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Toward Resource-Optimal Consensus over the
Wireless Medium

Matthew Nokleby, Waheed U. Bajwa, Robert Calderbank, and Behnaam Aazhang

Abstract—We carry out a comprehensive study of the resource
cost of averaging consensus in wireless networks. Most previ-
ous approaches suppose a graphical network, which abstracts
away crucial features of the wireless medium, and measure
resource consumption only in terms of the total number of
transmissions required to achieve consensus. Under a path-
loss dominated model, we study the resource requirements of
consensus with respect to three wireless-appropriate metrics:
total transmit energy, elapsed time, and time-bandwidth product.
First we characterize the performance of several popular gossip
algorithms, showing that they may be order-optimal with respect
to transmit energy but are strictly suboptimal with respect to
elapsed time and time-bandwidth product. Further, we propose
a new consensus scheme, termed hierarchical averaging, and show
that it is nearly order-optimal with respect to all three metrics.
Finally, we examine the effects of quantization, showing that
hierarchical averaging provides a nearly order-optimal tradeoff
between resource consumption and quantization error.

I. INTRODUCTION

Consider a network of N nodes, each of which possesses
a scalar measurement zn(0) ∈ R. In averaging consensus,
each node wishes to compute the average of these measure-
ments: zave = 1/N

∑N
n=1 zn(0). Averaging consensus often

is described as a simple, canonical example of distributed
signal processing over sensor networks; a common narrative
is that each node measures the local temperature and wants to
compute the average temperature over the sensor field. Such
simplicity, however, is deceptive, as consensus lies at the heart
of an array of sophisticated problems, including load-balancing
[1], distributed optimization [2]–[4], and distributed estimation
and filtering [5], [6]. Advances in consensus therefore repre-
sent advances throughout distributed signal processing.

Due to their simplicity, flexibility, and robustness, gossip
algorithms have emerged as a popular approach to consensus.
In gossip, the network is modeled by a graph. Nodes iteratively
pair with neighbors, exchange estimates, and average those
estimates together, eventually converging on the true average.
A large body of excellent work on gossip has been developed,
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from the early randomized gossip of [7] to faster schemes such
as path averaging [8] and multi-scale gossip [9]. Gossip is
simple, requiring minimal processing and network knowledge,
and it is robust, retaining performance even with failing links
and dynamic topology.

However, the purpose of consensus strategies is often to
facilitate processing over wireless networks, and wireless
affords possibilities that existing strategies do not fully exploit.
For example, in random geographic graphs, nodes are taken
to be neighbors if they lie within a certain radius, usually
chosen to be Θ(

√
logN/N) following [10]. Sophisticated

consensus algorithms are then constructed in order to minimize
the number of transmissions needed to achieve consensus. In
wireless, however, transmit radius is adjustable via power con-
trol. Furthermore, given sufficient transmit power the network
is fully connected, at which point consensus is trivial. This
suggests both that wireless permits flexibility that may improve
performance and that we must consider additional performance
metrics—such as transmit power—that encompass more than
just the number of transmissions.

While these issues have been taken up individually, in
this work we consider them jointly to answer the following
question: What are the resource demands of consensus over
wireless networks? Our objective is to expand the framework
in which consensus is studied in order to account for and
exploit features of the wireless medium that previously have
been overlooked. Given the ability to broadcast and to adjust
connectivity dynamically, we seek fundamental limits on the
wireless resources required to achieve consensus, as well as
practical consensus strategies that attain those limits.

A. Contributions
First, in Section II we define a realistic but tractable frame-

work in which to study the resource demands of consensus.
We assume a path-loss dominated propagation model in which
connectivity is determined by a signal-to-noise ratio (SNR)
threshold. We define three resource metrics: the total energy
expended in order to achieve consensus, the total time elapsed,
and the time-bandwidth product consumed. In Section III we
derive lower bounds on the required resources, and in Section
IV we characterize several existing consensus strategies within
our framework. We show that while path averaging is nearly
order optimal with respect to energy expenditure, it remains
suboptimal with respect to elapsed time and consumed time-
bandwidth product.

Next, in Section V we propose a new consensus algorithm,
termed hierarchical averaging, designed specifically for wire-
less networks. Instead of communicating with neighbors over
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a graph, nodes broadcast estimates to geographically-defined
clusters. These clusters expand as consensus proceeds, which
is enabled by adjusting nodes’ transmit powers. Similar to
the hierarchical cooperation of [11] and the multiscale gossip
of [9], small clusters cooperatively broadcast information to
larger clusters, continuing until consensus is achieved. De-
pending on the particulars of the channel model, hierarchical
averaging is nearly order optimal. In particular, when channel
phases are fixed and identical, hierarchical averaging is order
optimal with respect to all three metrics simultaneously, up
to an arbitrarily small gap in the exponent, for path-loss
exponents 2 ≤ α < 4. In the more realistic case in which
phases are random and independent, however, hierarchical
averaging is no longer order optimal in transmit energy when
α > 2, although it remains order optimal with respect to the
other two metrics.

Finally, in Section VI we incorporate quantization into
our model. Since practical wireless links suffer from noise,
achievable rates are finite and estimates must be quantized
prior to transmission. This introduces a tradeoff: expending
more energy increases the rate of the links, thereby re-
ducing the quantization error inherent to each transmission
and therefore the estimation error accrued during consensus.
Therefore, in addition to the resource metrics of energy, time,
and bandwidth, we introduce a fourth performance metric:
mean-square error of nodes’ estimates. Again we characterize
existing consensus techniques. We also apply quantization to
hierarchical averaging, showing that it permits an efficient
tradeoff between energy and estimation error.

B. Prior Work

Consensus has been studied under various guises, including
the early work of Tsitsiklis [2], which examined averaging in
the context of distributed estimation. Recent interest in consen-
sus was sparked by the introduction of randomized gossip [7],
which defined the framework and developed the theoretical
machinery in which most subsequent works have operated.
Randomized gossip, however, has relatively slow convergence
on random graphs, requiring roughly Θ(N2) transmissions.1

Since then, researchers have searched for faster consensus
algorithms. In geographic gossip [12], nodes pair up with
geographically distant nodes, exchanging estimates via multi-
hop routing. The extra complexity garners faster convergence;
geographic gossip requires roughly Θ(N3/2) transmissions.
Geographic gossip was further refined by the introduction of
path averaging [8], in which routing nodes contribute their
own estimates “along the way.” Path averaging closes the gap
to order optimality, requiring roughly Θ(N) transmissions,
which is the minimum of any consensus algorithm.

