
Introduction
Network monitoring and inference is an 

increasingly important component of intelligence 
gathering, from mapping the structure of the 
Internet, to discovering clandestine social networks, 
as well to information fusion in wireless sensor 
networks. Indeed, several international conferences 
are dedicated to the nascent field of network 
science. This article considers a particularly salient 
aspect of network science that revolves around 
large-scale distributed sources of data and their 
storage, transmission, and retrieval. The task of 
transmitting information from one point to another 
is a common and well-understood exercise. But the 
problem of efficiently sharing information from 
and among a vast number of distributed nodes 
remains a great challenge, primarily because we 
do not yet have well developed theories and tools 
for distributed signal processing, communications, 
and information theory in large-scale networked 
systems.

The problem is illustrated by a simple 
example. Consider a network of n nodes, each 
having a piece of information or data xj, j=1,...n. 

These data could be files to be shared, or simply 
scalar values corresponding to node attributes or 
sensor measurements. Let us assume that each xj  
is a scalar quantity for the sake of this illustration. 
Collectively these data x=[x1,...,xn]T, arranged in 
a vector, are called networked data to emphasize 
both the distributed nature of the data and the 
fact that they may be shared over the underlying 
communications infrastructure of the network. The 
networked data vector may be very large; n may be a 
thousand, a million, or more. Thus, even the process 
of gathering x at a single point is daunting (requiring 
n communications at least). Yet this global sense 
of the networked data is crucial in applications 
ranging from network security to wireless sensing. 
Suppose, however, that it is possible to construct 
a highly compressed version of x, efficiently and 
in a decentralized fashion. This would offer many 
obvious benefits, provided that the compressed 
version could be processed to recover x to within a 
reasonable accuracy.

There are several decentralized compression 
strategies that could be utilized. One possibility 
is that the correlations between data at different 
nodes are known a priori. Then distributed source 
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coding techniques, such as Slepian-Wolf coding, 
can be used to design compression schemes without 
collaboration between nodes. (See [1] and the 
references therein for an excellent overview of such 
approaches.) Unfortunately, in many applications, 
prior knowledge of the precise correlations in 
the data is unavailable, making it difficult or 
impossible to apply such distributed source coding 
techniques. This situation motivates collaborative, 
in-network processing and compression, in which 
unknown correlations and dependencies between 
the networked data can be learned and exploited 
by exchanging information between network 
nodes. However, the design and implementation of 
effective collaborative processing algorithms can 
be quite challenging, since they too rely on some 
prior knowledge of the anticipated correlations and 
depend on somewhat sophisticated communications 
and node processing capabilities.

This article describes a very different approach 
to the decentralized compression of networked data. 
Specifically, consider a compression of the form 
y = Ax, where A = {Ai,j} is a k  n “sensing” ma-
trix with far fewer rows than columns (i.e., k << n). 
The compressed data vector y is k  1, and there-
fore is much easier to store, transmit, and retrieve 
compared to the uncompressed networked data x. 
The theory of compressed sensing guarantees that, 
for certain matrices A, which are non-adaptive and 
often quite unstructured, x can be accurately recov-
ered from y whenever x itself is compressible in 
some domain (e.g., frequency, wavelet, time) [2]–[5].

To carry the illustration further, and to 
motivate the approaches proposed in this article, 
let us look at a very concrete example. Suppose 
that most of the network nodes have the same 
nominal data value, but the few remaining nodes 
have different values. For instance, the values could 
correspond to security statistics or sensor readings 
at each node. The networked data vector in this case 
is mostly constant, except for a few deviations in 
certain locations. This minority may be of most 
interest in security or sensing applications. Clearly 
x is quite compressible; the nominal value plus the 
locations and values of the few deviant cases suffice 
for its specification.

