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Toeplitz Compressed Sensing Matrices with
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Abstract—Compressed sensing (CS) has recently emerged as a
powerful signal acquisition paradigm. In essence, CS enables the
recovery of high-dimensional sparse signals from relatively few
linear observations in the form of projections onto a collection
of test vectors. Existing results show that if the entries of the test
vectors are independent realizations of certain zero-mean random
variables, then with high probability the unknown signals can
be recovered by solving a tractable convex optimization. This
work extends CS theory to settings where the entries of the
test vectors exhibit structured statistical dependencies. It follows
that CS can be effectively utilized in linear, time-invariant
system identification problems provided the impulse response of
the system is (approximately or exactly) sparse. An immediate
application is in wireless multipath channel estimation. It is
shown here that time-domain probing of a multipath channel
with a random binary sequence, along with utilization of CS
reconstruction techniques, can provide significant improvements
in estimation accuracy compared to traditional least-squares
based linear channel estimation strategies. Abstract extensions of
the main results are also discussed, where the theory of equitable
graph coloring is employed to establish the utility of CS in
settings where the test vectors exhibit more general statistical
dependencies.

Index Terms—circulant matrices, compressed sensing, Hankel
matrices, restricted isometry property, sparse channel estimation,
Toeplitz matrices, wireless communications.

I. INTRODUCTION

A. Background

Consider the problem of recovering an unknown signal
β ∈ Rn from a collection of linear observations, Xβ = y ∈
Rk. This very general observation model encompasses a wide
variety of applications, including magnetic resonance imaging,
digital imaging, and radio frequency surveillance. When the
number of observations, k, equals or exceeds the dimension of
the unknown signal, n, (the so-called overdetermined setting)
results from classical linear algebra show that any unknown
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signal can be recovered exactly using a suitable set of test vec-
tors. The complete set of basis vectors from any orthonormal
transform suffices, for example.

The emerging theory of compressed sensing (CS) is primar-
ily concerned with the regime where the number of observa-
tions is less than the dimension of the unknown signal, the
so-called underdetermined setting. The seminal works in CS
established that signals can still be recovered exactly from such
incomplete observations using tractable recovery procedures
such as convex optimization, provided the signals are sparse
[1]–[3]. One concise way to specify for which matrices X this
recovery is possible is using the restricted isometry property
(RIP), which was first introduced in [4].

Definition 1 (Restricted Isometry Property). The observation
matrix X is said to satisfy the restricted isometry property of
order S ∈ N with parameter δS ∈ (0, 1)—or, in shorthand,
X satisfies RIP(S,δS)—if

(1− δS)‖z‖2`2 ≤ ‖Xz‖
2
`2 ≤ (1 + δS)‖z‖2`2 ,

holds for all z ∈ Rn having no more than S nonzero entries.

In other words, X satisfies RIP(S,δS) if the singular values
of all submatrices of X formed by retaining no more than S
columns of X are in the range (

√
1− δS ,

√
1 + δS), and thus

X acts almost like an isometry for sparse vectors having no
more than S nonzero entries.

A variety of results are available in the CS literature for
recovery procedures whose successes are contingent on obser-
vation matrices that satisfy the RIP [4]–[7]. Here, our primary
interest will be in the recovery of sparse (or approximately
sparse) signals in additive noise. That is, we are interested in
the case where the observations are given by y = Xβ + η,
where η ∈ Rk is a vector whose entries are realizations
of some independent and identically distributed (i.i.d.) zero-
mean random variables. The first work to establish theoretical
results for CS in the stochastic noise setting was [8], which
used a reconstruction procedure that required a combinatorial
search. The result presented here gives similar reconstruction
error bounds, but is based on the RIP condition and utilizes
a tractable convex optimization that goes by the name of the
Dantzig selector. The original specification of the result in [9]
assumed a specific signal class, but the proof actually provides
a more general oracle result which we state here.