A few works have addressed individually the wireless
aspects we consider herein. The broadcast nature of wireless
is considered in [13], [14]; however, in these works broadcast
does not significantly improve performance over randomized

1Throughout this paper we use the Landau notation: f(n) = O(g(n))
implies f(n) ≤ kg(n), f(n) = Ω(g(n)) implies f(n) ≥ kg(n), and
f(n) = Θ(g(n)) implies f(n) = O(g(n)) and f(n) = Ω(g(n)), all for
constant k and sufficiently large n.

gossip. Multi-access interference is addressed—and in fact
exploited—in [15], where lattice codes are used to compute
sums of estimates “over the air.” In works that presage our
own [16]–[18], the effects of power control are explored. In
[16] the energy-minimal fixed power allocation for traditional
consensus is derived. In [17], [18] the convergence speed of
traditional consensus is studied as a function of nodes’ fixed
transmit radius, supposing that TDMA is used to mitigate
interference among users.

Finally, many authors have studied the impact of noisy
links on consensus. In [19], continuous-valued estimates are
corrupted by zero-mean additive noise, and optimal linear
consensus strategies are derived. For a similar model, the bias-
variance dilemma is identified: Running consensus for longer
reduces the bias of the resulting estimates, but it increases
the variance. In [20], [21] quantized consensus algorithms
are presented that achieve consensus over finite alphabets. In
[22] standard gossip is augmented with dithered quantization
and are shown to achieve consensus on the true average in
expectation. In [23] the increasing correlation among estimates
is exploited to construct a consensus algorithm employing
Wyner-Ziv style coding with side information.

II. PRELIMINARIES

A. System Model

In defining the wireless model, we aim for a balance
between tractability and practicality. To this end we make
four critical assumptions, which we contend capture the salient
features of wireless while maintaining simplicity: synchronous
transmission, path-loss propagation, “protocol”-model connec-
tivity, and orthogonalized interference management.

1) Synchronous Transmission: Let transmissions be broken
up into time slots t, each slot having K channel uses. At
time slot t, node n transmits a signal having average power
Pn(t). Nodes use capacity-achieving codes, and K is chosen
sufficiently long that the probability of error is negligible.

2) Path-loss Propagation: Each node n has a geographic
location rn ∈ [0, 1]× [0, 1] in the unit square, which we take
to be independently drawn from a uniform distribution. Let
1 ≤ k ≤ K be a symbol time during block k. Under the path-
loss model, the channel gain between any two nodes m,n is

hmn(t, k) =
√
G ‖rm − rn‖−α/22 ejθmn(t,k), (1)

where α ≥ 2 is the path-loss exponent, θmn(t, k) ∈ [0, 2π)
is a random phase with unspecified distribution, and G is a
constant that depends on α and the transmit frequency. The
choice of G does not affect scaling laws. In simulations, we
choose G sufficiently small that channel gains are smaller than
unity.

3) Protocol Model: Following the channel model in (1), the
signal transmitted by node m arrives at node n with average
power

Rmn(t) =
1

K

K∑
k=1

|hmn(t, k)|2Pn(t). (2)

We suppose that a link exists between node n and m provided
the received power is above a signal-to-noise ratio threshold
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γ > 0. Define the neighborhood of node n as the set of nodes
whose transmissions have sufficient received power:

Nn(t) = {m : Rmn(t) ≥ γ}

=
{
m : Pm(t) ≥ γ

G
‖rm − rn‖α2

}
. (3)

For nodes m /∈ Nn(t), we assume that node n suffers no
interference from node m’s transmission. This assumption
permits a tractable, geometric analysis of connectivity.

In hierarchical averaging, presented in Section V, we group
nodes into clusters which transmit cooperatively. In this case
we must expand the definition of neighborhoods to charac-
terize the number of unique signals arriving at node n. Let
Ci ⊂ {1, · · · , N}, where i ∈ I for some index set I, form a
partition of the network. At time slot t, nodes within cluster
Cj transmit jointly. Define the received power at node n as

RC,n(t) =
1

K

K∑
k=1

∣∣∣∣∣∣
∑
m∈Cj

hmn(t, k)
√
Pm(t)

∣∣∣∣∣∣
2

≈ E


∣∣∣∣∣∣
∑
m∈Cj

hmn(t, k)
√
Pm(t)

∣∣∣∣∣∣
2
 ,

where the expectation is taken over the random phases, and the
approximation is accurate for large K. Then, the neighborhood
of n is the set of all clusters Cj such that the received power
exceeds γ:

Nn(t) =

Cj : E


∣∣∣∣∣∣
∑
m∈Cj

hmn(t, k)
√
Pm(t)

∣∣∣∣∣∣
2
 ≥ γ,

 .

The connectivity of clusters depends on the distribution of the
phases θmn(t, k). In the sequel we consider two possibilities.
First, we consider the simple case in which the phases are
equal and fixed. In this case, signals constructively combine
at receivers, and the neighborhood of n can be written as

Nn(t) =

Cj :

∑
m∈Cj

‖rm − rn‖−α/22 P
1
2
m(t)

2

≥ γ

G

 .

(4)
The second, and more realistic, case we consider is that each
θmn(t, k) is independently and uniformly distributed across
[0, 2π). Then, signals do not combine coherently, and the
neighborhood of n is

Nn(t) =

Cj :
∑
m∈Cj

‖rm − rn‖−α2 Pm(t) ≥ γ

G

 . (5)

Finally, we define the neighborhood of a cluster Ci as those
clusters in the neighborhood of any of its nodes:

NCi(t) = {Cj : ∃n ∈ Ci with Cj ∈ Nn(t)} (6)

4) Frequency Orthogonalization: At every time slot t, each
node n transmits over a frequency slot fn(t) ∈ N. In order
for transmissions to be successful, each incoming signal must
arrive on a different frequency slot, which means that each

node must transmit on a frequency different not only from its
neighbors, but also from its neighbors’ neighbors. The number
of required frequency slots can be described in terms of graph
coloring. Let G2(t) denote the graph of two-hop neighbors—of
either nodes or clusters, as appropriate—at time slot t. Then,
the number of frequency slots required at time t is

B(t) = χ(G2(t)),

where χ(·) is the (vertex) chromatic number. Clearly,

B(t) ≥ max
n
|Nn(t)| (7)

Further, by Brooks’ theorem [24],

B(t) ≤ max
n

Degn(G2(t)) + 1, (8)

where Degn(·) is the degree of node n over G2(t), or the
number of two-hop neighbors.