Consider a few possible situations in this 
networked data compression problem. First, if 
the nominal value were known to all nodes, then 
the desired compression is accomplished simply 

by the deviant nodes sending that notification. 
Second, if the nominal value were not known, but 
the deviant cases were assumed to be isolated, then 
the nodes could simply compare their own values 
to those of their nearest neighbors to determine 
the nominal value and any deviation of their own. 
Again, notifications from the deviant nodes would 
provide the desired compression. There is a third, 
more general, scenario in which such simple local 
processing schemes can break down. Suppose that 
the nominal value is unknown to the nodes a priori, 
and that the deviant cases could be isolated or 
clustered. Since the deviant nodes may be clustered 
together, simply comparing values between 
neighboring nodes may not reveal them all, and 
perhaps not even the majority of them, depending 
on the extent of clustering. Indeed, distributed 
processing schemes in general are difficult to design 
without prior knowledge of the anticipated relations 
among data at neighboring nodes. This serves as a 
motivation for the theory and methods discussed 
here.

Compressed sensing offers an alternative 
measurement approach that does not require any 
specific prior signal knowledge and is an effective 
(and efficient) strategy in each of the situations 
described above. The values of all nodes can 
be recovered from the compressed data y = Ax, 
provided its size k is proportional to the number of 
deviant nodes. As we shall see, y can be efficiently 
computed in a distributed manner, and by virtue of its 
small size, it is naturally easy to store and transmit. 
In fact, in certain wireless network applications (see 
Wireless Sensor Networks in the Networked Data 
Compression in Action section of this article for 
details), y can be computed in the air itself, rather 
than in silicon! Thus, compressed sensing offers 
two highly desirable features for networked data 
analysis. The method is decentralized, meaning that 
distributed data can be encoded without a central 
controller, and universal, in the sense that sampling 
does not require a priori knowledge or assumptions 
about the data. For these reasons, the advantages of 
compressed sensing have already caught on in the 
research community, as evidenced by several recent 
works [6]–[10].

Compressed sensing basics
The theory of compressed sensing (CS) 

extends traditional sensing and sampling systems to 
a much broader class of signals. According to CS 
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theory, any sufficiently compressible signal can be 
accurately recovered from a small number of non-
adaptive, randomized linear projection samples. For 
example, suppose that x ∈ Rn is m-sparse (i.e., it has 
no more than m nonzero entries) where m is much 
smaller than the signal length n. Sparse vectors are 
very compressible, since they can be completely 
described by the locations and amplitudes of the 
non-zero entries. Rather than sampling each element 
of x, CS directs us to first precondition the signal by 
operating on it with a diversifying matrix, yielding 
a signal whose entries are mixtures of the non-zero 
entries of the original signal. The resulting signal is 
then sampled k times to obtain a low-dimensional 
vector of observations. Overall, the acquisition 
process can be described by the observation 
model y = Ax + Є , where the matrix A is a k  
n CS matrix that describes the joint operations of 
preconditioning and subsampling, and Є represents 
errors due to noise or other perturbations. The main 
results of CS theory have established that if the 
number of CS samples is a small integer multiple 
greater than the number of non-zero entries in x, 
then these samples sufficiently “encode” the salient 
information in the sparse signal and an accurate 
reconstruction from y is possible. These results 

are very promising because at least 2m pieces of 
information (the location and amplitude of each 
nonzero entry) are generally required to describe 
any m-sparse signal, and CS is an effective way to 
obtain this information in a simple, non-adaptive 
manner. The next few subsections explain, in some 
detail, how this is accomplished.

Compressed sensing for networked data
To illustrate the CS random projection encod-

ing and reconstruction ideas, consider the simple 
reconstruction example (Figure 1). Suppose that 
in a network of n sensors, only one of the sensors 
is observing some positive value, while the rest of 
the sensors observe zero. The goal is to identify 
which sensor measures the nonzero value using a 
minimum number of observations. Consider mak-
ing random projection observations of the data, 
where each observation is the projection of the sen-
sor readings onto a random vector having entries ±1 
each with probability 1/2. The value of each obser-
vation, along with knowledge of the random vector 
onto which the data was projected, can be used to 
identify a set of about n/2 hypothesis sensors that 
are consistent with that particular observation. The 
estimate of the anomalous sensor given k observa-
tions is simply the intersection of the hypothesis 
sets consistent with each of the k observations. It 
is easy to see that, on average, about log n observa-
tions are required before the correct (unique) sen-
sor is identified. Define the 0 quasi-norm || z || 0 to 
be equal to the number of nonzero entries in the 
vector z. Then this simple procedure can be thought 
of as the solution of the optimization problem

arg mzin|| z || 0 subject to y = Az. (1)