Lemma 1 (The Dantzig Selector [9]). Let X be an obser-
vation matrix satisfying RIP(2S,δ2S) with δ2S <

√
2 − 1 for

some S ∈ N, and let ‖X‖`1,`2 denote the largest `2 norm
of the columns of X . Let y = Xβ + η be a vector of
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noisy observations of β ∈ Rn, where the entries of η are
i.i.d. zero-mean Gaussian variables with variance σ2. Choose
λn = ‖X‖`1,`2 ·

√
2(1 + a) log n for any a ≥ 0. Then the

estimator

β̂ = arg min
z∈Rn

‖z‖`1 subject to ‖X ′(y −Xz)‖`∞ ≤ σλn,

satisfies

‖β̂ − β‖2`2 ≤ c
′
0 min

1≤m≤S

(
σλn
√
m+

‖βm − β‖`1√
m

)2

,

with probability at least 1−
(√

π(1 + a) log n · na
)−1

, where
βm is the best m-term approximation of β, formed by setting
all but the m largest entries (in magnitude) of β to zero, and
the constant c′0 = 16/

(
1− δ2S −

√
2δ2S

)2
.

In particular, this result states that when β has fewer than S
nonzero entries, the approximation error ‖βm − β‖`1 = 0,
and so ignoring log terms, we have that the overall mean-
square estimation error of the Dantzig selector estimate is
proportional to the number of nonzero entries S times the
noise power σ2.

In general, the RIP-based theory of CS provides a powerful
toolbox that enables one to establish a variety of recovery
claims for a given problem provided that (a) the problem can
be cast into the canonical CS framework and (b) the resulting
equivalent observation matrix can be shown to satisfy the
RIP (with the problem-dependent parameter conditions). In
particular, the utility of CS in abstract undersampled sparse
recovery problems relies—to a large extent—on the fact that
there exist many classes of k × n matrices that satisfy the
RIP, despite the number of rows k being much smaller than
the ambient dimension n. In this regard, some of the best
known results in the existing literature correspond to the class
of random observation matrices, which establish that certain
probabilistic constructions of matrices satisfy the RIP of order
S ≈ O(k) with high probability [1]–[4], [10]. For example,
let X be a k × n matrix whose entries are i.i.d., taking the
values ±1/

√
k each with probability 1/2. Then, for a specified

δS ∈ (0, 1), it is known that X satisfies RIP(S, δS) with
probability at least 1 − exp(−c1k) provided k > c2S log n,
where c1, c2 > 0 are functions of δS [10].

B. Our Contributions

The major theoretical contribution of the work presented
in this paper is an extension of the CS theory to observation
matrices that exhibit structured statistical dependencies across
its rows and columns, such as random Toeplitz matrices, which
arise naturally from the convolutional structure inherent to
linear system identification problems. For example, we show
in Section III of the paper that any k × n random Toeplitz
matrix

X =


xn xn−1 . . . x2 x1

xn+1 xn . . . x3 x2

...
...

...
...

...
xn+k−1 xn+k−2 . . . xk+1 xk

 , (1)

whose entries {xi}n+k−1
i=1 are i.i.d. ±1/

√
k each with prob-

ability 1/2, satisfies RIP(S,δS) with probability at least 1 −
exp(−c′1k/S2), provided k ≥ c′2S

2 log n, where c′1, c
′
2 > 0

are functions of δS [cf. Theorem 4].

In addition to the novelty of the results reported in the paper,
our proof technique also differs markedly from the techniques
used in the earlier literature to establish the RIP for random
matrices, such as eigenanalysis of random matrices [2], [4]
and concentration of measure inequalities [10]. Both of these
approaches require the entries of the matrices to be fully-
independent, and thus are not easily extendable to the settings
considered here. Instead, our approach is to establish the RIP
using bounds on the coherence of X , which is defined to be
the magnitude of the largest inner product between columns
of a matrix and has been frequently utilized in related sparse
recovery problems; see, e.g., [11]–[13]. Specifically, we parlay
the coherence results into a statement about the RIP by using
a result from classical eigenanalysis, known as Geršgorin’s
Disc Theorem. The key to accomplishing this is the develop-
ment of concentration inequalities to establish bounds on the
magnitudes of the inner products between columns of random
matrices with structured statistical dependencies, which are of
the form of sums of dependent random variables, and for this
we employ a novel partitioning of the sum somewhat similar to
that utilized in [14]. In particular, this enables us to build and
improve upon our own previous works, which were the first
to provide theoretical performance guarantees for CS using
random Toeplitz-structured matrices [15], [16].