B. Performance Metrics: Ideal Links

We first consider the case in which the links between
neighboring nodes are ideal, meaning that the quantization
artifacts associated with finite-rate transmission are neglected.
Therefore, at time t, node n decodes an infinite-precision, real-
valued scalar from each m ∈ Nn(t).

At time t, each node updates its estimates by taking a linear
combination of estimates received from neighboring nodes:

zn(t) =
∑

m∈Nn(t)

amn(t)zm(t), (9)

where amn(t) are arbitrary coefficients. Note that the coef-
ficients, as well as the neighborhoods, may vary with time.
Since connectivity may vary in time, the weights do not
necessarily need to form a doubly-stochastic matrix, as is
typically required in consensus with fixed topologies [7].

The first performance metric is the ε-averaging time, defined
as the number of time slots required to achieve consensus to
within a specified tolerance2:

Tε = sup
z(0)∈Rn

inf

{
t : Pr

(
‖z(t)− zave1‖
‖z(0)‖

≥ ε
)
≤ ε
}
, (10)

where z(t) is the vector of estimates zn(t). The scaling law
of Tε is the primary focus of study in consensus. However,
it provides only a partial measure of resource consumption in
wireless networks, so we consider other metrics as well.

The next metric is the total transmit energy, the energy
required to achieve consensus to within the tolerance ε:

Eε = K

N∑
n=1

Tε∑
t=1

Pn(t). (11)

The final figure of merit is the time-bandwidth product,
the total number of frequency slot uses required to achieve
consensus to within the tolerance ε:

Bε = K

Tε∑
t=1

B(t), (12)

2This definition is inspired by the well-known connection between Markov
chain mixing and averaging consensus [25].
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C. Performance Metrics: Finite-Rate Links

In practice, wireless links are noisy and therefore have
finite rate, which precludes the infinite-precision exchange
of scalars. Instead, nodes must quantize their estimates to a
finite alphabet prior to each round of consensus. To simplify
the discussion, we suppose that the measurements zn(0) are
drawn from the finite interval [0, 1). Throughout this paper, we
employ dithered uniform quantization described in [22]. For
alphabet size L, the quantization alphabet Z is defined as the
midpoints of L equally-sized quantization bins. The quantizer
is defined as

φ(z) = min
q∈Z
|q − (z + u)|, (13)

where u is a dither, drawn uniformly and randomly from
[−∆/2,∆/2) each time φ is called, and ∆ = 1/L is the
width of each quantization bin. Statistically, one can write the
quantized value as

φ(z) = z + v,

where v is uniformly distributed across [−∆/2,∆/2) and
independent of z.

The alphabet size L = |Z| depends on the quality of
the wireless links. Since we define connectivity at signal-
to-noise threshold γ, we take L to be determined by the
Shannon capacity of a wireless link at SNR γ. Supposing
unit bandwidth and slot duration, nodes successfully transmit
K log2(1 +γ) bits over the wireless links, which results in an
alphabet size of L = b2K log2(1+γ)c = b(1 + γ)Kc.

At time t, each node updates its estimate by taking a
functional combination of quantized estimates received from
neighboring nodes:

zn(t) = gn(φ(z(t)), t), (14)

where the function gn may only depend on estimates φ(zm(t))
for which m ∈ Nn(t). Again the connectivity and the function
gn may vary with time.

For a consensus algorithm with quantization, let T be the
number of rounds for which consensus is run. Then let B and
E be the time-bandwidth product and total transmit energy,
defined as before but with T taking the role of Tε. Finally,
define the mean squared error as

σ2 = max
z(0)∈[0,1)N

E

[
1

N

N∑
n=1

(zn(T )− zave)2

]
, (15)

where the expectation is taken over any randomness in the
quantization operator as well as in the consensus algorithm.
There is an inherent tradeoff between the total transmit energy
E and the mean-squared error σ2. One can always reduce the
estimation error by injecting more transmit energy into the
network and increasing the rate of the wireless links.

Finally, throughout this paper we rely on the following
lemma, which shows that the number of nodes in any region
is asymptotically proportional to its area to within an arbitrary
tolerance.

Lemma 1 (Ozgur-Leveque-Tse, [11]): Let A ⊂ [0, 1] ×
[0, 1] be a region inside the unit square having area |A|, and
let C = {n : rn ∈ A} be the nodes lying in A. Then, for any

δ > 0,
(1− δ)|A|N ≤ |C| ≤ (1 + δ)|A|N, (16)

with probability greater than 1 − 1/|A|e−Γ(δ)|A|N , where
Γ(δ) > 0 is a quantity independent of N and |A|.

III. INNER BOUNDS

In this section we derive inner bounds on the resource costs
for consensus over the proposed wireless model. We begin
with the case of ideal links.

Theorem 1: For any consensus algorithm, and for any ε =
O(1), we have, with probability approaching 1 as N →∞:

Tε = Bε = Ω(1) (17)

Eε = Ω(N1−α/2). (18)

Proof: The bounds on Tε and Bε are trivial. The bound on
Eε follows from the observation in [8] that consensus to within
a constant tolerance requires at least Ω(N) transmissions.
Each transmission from node n consumes at least enough
energy to reach its nearest neighbor, which by (3) is equal
to γ/Gdαmin(n), where dmin(n) is the distance between node
n and its nearest neighbor. It is well-known (e.g., in [26]), that
dmin(n) = Θ(N−1/2) with high probability, so

Eε ≥ Ω(N)
γ

G
Θ(N−α/2) = Ω(N1−α/2).

When links are rate limited, we derive an inner bound on
the tradeoff between resources and estimation error.

