) degrees of freedom
[9]. Let ¢ denote the relative matrix recovery error, defined
as:

o =|2-12|, /12l 0)
where we use Z to denote the data matrix in both sampling
schemes, and 7 to denote the estimated data matrix.

Figure 9 shows ¢, under sampling scheme I, versus the
number of samples per degree of freedom for the same
scenario as above. The number of transmit/receiver antennas
is set as M; = M, = 40. It can be seen from Fig. 9 that
when m/df increases from 2 to 4, or correspondingly, the
matrix occupancy ratio increases from p; ~ 0.2 to =~ 0.4,
the relative error ¢4 drops sharply to the reciprocal of the
matched filter SNR level, i.e., a “phase transition” [22] occurs.
It can be seen in Fig. 9 that, when the two targets have the
same DOA, the relative recovery error is the smallest. This is
because in that case the data matrix has the optimum coherence
parameter, i.e., g = 1. As the DOA separation between the
two target increases, the relative recovery error of the data
matrix in the transition phase increases. In the subsequent
DOA resolution simulations, we set the matrix occupancy ratio
as p; = fftﬁj = 0.5, which corresponds to m/df =~ 5,
to ensure that the relative recovery error has dropped to the
reciprocal of SNR level.

Figure 10 shows the relative recovery errors, ¢, for data
matrix Zq (sampling scheme II), corresponding to Hadamard
or Gaussian orthogonal (G-Orth) transmit waveforms, and the
number of Nyquist samples is taken to be N = 256. Different
values of DOA separation for the two targets are considered,
ie., A9 = 0°,1°,5°, respectively.

The results are averaged over 100 independent angle and
speed realizations; in each realization the Lo samples are ob-
tained at random among the N Nyquist samples at each receive
antenna. The results of Fig. 10 indicate that, for the same
A6, as m/df increases, the relative recovery error, ¢, under
Gaussian orthogonal waveforms (dash lines) reduces to the
reciprocal of the SNR faster than under Hadamard waveforms
(solid lines). A plausible reason for this is that under G-Orth
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Fig. 10. Scheme II, K = 2 targets: the relative recovery errors for Zq under
Hadamard and Gaussian Orthogonal waveforms, and different values of A6.
M, = My = 40, N = 256.

waveforms, the average coherence parameter of Zq is smaller
as compared with that under Hadamard waveforms. Under
Gaussian orthogonal waveforms, the error gbz decreases as Af
increases. On the other hand, for Hadamard waveforms the
relative recovery error appears to increase with an increasing
A6, a behavior that diminishes in the region to the right of the
point of “phase transition”. However, the behavior of the error
at the left of the “phase transition” point is not of interest as the
matrix completion errors are pretty high and DOA estimation
is simply not possible. At the right of the “phase transition”
point, the observation noise dominates in the DOA estimation
performance.

In both waveforms, the minimum error is achieved when
A0 = 0°, i.e., when the two targets have the same DOA, in
which case the rank of data matrix Z, is rank-1. The above ob-
servations suggest that the waveforms do affect performance,
and optimal waveform design would be an interesting problem.
The waveform selection problem could be formulated as an
optimization problem under the orthogonal and narrow-band
constraints. We plan to pursue this in our future work.

It can be seen from Fig. 9 and Fig. 10 that in the noisy cases,
as the matrix occupancy ratio increases, the relative recovery
errors of the matrices decreases to the reciprocal of SNR.