Besides establishing the RIP for random Toeplitz matrices,
we also consider the application of our results in the problem
of identification of discrete, linear, time-invariant (LTI) sys-
tems. In particular, we establish that random probing of LTI
systems having sparse impulse responses, coupled with the
utilization of CS reconstruction methods, results in significant
improvements in estimation accuracy when compared with
traditional least-squares based linear estimation strategies. The
practical importance of this problem is evidenced by many
wireless communication applications in which the underlying
multipath channel can be modeled as an LTI system with a
sparse impulse response [16]–[19]. Compared to the conven-
tional channel estimation methods that do not explicitly ac-
count for the underlying multipath sparsity, reliable estimation
of the channel impulse response in these settings can poten-
tially lead to significant reductions in transmission energy and
improvements in spectral efficiency. Indeed, this observation
has prompted a number of researchers in the recent past
to propose various sparse-channel estimation schemes [17]–
[19], some of which have in fact been inspired by the earlier
literature on sparse signal approximation [17]. However, a
major limitation of the previous investigations is the lack
of a quantitative theoretical analysis of the performance of
the proposed methods in terms of the reconstruction error.
In contrast, we show in this paper that the reconstruction
error of the Dantzig selector channel estimator comes within a
logarithmic factor of the lower bound on the error of an (ideal,
but unrealizable) oracle-based channel estimator.
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C. Organization

The remainder of this paper is organized as follows. In
Section II we describe the wireless multipath channel estima-
tion problem. By casting the problem into the CS framework,
we leverage the main results of the paper (that random
Toeplitz matrices satisfy the RIP) to show that time-domain
probing of a wireless channel with a (pseudo-)random binary
sequence, along with the utilization of CS reconstruction
techniques, provides significant improvements in estimation
accuracy when compared with traditional least-squares based
linear channel estimation strategies. The major theoretical
contributions of the paper appear in Section III, where we
establish the RIP for random Toeplitz matrices comprised
of either Gaussian or bounded random variables. Finally, in
Section IV, we present extensions of the main results of the
paper to accommodate more general statistical dependencies,
and we discuss connections with previous works.

II. RANDOM TOEPLITZ MATRICES AND SPARSE CHANNEL
ESTIMATION

Consider point-to-point communication between two single-
antenna transceivers over a wideband wireless multipath chan-
nel. Such single-antenna communication channels can be char-
acterized as discrete, linear, time-invariant systems—see, e.g.,
[16] for further details. Optimal demodulation and decoding
in wireless communication systems often requires accurate
knowledge of the channel impulse response. Typically, this is
accomplished by probing the channel with a known training
sequence and linearly processing the channel output. Many
real-world channels of practical interest, such as underwater
acoustic channels [20], digital television channels [21] and
residential ultrawideband channels [22], however, tend to have
sparse or approximately sparse impulse responses, and con-
ventional linear channel estimation schemes such as the least-
squares method fail to capitalize on the anticipated sparsity. In
contrast, it is established in this section that a channel estimate
obtained as a solution to the Dantzig selector significantly
outperforms a least-squares based channel estimate in terms
of the mean squared error (MSE) when it comes to learning
sparse (or approximately sparse) channels.

To begin with, let {xi}pi=1, p ∈ N, denote the training
sequence, and consider using this sequence as the input to
a wireless channel characterized by a finite (discrete) impulse
response β ∈ Rn. The resulting observations y ∈ Rn+p−1

are described by the discrete-time convolution between the
training signal x and the impulse response β, with corruption
by an additive noise vector η; that is, y = x ∗ β + η. If we
use the notational convention that xi = 0 for i /∈ {1, 2, . . . , p},
then each observation can be written as a sum,

yj =
p∑
i=1

βi xj+1−i + ηj , j = 1, . . . , n+ p− 1,

and in what follows we assume the noise terms ηj
i.i.d.∼

N (0, σ2). The resulting input-output relation can be expressed

as a matrix-vector product

y1
y2
y3
...

yn+p−2

yn+p−1


=



x1 0

x2
. . .