Theorem 2: For any consensus algorithm with rate-limited
links, any achievable tradeoff in performance metrics satisfies
the following with high probability:

T = B = Ω(K) (19)

E = K

N∑
n=1

Ω(Nun−α/2) (20)

σ2 =
1

N

N∑
n=1

Ω(N−2Kun), (21)

for un > 0 and K > 0. In particular, choosing each un = u
yields

E = Ω(KN1+u−α/2) (22)

σ2 = Ω(N−2Ku). (23)

Proof: As in the ideal-link case, the bounds on T and
B are trivial; at least one transmission must be made, which
requires K channel uses. To bound the tradeoff between
energy and estimation error, momentarily consider a single
node n. Suppose a genie supplies node n with zave, and further
suppose that only node n’s nearest neighbor, denoted by m,
needs to compute the average. In this case, the optimal strategy
is for n to quantize zave and transmit it directly to node m.
In principle, other nodes could transmit their measurements
to m, but since they are no closer order-wise, and since they
have only partial knowledge of the average, any energy they
expend would be better used by node n.
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Without loss of generality, let Pn = Nun−α/2 denote
the transmit power used by node n to transmit zave. Since
again the distance between nearest neighbors is Θ(N−1/2),
then with high probability the highest possible SNR is γ =
Θ(Nun). Therefore, L = (1 +γ)K = Θ(NKun)). The square
quantization error at node n on zave is |en|2 = Θ(L−2) =
Θ(N−2Kun). Repeating the argument for each n establishes
the result.

By contrast with the ideal-link case, with quantization
nodes can trade off between resources and quantization error
by adjusting both K and the transmit power. In particular,
observe that choosing high K reduces the exponent of the
estimation error, but only increases the resource consumption
by a constant factor. To highlight this tradeoff, we retain K
in the scaling laws for quantization, whereas with ideal links
we omit K.

Also note that the scaling laws are more favorable for higher
path-loss exponents, which may give the false impression
that increased path-loss decreases the resources required. So
long as G is chosen such that channel gains are less than
unity, the absolute resource consumption required for fixed
N increases with α. The scaling laws merely indicate that
increasing the number of nodes—and therefore decreasing the
distance between nearest neighbors—is more beneficial for
high path-loss. Of course, for sufficiently large N the far-field
assumption on which path-loss is based breaks down, at which
point the scaling laws no longer hold. For a discussion of this
issue in capacity scaling laws, see [27], [28].

IV. GOSSIP ALGORITHMS

In this section we characterize several existing gossip al-
gorithms with respect to the metrics defined in Section II.
We focus on two variants that give a relatively comprehensive
look at the state of the art: randomized gossip [7], which
is probably the best-known approach to gossip, and path
averaging [8], which is order optimal in terms of convergence
speed3. Our first task is to adapt the graphical nature of gossip
to our wireless model. In order to achieve consensus, it is
necessary to choose the topology of the network such that the
resulting graph is connected, which requires that each node be
neighbors with every node within a radius of Θ(

√
logN/N)

[10]. Therefore the neighborhoods must satisfy, for every node
n that transmits during time slot t,

Nn(t) = {m : ‖xm − xn‖2 < Θ(
√

logN/N)}.

By (3), the transmit power is

Pn(t) = Θ((logN/N)α/2), (24)

for every node n transmitting during time slot t. This holds
for both gossip algorithms considered in this section.

3Due to its similarity with hierarchical averaging, we might suspect that
multiscale gossip [9] has superior performance to the gossip algorithms
studied here with respect to our metrics. However, multiscale gossip differs
from hierarchical averaging in the crucial sense that it operates using fixed
connectivity. As a result, while we do not carry out the analysis here due to
space constraints, one can show that the performance of multi-scale gossip is
similar to that of path-averaging.

A. Randomized Gossip

We study the synchronized randomized gossip of [7]. At
each time slot t, each node is randomly paired up with one of
its neighbors. Paired nodes exchange estimates and average the
estimates together, which results in the following dynamics:

z(t) =
1

2
(W(t) + I)z(t− 1),

where W(t) is a randomly-chosen permutation matrix such
that wmn = 1 only if nodes m and n are neighbors.

In [7, Theorem 9] the convergence of randomized gossip is
characterized. It is shown that the averaging time satisfies

Tε = Θ

(
N

log ε−1

logN

)
. (25)

Using this fact, we derive bounds on the resource consumption
of randomized gossip.

Theorem 3: For randomized gossip, the resource consump-
tion scales as follows with high probability:

Tε = Θ

(
N

log ε−1

logN

)
, (26)

Bε = Ω
(
N log ε−1

)
, (27)

Eε = Θ(N2−α/2(logN)α/2−1 log ε−1). (28)

Proof: The bound on Tε follows from (25). Since
every node transmits during every time slot t, Pn(t) =
Θ((logN/N)α/2) ∀n, t. The transmit energy therefore follows

Eε = K

Tε∑
t=1

N∑
n=1

Θ

(
logN

N

)α/2
= TεΘ(N1−α/2(logN)α/2)

= Θ(N2−α/2(logN)α/2−1 log ε−1).

Next, the required connectivity radius means that each neigh-
borhood is defined by a region of area Θ(logN/N). By
Lemma 1, each neighborhood size satisfies

(1− δ)π logN ≤ |Nn(t)| ≤ (1 + δ)π logN

|Nn(t)| = Θ (logN)

with high probability. Plugging this into (12) yields

Bε = KTεΩ (logN) = Ω
(
N log ε−1

)
.

B. Path Averaging

Next, we examine path averaging [8]. Instead of exchanging
estimates with a neighbor, in path averaging each node chooses
a geographically distant node with which to exchange its
estimate; the exchange is facilitated by multi-hop rounding.
In addition to facilitating the exchange, the routing nodes
add their estimates “along the way,” allowing many nodes to
average together in a single round. Once the average of all the
nodes’ estimates is computed at the destination, the result is
routed back to the source.