Encoding requirements
Suppose that for some observation matrix A 

there is a nonzero m-sparse signal x such that the 
observations y = Ax = 0. Recovery of x is impos-
sible in this setting, since the observations provide 
no information about the specific signal being ob-
served. Matrices that are resilient to such ambigui-
ties are those that satisfy the Restricted Isometry 
Property (RIP) [2], [11], [12]. Essentially, a k  n 
sensing matrix A with unit-normed rows (i.e.,  ∑n j =1

A2
i, j =1 for i = 1,2,...,k) is said to satisfy a RIP of 

order s whenever  || Ax || 2
2 ≈ k || x || 2

2 /n holds simul-
taneously for all s-sparse vectors x ∈ Rn. The RIP is 
so-named because it describes matrices that impose 

Figure 1:  A simple reconstruction example on a network of n = 16 nodes. One 
distinguished sensor observes a positive value while the remaining n − 1 observe zero. 
The task is to identify which sensor is different by using as few observations as possible. 
In the CS approach, the data are projected onto random vectors, such as those depicted 
in the second column (where nodes indicated in black multiply their data value by −1 
and those in white by +1). The third column shows that about n/2 hypothesis sensors are 
consistent with each random projection observation, but the number of hypotheses that are 
simultaneously consistent with all observations (shown in the fourth column) decreases 
exponentially with the number of observations. The random projection observations are 
approximately performing binary bisections of the hypothesis space, and only about log n 
observations are needed to determine which sensor reads the nonzero value.

Random vector

Networked data

Hypotheses
Consistent with all 
prior observations
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near-isometry (approximate length preservation) 
on a restricted set of subspaces (the subspaces of 
s-sparse vectors). In simpler terms, a matrix satis-
fies RIP if and only if vectors that are sufficiently 
sparse are not in the null space of the matrix.

In practice, sensing matrices that satisfy the 
RIP are easy to generate. It has been established that 
k  n matrices whose entries are independent and 
identically distributed realizations of certain zero-
mean random variables with variance 1/n satisfy 
a RIP with very high probability when k ≥ const ·
log n · m [2], [3], [13]. Physical limitations of real 
sensing systems motivate the unit-norm restric-
tion on the rows of A, which essentially limits the 
amount of “sampling energy” allotted to each ob-
servation.

Decoding: Algorithms and bounds
Compressed sensing is a form of subsampling, 

so aliasing is present, and needs to be accounted for 
in the reconstruction process. The same compressed 
data could be generated by many n-dimensional 
vectors, but the RIP implies that only one of these 
is sparse. This might seem to require that any 
reconstruction algorithm must exhaustively search 
all sparse vectors, but fortunately the process is 
much more tractable. Given a vector of (noise-free) 
observations y = Ax, the unknown m-sparse signal 
x can be recovered exactly as the unique solution to 

arg mzin|| z || 1 subject to y = Az, (2)

where || z || 1 = ∑n i =1 |zi| denotes the 1-norm, 
provided A satisfies RIP of order 2m [12]. The 
recovery procedure can be cast as a linear program, 
so solution methods are tractable even when n is 
very large.