...
. . . x1

xp x2

. . .
...

0 xp



 β1

...
βn

+

 η1
...
ηn

 ,

(2)
and the goal is to obtain an estimate of the channel impulse
response β from knowledge of the observations y and training
signal x. Note that either the training signal or the impulse
response could be rewritten as a convolution matrix in the
above formulation, but this formulation casts the channel
estimation problem into the canonical CS framework.

The purpose of channel estimation in communication sys-
tems is to assist in the reliable communication of data (infor-
mation) from one point to another. Because of the dynamic
nature of the wireless medium, the impulse response of a
channel is bound to change over time [23]. As such, the input
data sequence at the transmitter is periodically interspersed
with the training sequence so as to maintain an up-to-date
estimate of the channel impulse response at the receiver. In this
regard, we treat two facets of the sparse channel estimation
problem. The first one corresponds to the case when the
training sequence is immediately preceded and succeeded by
n − 1 zeros (i.e., a guard interval of length n − 1 exists
between the data and the training sequence). In this setting,
the channel estimation problem corresponds to obtaining an
estimate of the channel impulse response from the “full” set
of observations described by (2). The second case corresponds
to the lack of a “guard interval” of length n − 1 between
the data and training sequence, and most closely resembles
the canonical CS observation model where the number of
observations is far fewer than the length of the unknown signal.
Specifically, consider a setting where the length of the training
sequence p = n + k − 1 for some k ≥ 1 and the training
sequence is immediately preceded and succeeded by the data
sequence. In this case, the first and last n − 1 observations
in (2) also contain contributions from the unknown data,
rendering them useless for estimation purposes (the 0’s in
the convolution matrix in (2) would be replaced by the data
sequence). Therefore, the channel estimation problem in this
case reduces to reconstructing the unknown impulse response
β from y = Xβ + η, where the observation matrix X is
a “partial” Toeplitz matrix of the form (1). Notice that when
p ≥ n, the partial Toeplitz matrix described in (1) above is a
submatrix of the observation matrix in this setting. In contrast,
when p < n, every row of the observation matrix in this setting
has at least one zero entry, and in the limiting case when p = 1,
the observation matrix is just a scaled version of the n × n
identity matrix.

The question we address in this section for both of the
aforementioned settings is whether random binary probing,
along with the use of a nonlinear Dantzig selector based
estimator, can be employed to efficiently estimate a sparse
channel, quantified by the condition ‖β‖`0 = S � n. Note
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that initial theoretical analysis of CS systems that utilized
random observation matrices relied inherently upon statistical
independence among observations. The problem considered
here is significantly more challenging—the Toeplitz structure
of the (partial and full) observation matrices introduces sta-
tistical dependencies among observations and hence, existing
techniques can no longer be employed. Instead, in Section III
we develop a technique that facilitates analysis in the presence
of such (structured) dependencies.

A. MSE of Least-Squares Channel Estimates

Estimation of an unknown vector β from linear observation
models of the form y = Xβ + η is a well-studied problem
in the area of estimation theory—see, e.g., [24]. Traditionally,
channel estimates are usually obtained from y by solving the
least-squares (LS) problem (or a variant of it). Note that in
the case that the observation matrix X is given by (1), LS
solution requires that k ≥ n so as to obtain a meaningful
channel estimate [24]. Under this assumption, the LS channel
estimate is given by

β̂LS = (X ′X)−1X ′y,

where the observation matrix X corresponds to (1) in the case
of training without guard intervals and to the full Toeplitz
matrix in the case of training with guard intervals. Below, we
lower bound the MSE performance of an LS channel estimate
corresponding to random binary probing (binary phase shift
keying signaling).