Path averaging is described in an asynchronous framework
in which nodes independently “wake up,” initiate multi-hop
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exchanges, and return to idle state sufficiently quickly that no
two exchanges overlap in time. Placing path averaging into
our synchronous framework, we suppose that at time t a pair
of nodes n,m is randomly selected to engage in a multi-hop
exchange. Letting P(t) be the set of nodes routing from n to
m, we suppose that the 2(|P(t)| − 1) transmissions required
to route from n to m and back happen sequentially and thus
require 2(|P(t)|−1) time slots. At time slot t+2(|P(t)|−1),
a new pair is chosen. The dynamics for path averaging has the
following form:

zn(t+ 2(|P(t)| − 1)) =

{
1
|P|
∑
m∈P(t) zm(t), n ∈ P(t)

zn(t), otherwise
.

(29)
In [8, Theorem 2] it is shown that, for a ran-

dom uniform network,4 the expected path length is
E[|P(t)|] = Θ(

√
N/ logN) and the number of exchanges

required to achieve ε-consensus is Θ(
√
N logN log ε−1).

Combining these facts, the total number of required transmis-
sions is Θ(N log ε−1).

In casting path averaging in our synchronous framework, we
have retained the assumption that multi-hop exchanges do not
overlap in time. In principle one could construct a synchronous
path-averaging gossip in which multiple exchanges occur
simultaneously, perhaps reducing the total amount of time
required to achieve consensus. In the following theorem, we
provide a rather optimistic bound on the resource consumption
of any such synchronous formulation.

Theorem 4: For any synchronous path-averaging gossip, the
resource consumption scales as follows with high probability:

Tε = Bε = Ω

(√
N

logN

)
(30)

Eε = Θ(N1−α/2(logN)α/2 log ε−1). (31)

Proof: We prove the bound on Tε and Bε by noting that
each route has Θ(

√
N/ logN) hops. Even in the ideal case in

which every round of gossip occurs simultaneously, we still
require Tε = Ω(

√
N/ logN) sequential transmissions. Sup-

posing that constant bandwidth is sufficient to accommodate
the multiple exchanges, the same bound applies to Bε.

To bound Eε we point out that, as with randomized gossip,
Pn(t) = Θ((logN/N)α/2) for every transmission. Since path-
averaging requires Θ(N log ε−1) transmissions, the overall
energy consumption scales as

Eε = Θ(N1−α/2(logN)α/2 log ε−1).

V. HIERARCHICAL AVERAGING

In this section we present hierarchical averaging. Much like
multi-scale gossip [9] and the hierarchical cooperation of [11],
in hierarchical averaging we recursively partition the network
into geographically defined clusters. Each cluster achieves

4Technically, the convergence speed of path averaging is proven over a
torus, so the results we prove in the sequel apply to the torus. Later we
show numerical results that suggest that the similar results apply to a square
network.

internal consensus by mutually broadcasting estimates. Nodes
within a cluster then cooperatively broadcast their identical
estimates to neighboring clusters at the next level. The process
continues until the entire network achieves consensus. In the
following subsection we describe the recursive partitioning, af-
ter which we describe the algorithm in detail and characterize
its resource requirements.

A. Hierarchical Partitioning

We partition the network into T sub-network layers, one
for each round of consensus, as depicted in Figure 1. At
the top layer, which corresponds to the final round t = T
of consensus, there is a single cell. At the next-highest level
t = T − 1, we divide the network into four equal-area square
cells. Continuing, we recursively divide each cell into four
smaller cells until the lowest layer t = 1, which corresponds
to the first round of consensus. At each level t there are 4T−t

cells, formally defined as

Cjk(t) = {n : rn ∈ [(j − 1)2t−T , j2t−T )×
[(k − 1)2t−T , k2t−T )}, (32)

where 1 ≤ j, k ≤ 2T−t index the location of the cell.
Let C(n, t) denote the unique cluster at layer t containing

n. Let M(t) =
√

2 · 4 t−T2 = Θ(4
t−T
2 ) denote the maximum

distance between two nodes in the same cluster at layer t.
We choose T = dlog4(N1−κ)e, where 0 < κ < 1 is a small

constant. In the following lemma we bound the cardinality of
each cell.

Lemma 2: For every 1 ≤ j, k ≤ 2T−t and 1 ≤ t ≤ T , the
cluster cardinalities simultaneously satisfy

|Cjk(t)| = Θ(4tNκ), (33)

with probability greater than 1−N2−2κ/16 · e−Γ(δ)Nκ .
Proof: By construction, the area of each cell for t = 1 is

A = 41−T

=⇒ 41−log4(N1−κ)−1 ≤ A ≤ 41−log4(N1−κ)

Nκ−1

16
≤ A ≤ 4Nκ−1.

By Lemma 1, the cardinality of each cell at layer t = 1 satisfies

(1− δ)N
κ

16
≤ |Cjk(t)| ≤ (1 + δ)4Nκ, (34)

with probability greater than 1−N1−κ/16 · e−Γ(δ)Nκ .
Define Ejk(1) as the event in which |Cjk(1)| is outside the

bounds specified in (34). Clearly Pr{Ejk(1)} ≤ N1−κ/16 ·
e−Γ(δ)Nκ . By the union bound, the total probability follows

Pr

 ⋃
1≤j,k≤2T−1

Ej,k(1)

 ≤ ∑
1≤j,k≤2T−1

N1−κ/16 · e−Γ(δ)Nκ

≤ N2−2κ/16 · e−Γ(δ)Nκ → 0. (35)

Therefore, every cell at t = 1 simultaneously satisfies
|Cjk(1)| = Θ(Nκ) with the desired probability. Finally, since
each cell at layer t is composed of 4t−1 cells at layer 1,
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C11[T ]

t = T

C11[T − 1]

C12[T − 1]

C21[T − 1]

C22[T − 1]

t = T − 1

C11[T−2]

C12[T−2]

C13[T−2]

C14[T−2]

C21[T−2]

C22[T−2]

C23[T−2]

C24[T−2]

C31[T−2]

C32[T−2]

C33[T−2]

C34[T−2]

C41[T−2]

C42[T−2]

C43[T−2]

C44[T−2]

t = T − 2

Fig. 1. Hierarchical partition of the network. Each square cell is divided into four smaller cells, which are each divided into four smaller cells, and so on.

the cardinalities at each layer satisfy the claim with high
probability.

B. Algorithm Description

First, at time slot t = 1 each node broadcasts its initial
estimate zn(0) to each member of its cluster C(n, t). In order
to ensure that n ∈ Nm(t) for every m ∈ C(n, 1), each node
transmits at power

Pn(1) =
γ

G
max

m∈C(n,1)
hαnm ≤

γ

G
M(1)α = O(N (κ−1)α/2).