Compressed sensing remains quite effective 
even when the samples are corrupted by additive 
noise, which is important from a practical point 
of view since any real system will be subjected 
to measurement inaccuracies. A variety of 
reconstruction methods have been proposed to 
recover (an approximation of) x when observations 
are corrupted by noise. For example, estimates x̂  
can be obtained as the solutions of either 

arg mzin || z || 1 subject to || AT (y-Az) || ∞ ≤ λ1, (3)

where || z || ∞ = maxi=1,...,n |zi| [5], or the penalized 
least squares minimization

arg mzin {|| y-Az|| 2
2 + λ2||z|| 0} (4)

as proposed in [4], for appropriately chosen 
regularization constants λ1 and λ2 that each 
depend on the noise variance. In either case, the 
reconstruction error E [|| x-x̂ || 2

2 /n] decays at a rate of
(m log n/k). In practice, the optimization (3) can be 
solved by a linear program, while (4) is often solved 
by convex relaxation—replacing the 0 penalty with 
the 1 penalty. The appeal of CS is readily apparent 
from the error rate which (ignoring the logarithmic 
factor) is proportional to m/k, the variance of an 
estimator of m parameters from k observations. In 
other words, CS is able to both identify the locations 
and estimate the amplitudes of the non-zero entries 
without any specific prior knowledge about the 
signal except the assumption of sparsity.

Transform domain sparsity
Suppose the observed signal x is not sparse, 

but instead a suitably transformed version is. 
Specifically, let T be a transformation matrix, and 
assume that θ = Tx is sparse. The CS observations 
can be written as y = Ax = AT−1θ. If A is a random 
CS matrix satisfying the RIP, then in many cases 
so is the product matrix AT−1 [13]. Consequently, 
the CS observation process does not require prior 
knowledge of the domain in which the data are 
compressible. The sparse vector θ (and hence x)
can be accurately recovered from y using the 
reconstruction techniques described above. For 
example, in the noiseless setting one can solve

 θ̂  = arg mzin|| z || 1 subject to y = AT-1z, (5)

to obtain an exact reconstruction of the transform 
coefficients of x. Note that, while the samples do 
not require selection of an appropriate sparsifying 
transform, the reconstruction does.

Often, signals of interest will not be exactly 
sparse, but instead most of the energy is concentrated 
on a relatively small set of entries while the 
remaining entries are very small. The degree of 
effective sparsity of such signals can be quantified 
with respect to a given basis.  Formally, for a signal 
x let xs be the approximation of x formed by re-
taining the s coefficients having largest magnitude 
in the transformed representation θ = Tx. Then x 
is called α-compressible if the approximation error 
obeys
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|| x-xs|| 2
2

n
≤ const • s-2α  (6)

for some α = α(x,T) > 0. This model describes, 
for example, signals whose ordered (transformed) 
coefficient amplitudes exhibit power-law decay. 
Such behavior is associated with images that are 
smooth or have bounded variation [3], [11], and is 
often observed in the wavelet coefficients of natural 
images. In this setting, CS reconstruction techniques 
can again be applied to obtain an estimate of the 
transformed coefficients directly. For example, the 
solutions of optimizations analogous to (3) and (4) 
yield estimates whose estimation error decays at the 
rate (log n/k)2α/2α+1, quantifying the simultaneous 
balancing of the errors due to approximation and 
estimation [4]. This result guarantees that even 
when signals are only approximately sparse, 
consistent estimation is still possible.

Sparsifying networked data
Compressed sensing can be very effective 

when x is sparse or highly compressible in a certain 
basis or dictionary. But, while transform-based 
compression is well-developed in traditional signal 
and image processing domains, the understanding 
of sparsifying/compressing bases for networked 
data is far from complete. There are, however, a 
few promising new approaches to the design of 
transforms for networked data, some of which are 
described below. 

Spatial compression 
Suppose a wireless sensor network is 

deployed to monitor a certain spatially-varying 
phenomenon, such as temperature, light, or 
moisture. The physical field being measured can 
be viewed as a signal or image with a degree of 
spatial correlation or smoothness. If the sensors 
are geographically placed in a uniform fashion, 

such as in Figure 2(a), then sparsifying transforms 
may be readily borrowed from traditional signal 
processing. In these settings, the sensor locations 
can be viewed as sampling locations and tools like 
the discrete Fourier transform (DFT) or discrete 
wavelet transform (DWT) may be used to sparsify 
the networked data. In more general settings, 
wavelet techniques can be extended to also handle 
nonuniform distribution of sensors [14]. 