Theorem 1. Let the training sequence {xi}pi=1 be given by a
sequence of i.i.d. binary random variables taking values +1
or −1 with probability 1/2 each. Further, let p = n + k −
1 for some k ≥ n for the case of training without guard
intervals. Then the MSE of the LS channel estimate β̂LS is
lower bounded by

E
[
‖β̂LS − β‖2`2

]
≥ nσ2

p
, (3)

and

E
[
‖β̂LS − β‖2`2

]
≥ nσ2

k
,

for training with and without guard intervals, respectively.
Further, the equality in the above two expressions hold if
and only if the corresponding observation matrices have
orthogonal columns.

Proof: To establish this theorem, note that for both the
cases of training with or without guard intervals

E
[
‖β̂LS − β‖2`2

]
= trace

{
(X ′X)−1

}
σ2.

Further, let {λi}ni=1 denote the n eigenvalues of X ′X . Then,
from elementary linear algebra, we have

trace
{

(X ′X)−1
}

=
n∑
i=1

1
λi

= n

(∑n
i=1

1
λi

n

)
(a)

≥ n

(
n∑n
i=1 λi

)
=

n2

trace
{
X ′X

} ,

where (a) follows from the arithmetic-harmonic means in-
equality. Also, from the arithmetic-harmonic means inequality,
the equality in (a) holds if and only if λ1 = λ2 = · · · =
λn, resulting in the condition that X must have orthogonal
columns for the equality to hold in (a). Finally, note that
trace

{
X ′X

}
= np for the case of training with guard

intervals, while trace
{
X ′X

}
= nk for the case of training

without guard intervals and this completes the proof of the
theorem.

Conventional channel learning techniques based on the LS
criterion, however, fail to take into account the anticipated
sparsity of the channel impulse response. To get an idea of
the potential gains that are possible when incorporating the
sparsity assumption into the channel estimation strategy, we
compare the performance of an LS based channel estimator to
that of a channel estimation strategy that has been equipped
with an oracle. The oracle does not reveal the true β, but does
inform us of the indices of nonzero entries of β. Clearly this
represents an ideal estimation strategy that one cannot expect
to implement in practice. Nevertheless, its ideal performance
is a useful target to consider for comparison.

To begin with, let T∗ ⊂ {1, . . . , n} be the set of indices
of the S nonzero entries of β and suppose that an oracle
provides us with the sparsity pattern T∗. Then an ideal channel
estimate β∗ can be obtained for both the cases of training
with or without guard intervals by first forming a restricted
LS estimator from y

βT∗ = (X ′T∗XT∗)
−1X ′T∗y,

where XT∗ is a submatrix obtained by extracting the S
columns of X corresponding to the indices in T∗, and then
setting β∗ to βT∗ on the indices in T∗ and zero on the indices
in T c∗ . Appealing to the proof of Theorem 1, the MSE of this
oracle channel estimator can be lower bounded as

E
[
‖β∗ − β‖2`2

]
= trace

{
(X ′T∗XT∗)

−1
}
σ2

≥ S2σ2

trace
{
X ′T∗XT∗

} ,

which results in the lower bound of Sσ2/k for training without
the guard intervals and Sσ2/p for training with the guard
intervals. In other words, the MSE of an oracle based channel
estimate is lower bounded by (# of nonzero entries of β) ·
σ2/(# of effective observations). Comparison of this lower
bound with that for the MSE of an LS channel estimate shows
that linear channel estimates based on the LS criterion may
be at a significant disadvantage when it comes to estimating
sparse channels. Finally, notice that in the case of training
without guard intervals (corresponding to the observation
matrix given by (1)), the oracle estimator only requires that
k ≥ S as opposed to k ≥ n for an LS channel estimate.