B. DOA Resolution with Matrix Completion

In this section we study the probability that two DOAs
will be resolved based on the proposed techniques. Two
targets are generated at 10° and 10° + A6, where Af =
[0.05°,0.08°,0.1°,0.12°,0.15°,0.18°,0.2°,0.22°,0.25°,0.3°].
The corresponding target speeds are set to 150 and 400 m/s.
We set M; = M, = 20 and Q = 5. The DOA information
is obtained by finding the peak locations of the pseudo-
spectrum (17). If the DOA estimates éi, 1 = 1,2 satisfy
’92- 79} < eAf,e = 0.1, we declare the estimation a
success. The probability of DOA resolution is then defined
as the fraction of successful events in 200 iterations. For
comparison, we also plot the probability curves with full data
matrix observations.
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First, for scheme I, L; = 10 matched filers are indepen-
dently selected at random at each receive antenna, resulting
matrix occupancy ratio of p; = 0.5. The corresponding
probability of DOA resolution is shown in Fig. 11 (a). As
expected, the probability of DOA resolution increase as the
SNR increases. The performance of DOA resolution based
on the full set of observations has similar behavior. When
SNR = 25dB, the performance of MC-based DOA estimation
is close to that with the full data matrix. Interestingly, for
SNR = 10dB, the MC-based result has better performance
than that corresponding to a full data matrix. Most likely, the
MC acts like a low-rank approximation of Zfzw ¥ and thus
eliminates some of the noise.

The probabilities of DOA resolution of DOA estimates
under scheme II, with G-Orth and Hadamard waveforms are
plotted in Fig. 12 (a) and (b), respectively. The parameters
are set as N = 256 and p, = 0.5, i.e., each receive antenna
uniformly selects Lo = 128 samples at random to forward.
Similarly, the simulation results show that under scheme II,
the performance at SNR = 10dB is slightly better than
that with full data access. In addition, it can be seen that
the performance with G-Orth waveforms is better than with
Hadamard waveforms. This is because the average coherence
of Z, under Hadamard waveforms is higher than that with
G-Orth waveforms. As shown in Fig. 12, increasing the SNR
from 10dB to 25dB can greatly improve the DOA estimation
performance, as it benefits both the matrix completion and the
performance of subspace based DOA estimation method, i.e.,
MUSIC (see chapt. 9 in [29]).

C. Comparisons of Sampling Schemes I and I1

Comparing the two sampling methods based on the above
figures (see Figs. 11, and 12 (a),(b)) we see that although
the performance is the same, sampling scheme I uses fewer
samples, i.e., 10 x 20 samples, as compared to sampling
scheme II, which uses 128 x 20 samples. To further elaborate
on this observation, we compare the performance of the two
sampling schemes when they both forward to the fusion
center the same number of samples. The parameters are set
to SNR = 25dB, p; = ps = 0.5 and M; = N. Therefore,
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Fig. 12. Scheme II, K = 2, M, = M; = 20, N = 256, po = 0.5,
SNR = 10,25dB. DOA resolution with (a) G-Orth waveforms; (b) with
Hadamard waveforms.

in both schemes, the number of samples forwarded by each
receive antenna was the same. The number of transmit antenna
was set as M, = 40 and 80, respectively. Gaussian orthogonal
transmit waveforms are used. Two targets are generated at
random in [—90°,90°] at two different DOA separations, i.e.,
A6 = 5°,30°. The results are averaged over 100 independent
realizations; in each realization, the targets are independently
generated at random and the sub-sampling at each receive
antenna is also independent between realizations. The relative
recovery error comparison is plotted in Fig.13.

It can be seen in Fig.13 that as N (or equivalently M;)
increases, the relative recovery error corresponding to Zq
and Zé‘/[ F' decreases proportionally to the reciprocal of the
observed SNR. The relative recovery error under scheme I
drops faster than under scheme II for both M, = 40 and
M, = 80 cases. This indicates that scheme I has a better
performance than scheme II for the same number of samples.