Graph wavelets 
Standard signal transforms cannot be applied 

in more general situations. For example, many 
network monitoring applications rely on the analysis 
of traffic levels at the network nodes. Changes in 
the behavior of traffic levels can be indicative of 
variations in network usage, component failures, or 
malicious activities. There are strong correlations 
between traffic levels at different nodes, but the 
topology and routing affect the nature of these 
relationships in complex ways. Graph wavelets, 
developed with these challenges in mind, adapt the 
design principles of the DWT to arbitrary networked 
data [15].

To understand graph wavelets, it is useful 
to first consider the Haar wavelet transform, 
which is the simplest form of DWT. The Haar 
wavelet coefficients are essentially obtained as 
digital differences of the data at different scales of 
aggregation. The coefficients at the first scale are 
differences between neighboring data points, and 
those at subsequent spatial scales are computed 
by first aggregating data in neighborhoods (dyadic 
intervals in one dimension and square regions in 
two dimensions) and then computing differences 
between neighboring aggregations. 

Graph wavelets are a generalization of this 
construction, where the number of hops between 
nodes in a network provides a natural distance 

Figure 2: Sparsifying transformation techniques 
depend on network topologies. The smoothly varying 
field in (a) is monitored by a network of wireless 
sensors deployed uniformly over the region, and 
standard transform techniques can be used to sparsify 
the networked data. For more abstract topologies, graph 
wavelets can be effective. In (b), the graph (Haar) 
wavelet coefficient at the location of the black node and 
scale three is given by the difference of the average data 
values at the nodes in the red and blue regions.

(a) (b)
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measure that can be used to define neighborhoods. 
The size of each neighborhood (with radius defined 
by the number of hops) provides a natural measure 
of scale, with smaller sizes corresponding to finer 
spatial analysis of the networked data. Graph 
wavelet coefficients are then defined by aggregating 
data at different scales, and computing differences 
between aggregated data, as shown in Figure 2(b). 
Further details and generalizations of this can be 
found in [15]. 

Diffusion wavelets 
Diffusion wavelets provide an alternative 

approach to constructing a multi-scale representation 
for networked data. Unlike graph wavelets, which 
produce an overcomplete dictionary, diffusion 
wavelets produce an orthonormal basis tailored to 
a specific network by analyzing eigenvectors of a 
diffusion matrix derived from the network adjacency 
matrix (hence the name “diffusion wavelets”). The 
resulting basis vectors are generally localized to 
neighborhoods of varying size and may also lead 
to a sparsifying representation of networked data. 
A thorough treatment of this topic can be found in 
[16]. 

One example of sparsification using diffusion 
wavelets is shown in Figure 3, where the node 
data correspond to traffic rates through routers 
in a computer network. There are several highly 
localized regions of activity, while most of the 
remaining network exhibits only moderate levels of 
traffic. The traffic data are sparsely represented in 
the diffusion wavelet basis, and a small number of 
coefficients can provide an accurate estimate of the 
actual traffic patterns. 

Networked data compression 
in action

This section describes two techniques for 
obtaining projections of networked data onto 
general vectors, which can be thought of as the 
rows of the sensing matrix A. The first approach 
described below assumes that the network is any 
general multihop network. This model could 
explain, for example, wireless sensor networks, 
wired local area networks, or even portions of the 
Internet. In the multihop setting, the projections can 
be computed and delivered to every subset of nodes 
in the network using gossip/consensus techniques, 
or they might be delivered to a single point using 
clustering and aggregation. The second, more 

specific, approach described 
below is motivated by many 
wireless sensor networking 
applications in which explicit 
routing information is difficult 
to obtain and maintain in 
real time. In this setting, 
sensors contribute their 
measurements in a joint fashion 
by simultaneous wireless 
transmissions to a distant 
processing location, and the 
observations are accumulated 
and processed at that (single) 
destination point.