B. MSE of Dantzig Selector Channel Estimates

While the ideal channel estimate β∗ is impossible to con-
struct in practice, we now show that it is possible to obtain
a more reliable estimate of β as a solution to the Dantzig
selector. The appeal of the Dantzig selector channel estimator,
however, goes beyond the estimation of truly sparse channels.
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Indeed, it is to be expected that physical channels in certain
scattering environments happen to be only “approximately”
sparse [22]. Specifically, rearrange (and reindex) the entries
of the channel impulse response β by decreasing order of
magnitude: |β(1)| ≥ |β(2)| ≥ · · · ≥ |β(n)|. We term a wireless
channel approximately sparse if the ordered entries {β(j)} of
its impulse response decay with the index j, and we denote
by βm the vector formed by retaining the m largest entries of
β and setting the rest of the entries to zero. The following
theorems describe the estimation performance that can be
achieved using the Dantzig selector. The proofs are essentially
a direct application of Lemma 1 and Theorems 4 and 5, and
are therefore omitted for the sake of brevity. For the case of
training without guard intervals, we have the following.

Theorem 2 (Training Without Guard Intervals). Let the train-
ing sequence {xi}pi=1 be given by a sequence of i.i.d. binary
random variables taking values +1 or −1 with probability 1/2
each. Further, let p = n+k−1 for some k ≥ 4c2S2 log n. The
Dantzig selector estimate β̂, obtained by applying Lemma 1
with λn =

√
2(1 + a) log n for any a ≥ 0, satisfies

‖β̂ − β‖2`2

≤ c′0 min
1≤m≤S

(
σ

√
2m(1 + a) log n

k
+
‖βm − β‖1√

m

)2

,

with probability at least

1− 2 max
{(√

π(1 + a) log n · na
)−1

, exp(−c1k/4S2)
}
.

Here, the observation matrix X corresponds to the partial
Toeplitz matrix given in (1), c′0 is as defined in Lemma 1, and
c1 and c2 are positive constants that depend only on S and
are given in Theorem 4.

Similarly, we obtain the following result for the case where
guard intervals are used.

Theorem 3 (Training With Guard Intervals). Let the training
sequence {xi}pi=1 be given by a sequence of i.i.d. binary
random variables taking values +1 or −1 with probabil-
ity 1/2 each. Further, let p ≥ 4c2S2 log n. The Dantzig
selector estimate β̂, obtained by applying Lemma 1 with
λn =

√
2(1 + a) log n for any a ≥ 0, satisfies

‖β̂ − β‖2`2

≤ c′0 min
1≤m≤S

(
σ

√
2m(1 + a) log n

p
+
‖βm − β‖1√

m

)2

,

with probability at least

1− 2 max
{(√

π(1 + a) log n · na
)−1

, exp(−c1p/4S2)
}
.

Here, the observation matrix X corresponds to the full
Toeplitz matrix given in (2), c′0 is as defined in Lemma 1,
and c1 and c2 are positive constants that depend only on S
and are given in Theorem 5.

Remark 1. To obtain the results above one must account for
the scaling issues that arise because the entries of X have

unit variance. For example, the MSE bound in Theorem 2
is obtained using σeff = σ/

√
k in Lemma 1, and thus

the condition in the Dantzig selector optimization becomes
‖X ′(y −Xz)‖`∞ ≤ σeffλnk = σλn

√
k.

While the immediate significance of these results may be
obscured by the minimization over m, the implications can
be better understood by considering two key regimes. First, in
the case where the channel is S-sparse, the channel estimates
satisfy ‖β̂−β‖2`2 ≤ 2c′0(1+a) log n

(
Sσ2/k

)
with high prob-

ability for training without guard intervals, and ‖β̂ − β‖2`2 ≤
2c′0(1 + a) log n

(
Sσ2/p

)
with high probability for training

with guard intervals. In other words, the Dantzig selector
channel estimate achieves squared error (roughly) within a
factor of log n of the oracle based MSE lower bound of
(# of nonzero entries of β) ·σ2/(# of effective observations).

Second, we consider a case with specific decay structure
of the ordered entries of β. One such decay structure, which
is widely-studied in the literature [25], assumes that the j-th
largest entry of β obeys

|β(j)| ≤ R · j−α−1/2 , (4)

for some R > 0 and α > 1/2. The parameter α here
controls the rate of decay of the magnitudes of the ordered
entries. Under this decay condition, we have ‖βm − β‖`1 ≤
CαRm

−α+1/2, where Cα > 0 is a constant that depends
only on α. In this case, we have the following corollary of
Theorem 3 (similar results can be obtained from Theorem 2).