V. CONCLUSIONS

We have proposed MIMO-MC radars, which is a novel
MIMO radar approach for high resolution target parameter
estimation that involves small amounts of data. Each receive
antenna either performs matched filtering with a small number
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of dictionary waveforms (scheme I) or obtains sub-Nyquist
samples of the received signal (scheme II) and forwards the
results to a fusion center. Based on the samples forwarded
by all receive nodes, and with knowledge of the sampling
scheme, the fusion center applies MC techniques to estimate
the full matrix, which can then be used in the context of ex-
isting array processing techniques, such as MUSIC, to obtain
target information. Although ULAs have been considered, the
proposed ideas can be generalized to arbitrary configurations.
MIMO-MC radars are best suited for sensor networks with
large numbers of nodes. Unlike MIMO-CS radars, there is
no need for target space discretization, which avoids basis
mismatch issues. It has been confirmed with simulations that
the coherence of the data matrix at the fusion center meets the
conditions for MC techniques to be applicable. The coherence
of the matrix is always bounded by a small number. For
scheme I, that number approaches 1 as the number of transmit
and receive antennas increases and as the targets separation
increases. For scheme II, the coherence does not depend as
much on the number of transmit and receive antennas, or
the target separation, but it does depend on N, the number
of Nyquist samples within one pulse, which is related to
the bandwidth of the signal; the coherence increases as NV
increases. Comparing the two sampling schemes, scheme I
has a better performance than scheme II for the same number
of forwarded samples.

APPENDIX A
PROOF OF 119 = j11 = 1 FOR RANK-1 MATRIX Z}'¥

Proof. Suppose that there are K, K > 2 targets in the search

space, all with the same DOA, say 6. The transmit and receive

steering matrices are given by
A=la(b),...,a(bh)],
B = [b(91)17b(91)]7

21
(22)

where the transmit and receive steering vectors a () and
b (#,) are defined in equations (7) and (10), respectively. The
noise-free receive data matrix Zé” F can be written as
Z)'"" =BED,A”
B
=[b(61),...,b(6)] X
B
dy
[a(61),...,a(0:)]"
dx

K
= (Z 5kdk> b (61)a’ (61),
k=1

where dj, is the Doppler shift of the k-th target. Its compact
SVD is

(23)

ZéwF =uov’,

(24)

where ufu =1,vfv =1, and o is the singular value.

By applying the QR decomposition to the receive steering
vector b (6;), we have b (6;) = q,r,, where q’q, = 1 and
r = v/ M,. The expression of q, is given by

1 Som g o B . T
|:17 el = dy sm(()l)7 e eI = (M,—-1)d, 51n(01):|

qr = /7Mr
(25)

Similarly, applying the QR decomposition to the transmit
steering vector a (), we have a (61) = q;r;, where g/ q; =
1 and r; = +/M;. The expression of q; is given by

1 j 27 d, sin(61) j 2% (M —1)dy sin(0;) T
q = |:1’e]>\ tbl(l’...7e]A ¢ ¢ 1} )
VM,
(26)
Therefore, it holds that
K
Z)" =qr, (Z mdk) real 27)
k=1
n
where 71 is a complex number. Its SVD can be written as
1 = q1pqs, where |q1| = |g2| = 1, and p is a real number.
Thus,
H
z2)"" = qqpial = arap(aie)”, (28)

where (q-q1)" a1 = |a1/’af’q, = 1 and (qf¢2)"afg2 =
|q2|2(qfl q:)" = 1. By the uniqueness of the singular value,
it holds that p = o. Therefore, we can set u = q,q; and
vV = djqa.

Let qy) denote the ¢-th element of vector q,.. The coherence
w(U) is given by

M, 0o
p(U) == sup Hqi)qlu
ieNt, 2
= Mr sup qu)
zENLT
—1. (29)
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Let q; @) denote the i-th element of vector q;. The coherence
(V) is given by

M * (1 2
p(V)= Tt sSup H%( )QZH
€Ny, 2
2
= M; sup Hqt(l)H
ieNLt 2
=1. 30)

Consequently, we have po = max(p(U),u(V)) = 1. In
addition, we have p; < povV/K =1 [9]. It always holds that
w1 > 1. Thus, p; = 1. Therefore, we have pg = p; =1. O
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