(36)

Each node averages the estimates in its cluster:

zn(1) =
1

41−TN

∑
m∈C(n,1)

zm(0). (37)

We use the approximate normalization 1/41−TN instead of
the exact factor 1/|C(n, 1)| so that nodes at higher levels of
the hierarchy need not know the cardinality of the cells. This
approximation introduces no error into the final estimate.

After time slot t = 1, each node in each cluster Cjk(1) has
the same estimate, which we denote by zCjk(1)(1). At each
subsequent time slot 2 ≤ t ≤ T , each cluster C(n, t − 1)
cooperatively transmits its estimate to its parent cluster at
layer t. We take each Pn(t) to be a constant. The transmit
power required depends on the phase of the channel gains,
as discussed in Section II-A. When the phases are fixed and
identical, by (4) the transmit powers must satisfy ∑

m∈C(n,t−1)

hmnP
1/2
m (t)

2

=
γ

G
,

which implies

Pm(t) =
γ

G
(∑

m∈C(n,t−1) hmn

)2

≤ γM(t)α

G|C(n, t− 1)|2

= O
(

4(α/2−2)tN−α/2+κ(α/2−2)
)
. (38)

When the phases are random and uniform, on the other hand,
by (5) a similar argument shows

Pm(t) =
γ

G
∑
m∈C(n,t−1) h

2
mn

≤ γM(t)α

G|C(n, t− 1)|
= O

(
4(α/2−1)tN (κ−1)α/2

)
. (39)

After receiving estimates from the other sub-clusters, each
node updates its estimate by taking the sum:

zn(t) =
1

4

∑
C(n,t−1)⊂C(n,t)

zC(n,t−1)

=
1

4t−TN

∑
m∈C(n,t)

zm(0), (40)

where the second equality follows straightforwardly by induc-
tion. At time t, the identical estimate at each cluster is the
average of the measurements from within that cluster.

Consensus is achieved at round T , where the four sub-
clusters at level t = T − 1 broadcast their estimates to the
entire network. Evaluating (40) for t = T , we observe that
hierarchical averaging achieves perfect consensus; there is no
need for a tolerance parameter ε. This somewhat surprising
result is the consequence of combining the flexibility of
wireless, which allows us to adjust the network connectivity
at will, with the assumption of ideal links. In the next section
we will revisit this assumption.

In the following theorem we derive the resource require-
ments of hierarchical averaging.

Theorem 5: With high probability, the resource consump-
tion of hierarchical averaging scales according to

Tε = Bε = O(Nκ), (41)

Eε =

{
O(N1−α/2+κα/2), for fixed phase
O(Nκα/2), for uniform phase

, (42)

for any path-loss exponent 2 ≤ α < 4, for any ε > 0 and for
any 0 < κ ≤ 1.

Proof: The bound on Tε follows by construction; we
chose T = dlog4N

1−κe = O(Nκ) layers of hierarchy and
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constructed the algorithm such that consensus is achieved to
within any tolerance ε > 0,

We derive the bound on Bε by examining the number of
two-hop neighbors for each node. At time slot t = 1, by (36)
each node transmits at power Pn(1) = O(N (κ−1)α/2). The
neighbors are nodes within a radius of O(Nκ−1), and the two-
hop neighbors are the nodes within twice the radius. Therefore,
by Lemma 1, the number of two-hop neighbors for each node
scales as O(Nκ) with probability approaching 1 as N →∞.
By (8), B(1) = O(Nκ).

For rounds 2 ≤ t ≤ T , we need to bound the number of
clusters within two hops of each node. In (38) we chose the
transmit powers such that the clusters transmit to each node in
a circle of area πM2(t) = O(4tN1−κ). By construction, each
cluster C(n, t) covers an area of O(4tN1−κ). The number of
clusters that can fit into the circle—and therefore the number
of one-hop neighbors—is a constant. The number of two-hop
neighbors, bounded above by the square of the number of
one-hop neighbors, also remains constant, so B(t) = O(1).
Summing over all rounds, we get

Bε = K

T∑
t=1

B(t) = O(Nκ) +

T∑
t=2

O(1) = O(Nκ). (43)

Finally, we derive the bounds on Eε. For fixed phase, (36)
and (38) imply that the transmit energy follows

Eε = N ·O(N (κ−1)α/2) +N

T∑
t=2

O
(
4(α/2−2)tN−α/2+κ(α/2−2)

)
(a)
= O(N1−α/2+κα/2) +O

(
N1−α/2+κ(α/2−2) 1− 4(α/2−2)T

1− 4α/2−2

)
(b)
= O(N1−α/2+κα/2) +O

(
N1−α/2+κ(α/2−2)N (α/2−2)(1−κ)

)
= O(N1−α/2+κα/2), (44)

where (a) follows from the finite geometric sum identity, and
(b) holds only when α < 4. For uniform phase, first note that
the condition in (39) is more strict than that of (36), so the
transmit power satisfies

Pn(t) = O
(

4(α/2−1)tN (κ−1)α/2
)

(45)

for all n, t. Substituting (45) into the definition of Eε yields

Eε = K

T∑
t=1

N∑
n=1

Pn(t)

= O

(
N1+(κ−1)α/2

T−1∑
t=0

4(α/2−1)t

)
= O(Nκα/2), (46)

where again we have employed the finite geometric sum
identity.

Hierarchical averaging achieves resource scaling arbitrarily
close to the lower bound of Theorem 1 when phase is fixed.
When phase is uniform, however, the energy consumption is
strictly suboptimal for α > 2. Note that resource scaling does
not depend on the channel phases for α = 2. In this case,
hierarchical averaging is order optimal regardless of phase.

C. Numerical Results

We examine the empirical performance of the several con-
sensus algorithms presented. We choose γ = 10dB, α = 4,
ε = 10−4, κ = 10−4, K = 10, and G = 10−3α/2. We let N
run from 10 to 1000, averaging performance over 50 random
initializations for each value of N . Figure 2 shows the average
transmit energy Eε and time-bandwidth product Bε. (Since the
data for Tε are rather similar to that of Bε, we do not plot
them.)
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Fig. 2. Time-bandwidth product Bε and transmit energy Eε as a function
of N .