Compressed sensing for 
networked data storage 
and retrieval

In general multihop 
networks, two simple steps can 
be used for the decentralized 
computation and distribution 
of each CS observation of the 
form yi =  ∑n j =1 Ai,j xj, i = 1,...,k:

Step 1: Each of the n sensors, j = 1,...,n, locally 
computes the term Ai,j xj by multiplying its data with 
the corresponding element of the sensing matrix. 
The sensing matrix can be generated in a distributed 
fashion by letting each node locally generate a 
realization of Ai,j using a pseudo-random number 
generator seeded with its identifier. (In this example, 
the integers j = 1,...,n serve as the identifiers.)
Given the identifiers of the nodes, the destination 
node(s) can also easily generate the random vectors 
{Ai,j}k i=1 for each sensor j = 1,...,n.

Step 2: The local terms Ai,j xj are simultaneously 
aggregated and distributed across the network using 
randomized gossip, which is a simple iterative 
decentralized algorithm for computing linear 
functions such as yi =∑n j =1 Ai,j xj (see Figure 4). 
Note that gossip algorithms are highly resilient to 
node failures because: (i) each node only exchanges 
information with its immediate neighbors, and (ii) 
when they terminate, the value of yi  is available at 
every node in the network.

Since the above procedure ensures that the 
networked data projections are known at every 
node, a user can query any node in the network and 
compute x̂ via one of the reconstruction methods 

Figure 3:
An illustration of the 
compressibility of spatially 
correlated networked data 
using diffusion wavelets. 
The actual networked data 
shown in (a) are not sparse, 
but can be represented with 
a small number of diffusion 
wavelet coefficients, as 
seen in (b).

(b) Ordered Coefficients

(a) Local traffic rates
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outlined in the Compressed Sensing Basics section. 
Further, this can be quite an efficient procedure in 
many scenarios. For example, in networks with 
power-law degree distributions such as the Internet, 
an optimized gossip algorithm uses on the order of 
kn transmissions to compute k CS observations [17], 
generally k << n. So this is much more efficient than 
exhaustively exchanging raw data values, which 
would take about n2 transmissions. Of course, if 
the location of the node to be queried is fixed a 
priori—and if the network provides reliable routing 
service—then it may be more efficient to replace 
gossip computation with aggregation up a spanning 
tree or around a cycle. For more on using gossip 
algorithms to compute/distribute compressed data 
in multihop networks, see [7].

Compressed sensing in wireless sensor 
networks

A typical wireless sensor network, as in Figure 
5, consists of a large number of small, inexpensive 
wireless sensors, spatially distributed over a region 
of interest that can sense the physical environment 
in a variety of modalities. The essential task in 
many applications of sensor networks is to extract 
some relevant information from distributed data and 
then wirelessly deliver it to a distant destination, 
called the fusion center (FC). While this task can be 
accomplished in a number of ways, one particularly 
attractive technique corresponds to delivering 
random projections of the sensor networked data 
to the FC by exploiting recent results on uncoded 
(analog) coherent transmission schemes in wireless 

sensor networks [18]–[21]. The proposed distributed 
communication architecture—introduced in [6], [8], 
and refined in [22]—requires only one (network) 
transmission per random projection and is based 
on the notion of so-called “matched source-channel 
communication” [20], [21]. Here, the CS projection 
observations are simultaneously calculated (by the 
superposition of radio waves) and communicated 
using amplitude-modulated coherent transmissions 
of randomly weighted sensed values directly from 
the sensor nodes to the FC via the air interface. 
Algorithmically, sensor nodes sequentially perform 
the following steps in order to communicate k 
random projections of the networked data to the FC: 

Step 1: Each of the n sensors locally draws 
k elements of the random projection vectors
{Ai,j}k i=1 by using its network address as the seed 
of a pseudo-random number generator. Given the 
network addresses of the nodes, the FC can also 
easily reconstruct the random vectors {Ai,j}k,n i,j=1.
Step 2: The sensor at location j multiplies its 
measurement xj with {Ai,j}k i=1 to obtain a k-tuple

vj = (A1,j xj,...,Ak,j xj)T, j =1,...,n, (7)

and all the nodes coherently transmit their respective 
vj’s in an analog fashion over the network-to-FC 
air interface using k transmissions. Because of the 
additive nature of radio waves, the corresponding 
received signal at the FC at the end of the k-th 
transmission is given by