With respect to time-bandwidth product, hierarchical av-
eraging performs best, the required number of sub-channel
uses growing slowly with N . The remaining two consensus
schemes perform comparably, the required number of sub-
channels growing approximately linearly in N . Note that,
while we bounded the time-bandwidth product of path av-
eraging with a strictly sub-linear term, this bound applied to
hypothetical instantiations of the scheme in which multiple
transmissions occur simultaneously. Our simulations used the
ordinary algorithm, which requires Θ(N) sub-channel uses.

With respect to total transmit energy, hierarchical averaging
performs best so long as the phases are fixed, in which case
the performance is on par order-wise with the lower bound;
the oscillations in energy are due to rounding log4(N1−κ)
in order to choose T . When phases are uniform, however,
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performance depends on N . Even though path averaging has
better scaling than hierarchical averaging under uniform phase,
for small N hierarchical averaging requires less power. Finally,
as expected, randomized gossip requires the most energy in
any regime.

VI. QUANTIZATION

In this section we examine consensus with quantization.
As in the case with ideal links, we first characterize the
performance of existing quantized consensus algorithms with
respect to the metrics specified in Section II-C. We cannot
survey every approach in the literature, so we focus on the
quantized consensus of [20], in which consensus is modified to
preserve the average of quantized estimates each round. After
deriving bounds on its performance, we turn to hierarchical
averaging. We show that it achieves the lower bound of
Theorem 2 when phases are fixed.

A. Quantized Consensus

In ordinary gossip, the primary difficulty of quantization
is that quantizing estimates in general alters the average
across the network. Thus, even if consensus is achieved, the
dynamics will not in general converge on the true average of
the (quantized) measurements. In quantized consensus [20], a
family of consensus algorithms is proposed that preserves the
average at each round; it converges to near-consensus around
the true average.

Recall from Section II-C that Z is the set of L points evenly
distributed across [0, 1), separated by quantization bin width
∆ = 1/L. Quantized consensus operates only on quantized
values, so first we must quantize the real-valued measurements
zn(0):

qn(0) = φ(zn(0)), (47)

where φ is the dithered quantizer described in Section II-C.
Let en(0) = φ(zn(0))− zn(0) denote the quantization error.

Much like in randomized gossip, at each round every node
randomly selects a neighboring node and mutually averages,
with the caveat that one node rounds “up” to the nearest
member of Z while the other rounds “down.” Letting i and j
denote the two nodes in the exchange, we have5

qi(t) =

⌈
qi(t− 1) + qj(t− 1)

2

⌉
Z

(48)

qj(t) =

⌊
qi(t− 1) + qj(t− 1)

2

⌋
Z
, (49)

where d·eZ and b·cZ represent rounding up and down to the
nearest element of Z , respectively. In [20, Theorem 1] This
algorithm is guaranteed to converge on near-consensus: in the
limit, each qn(t) differs by at most a single bin, and the sum
of the quantized measurements is preserved. It is difficult to
bound the convergence speed of this process in general due
to the non-linearity of the updates. However, for the case
of a fully-connected graph, in [20, Lemma 6] it is shown

5In fact, [20] proposes a family of algorithms, and the one we use here is
only one possibility. The convergence properties we exploit in the following
are independent of the specific algorithm chosen.

that quantized consensus requires Ω(N2) transmissions over
Ω(N) consensus rounds. Using this fact, we bound the overall
performance.

Theorem 6: The performance of quantized gossip scales,
with high probability, as

T = Ω(KN), (50)
B = Ω(KN logN), (51)

E = Ω(KN2−α/2+u(logN)α/2), and (52)

σ2 = Ω(N−2Ku−1), (53)

for any u ≥ 0.

Proof: Choose a target SNR γ, which may vary with N .
In order to maintain connectivity, links need to maintain γ at
radius

√
logN/N , which requires

Pn(t) = Θ

(
γ

(
logN

N

)α/2)
. (54)

By [20, Lemma 6], consensus requires Ω(N) rounds for fully-
connected graphs, and the performance for random graphs can-
not be any better. As in the proof of unquantized randomized
gossip, the neighborhood size scales as Θ(logN), so the time-
bandwidth product scales as

B = Ω(KN logN). (55)

Since consensus requires Ω(KN2) total transmissions, the
energy scales as

E = Ω(KγN2−α/2(logN)α/2). (56)

Finally, we examine the mean-squared error. In the best
case, the dynamics converge on true consensus, meaning that
qn(T ) is the same for each n. In this case the final estimates
are merely the average of the quantized measurements zn(0).
Therefore the final estimates are

qn(T ) =
1

N

N∑
n=1

qn(0) = zave −
1

N

N∑
n=1

en(0),

where en(0) is the quantization error of the initial estimate.
In the worst case, each |en(0)| = ∆/2 = L−1/2. Since the
errors are uncorrelated, the squared error follows

σ2 = E

( 1

N

N∑
n=1

en(0)

)2


≥ 1

N2

N∑
n=1

E[|en(0)|2] = Ω(N−1L−2).

Recall that L = b(1 + γ)Kc. Choosing γ = Nu yields the
result.

We hasten to point out that the bounds here are rather
generous, since we supposed that convergence on a random
graph is as fast as on a fully-connected graph. In practice,
as we shall see in the numerical results presented later, the
performance is somewhat worse.
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B. Hierarchical Averaging
We characterize the performance of hierarchical averaging

with quantization. As before, cells of nodes at lower layers
achieve local consensus, after which they broadcast their
estimates to nearby clusters, continuing the process until
global consensus is achieved. Here, however, each estimate
is quantized prior to transmission, which introduces error that
accumulates during consensus.

We choose T = dlog4N
1−κe and define the cells Cjk(t) as

before. At time slot t = 1, each node n quantizes its initial
measurement zn(0) and broadcasts the quantized value to the
nodes in C(n, 1). Following (36), this requires

Pn(1) = O(γN (κ−1)α/2), (57)

Each node n updates its estimate by averaging the quantized
estimates in its cluster:

zn(1) =
1

41−TN

∑
m∈C(n,1)

zm(0) + vm(0). (58)

As before we use the normalization factor 1/41−TN in order
to avoid nodes’ needing to know the cluster cardinalities. Next,
at time slot 2 ≤ t ≤ T , each cluster at layer t−1 quantizes its
estimate and cooperatively broadcasts to the members of its
parent cluster at layer t. Following (38) and (39), this requires

Pn(t) =

{
O(γ4(α/2−2)tN−α/2+κ(α/2−2)), fixed phases
O(γ4(α/2−1)tN (κ−1)α/2), uniform phases

.