Figure 4: Randomized gossip: (a) depicts one 
iteration, in which the color of a node corresponds to 
its local value. To begin, the network is initialized to a 
state where each node has a value xi(0), i = 1,...,n. Then 
in an iterative, asynchronous fashion, a random node a 
“activates” and chooses one of its neighbors b at random. 
The two nodes then “gossip” by exchanging their values 
xa(t) and xb(t), or in the CS setting the values multiplied 
by pseudo-random numbers, and perform the update 
xa(t + 1) = xb(t + 1) ← (xa(t) + xb(t))/2, while the data at 
all the other nodes remains unchanged. In (b), we have 
an example network of 100 nodes with: (i) random initial 
values (left), (ii) after each node has communicated five 
times with each of its neighbors (middle), and (iii) after 
each node has communicated 50 times with each of its 
neighbors (right). It can be shown that for this simple 
procedure, xi(t) converges to the average of the initial 
values, 1/n ∑n

j =1 xj(0), at every node in the network as
t tends to infinity.

(a)

(b)
(©2008 IEEE)
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 y = ∑vj +Є = Ax + Є , (8)
n

j=1

where Є is the noise generated by the communication 
receiver circuitry of the FC. The steps above 
correspond to a completely decentralized way of 
delivering k random projections of the networked 
data to the FC by employing k (network) 
transmissions. The final estimate  x̂  can be computed 
at the FC via any of the methods outlined earlier. 
As noted earlier, the main advantage of using this 
approach for computing random projections is that 
it can be implemented without any complex routing 
information and as a result might be a more suitable 
and scalable option in many sensor networking 
applications.

Conclusions and extensions
This article has described how compressed 

sensing techniques could be utilized to reconstruct 
sparse or compressible networked data in a 
variety of practical settings, including general 
multihop networks and wireless sensor networks. 
Compressed sensing provides two key features, 
universal sampling and decentralized encoding, 
making it a promising new paradigm for networked 
data analysis. The focus here was primarily on 
managing resources during the encoding process, 
but it is important to note that the decoding step 
also poses a significant challenge. Indeed, the study 
of efficient decoding algorithms remains at the 
forefront of current research [23]–[25]. 

In addition, specialized measurement matrices, 
such as those resulting from Toeplitz-structured 
matrices [26] and the incoherent basis sampling 
methods described in [27], lead to significant 
reductions in the complexity of convex decoding 
methods. Fortunately, the sampling matrices 
inherent to these methods can be easily implemented 
using the network projection approaches described 
above. For example, Toeplitz-structured CS 
matrices naturally result when each node uses the 
same random number generation scheme and seed 
value, in which each node advances its own random 
sequence by its unique (integer) identifier at 
initialization. Similarly, random samples from any 
orthonormal basis (the observation model described 
in [27]) can easily be obtained in the settings 
described above if each node is preloaded with its 
weights for each basis element in the corresponding 
orthonormal transformation matrix. For each 

observation, the requesting node (or fusion center) 
broadcasts a random integer between 1 and n to the 
nodes to specify which transform coefficient from 
the predetermined basis should be obtained, and the 
projection is delivered using any suitable method 
described above. 

Finally, it is worth noting that matrices 
satisfying the RIP also approximately preserve 
additional geometrical structure on subspaces of 
sparse vectors, such as angles and inner products, 
as shown in [28]. A useful consequence of this 
result is that an ensemble of CS observations can 
be “data mined” for events of interest [29], [30]. 
For example, consider a network whose data may 
contain an anomaly that originated at one of m 
candidate nodes. An ensemble of CS observations 
of the networked data, collected without any a 
priori information about the anomaly, can be 
analyzed “post-mortem” to accurately determine 
which candidate node was the likely source of the 
anomaly. Such extensions of CS theory suggest 
efficient and scalable techniques for monitoring 
large-scale distributed networks, many of which 
can be performed without the computational burden 
of reconstructing the complete networked data. 
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