(59)
At time step t > 1, each node n averages together the

estimates from each of the subclusters C(m, t− 1) ⊂ C(n, t).
By induction, this estimate is

zn(t) =
1

4t−TN

∑
k∈C(n,t)

(zk(0) + vk(0))

+

t−1∑
s=1

∑
M∈Rn(t,s)

4s−tvM (s), (60)

where Rn(t, s) is the set of all clusters C(m, s) that are subsets
of C(n, t). In other words, at round t we have the total average
so far, corrupted by quantization noise from each of the rounds
s < t. In the following theorem, we detail the resource-
estimate tradeoff achieved by this scheme.

Theorem 7: Using dithered quantization, hierarchical aver-
aging achieves the following tradeoff between resource con-
sumption and estimation error with high probability:

T = B = O(KNκ) (61)

E =

{
O(KN1−α/2+κα/2+u), for fixed phases
O(KNκα/2+u), for uniform phases

(62)

σ2 = Θ(N−2Ku), (63)

for any u ≥ 0, κ > 0, and 2 ≤ α < 4. In particular, for u = 0
the estimation error is constant in the network size using the
same amount of energy as in the non-quantized case.

Proof: Choose an SNR γ, which may vary with N . Since
the number of rounds and the cluster geometry is unchanged
from the non-quantized case, we can repeat the argument from

Theorem 5, yielding T = B = O(KNκ). Repeating the
arguments from Theorem 5, which yields

E =

{
O(γN1−α/2+κα/2), for fixed phases
O(γNκα/2), for uniform phases

.

All that remains is to bound the estimation error. Evaluating
(60) for t = T , we get, for every n

zn(T ) =
1

N

N∑
k=1

(zk(0) + vk(0)) +

T−1∑
s=1

∑
M∈Rn(t,s)

4s−T vM (s)

= zave +

T−1∑
s=0

∑
M∈Rn(t,s)

4s−T vM (s).

The mean squared estimation error is therefore

σ2 = E


∣∣∣∣∣∣
T−1∑
s=0

∑
M∈Rn(t,s)

4s−T vM (s)

∣∣∣∣∣∣
2


=

T−1∑
s=0

∑
M∈Rn(t,s)

42(s−T )E[|vM (s)|2],

where the equality is due to the independence of the quanti-
zation error terms. Since each vM (s) is uniformly distributed
across [−∆,∆), we have E[|vm(2)|2] = Θ(∆2) = Θ(L−2).
Therefore, we have

σ2 = Θ(L−2)

T−1∑
s=0

∑
M∈Rn(t,s)

42(s−T )

= Θ(L−2)

T−1∑
s=0

4T−s42(s−T )

= Θ(L−2N−1)
1− 4T

1− 4
= Θ(L−2),

since 4T = Θ(N). Recalling that L = Θ(γK), and choosing
γ = Nu, yields the result.

C. Numerical Results

We examine the empirical performance of the quantized
consensus discussed. We also run simulations for randomized
gossip, employing dithered quantization to accommodate the
finite-rate links. We again choose γ = 10dB, κ = 10−4,
K = 10, and G = 10−3α/2, and we again let N run from
10 to 1000 and average performance over 50 initializations,
but here we choose α = 2. Choosing γ constant means that
the quantization error ∆ is constant in N , and the minimum
quantization error is itself constant. In Figure 3 we plot the
energy E against the mean-square error σ2.

The energy expenditure for hierarchical averaging is consis-
tent with theory, although we note that uniform phase results
in higher expenditure than fixed phase, even though the scaling
laws are the same. This is due to the coherence gain obtained
when phases are fixed. The energy expenditure for randomized
gossip increases roughly linearly in N , suggesting that the
energy burden with fixed γ is similar to the non-quantized
case. As expected, quantized consensus performs worse than



11

101 102 103

104

105

106

N

To
ta

l
Tr

an
sm

it
E

ne
rg

y
(J

)

101 102 103

10−4

10−3

N

M
ea

n-
sq

ua
re

E
rr

or
Randomized
Quantized

Hierarchical (uniform phase)
Hierarchical (fixed phase)

Fig. 3. Mean-square error σ2 and total energy E as a function of N .

predicted by Theorem 6 in terms of energy consumption. Since
γ is chosen as a constant, the mean-squared error remains
approximately constant for each scheme.

VII. CONCLUSION

We have studied consensus from an explicitly wireless
perspective, defining a realistic propagation environment, con-
fronting interference, and characterizing the required resource
consumption in terms of energy, time and bandwidth. For
dense networks and under path-loss propagation, we have
shown that consensus is cheap. In the worst case, the resource
costs for consensus are nearly constant in the size of the
network. Furthermore, we have shown that quantization is
only a minor issue in consensus. By increasing the block
length of transmissions, one can force the quantization error
to decay as quickly as desired while paying only a constant
penalty in energy, time, and bandwidth. We have shown that
these gains can be realized with practical algorithms, such
as hierarchical averaging, which is nearly order-optimal with
respect to resource consumption for many environments.

Nevertheless, our wireless model involves several simpli-
fying assumptions. We supposed synchronous transmission,
that out-of-range nodes do not contribute interference, and
that channel gains are determined entirely by path-loss. Future

work includes exploring the effects of relaxing these assump-
tions, incorporating medium-access techniques such as CSMA,
or characterizing performance in the presence of channel fades.
We expect that, since it is cooperative in nature, hierarchical
averaging is particularly robust to fading.

Finally, improvements to hierarchical averaging are pos-
sible. In the case of uniform phase, hierarchical averaging
was suboptimal with respect to transmit energy for α > 2,
since in this case transmissions to not coherently combine at
receivers. In [11], distributed receiver cooperation is used to
overcome this difficulty and secure order-optimal performance.
We expect that a similar approach will suffice for consensus,
regardless of channel phases or path-loss exponents.
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