Corollary 1. Suppose that the channel impulse response
β ∈ Rn obeys (4) and let {xi = ±1}pi=1 be the random binary
sequence used to probe the channel for the case of training
with guard intervals. Choose p ≥ C2 (log n)

2α−3
2α−1 (σ2)−

2
2α−1

and λn =
√

2(1 + a) log n for any a ≥ 0. Then the
reconstruction error of the Dantzig selector channel estimate
is upper bounded by

‖β̂ − β‖2`2 ≤ C0 (log n)
2α

2α+1 ·
(
σ2

p

) 2α
2α+1

, (5)

with probability at least

1− 2 max
{(√

π(1 + a) log n · na
)−1

,

exp
(
−C1 (log n · σ2)

2
2α+1 p

2α−1
2α+1

)}
.

Here, the absolute constants C0(a, α, c′0, R), C1(a, α, c1, R),
and C2(a, α, c2, R) are strictly positive and depend only on
the parameters a, α, c′0, c1, c2, and R.

It is instructive at this point to compare the reconstruction
error performance of the DS channel estimate (given in (5))
with that of the LS channel estimate. Notice that since the
MSE lower bound of nσ2/p (given in (3)) holds for the
LS channel estimate for all β ∈ Rn, it remains valid under
the decay condition (4). On the other hand, ignoring the
log n factor in (5), we see that the reconstruction error of
the DS solution essentially behaves like O

(
(σ2/p)

2α
2α+1

)
.

Thus, even in the case of an approximately sparse channel
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impulse response, the DS channel estimate shows an MSE
improvement by a factor of (roughly) n · (σ2/p)1/(2α+1) over
the LS MSE of nσ2/p. In fact, it can also be shown that
O
(

(σ2/p)
2α

2α+1

)
is the minimax MSE rate for the class of

channels exhibiting the decay (4) and hence, the performance
of the DS channel estimator comes within a log n factor of a
minimax estimator.

III. RANDOM TOEPLITZ MATRICES SATISFY THE RIP

Because of the ubiquity of binary phase shift keying sig-
naling in wireless communications, the channel estimation
results in the previous section were stated in terms of ran-
dom binary (±1) probe sequences. However, similar results
also hold in settings where the probe sequence consists of
realizations of random variables drawn from any bounded
zero-mean distribution, as well as certain unbounded zero-
mean distributions, such as the Gaussian distribution. More
generally, Toeplitz CS matrices have some additional benefits
compared to completely independent (i.i.d.) random CS ma-
trices. First, Toeplitz matrices are more efficient to generate
and store. A k × n (random) partial Toeplitz matrix only
requires the generation and storage of k + n independent
realizations of a random variable, while a fully-random matrix
of the same size requires the generation and storage of kn
random quantities. In addition, the use of Toeplitz matrices
in CS applications leads to a general reduction in computa-
tional complexity. Performing a matrix-vector multiplication
between a fully-random k × n matrix and an n × 1 vector
requires kn operations. In contrast, multiplication by a Toeplitz
matrix can be performed in the frequency domain, because
of the convolutional nature of Toeplitz matrices. Using fast
Fourier transforms, the complexity of the multiplication can
be reduced to O(n log n) operations, resulting in a significant
speedup of the mixed-norm optimizations that are essential
to several commonly-utilized CS reconstruction procedures
such as GPSR [26] and SpaRSA [27]. Depending on the
computational resources available, this speedup can literally
be the difference between intractable and solvable problems.

In this section we identify conditions under which Toeplitz
matrices with entries drawn from either zero-mean bounded
distributions or the zero-mean Gaussian distribution satisfy
the restricted isometry property (RIP), as a function of the
parameters S and δS . Recall the Restricted Isometry Property
from Definition 1. The RIP statement is essentially a statement
about singular values, and to establish RIP for a given matrix
it suffices to bound the extremal eigenvalues of the Gram
matrices of all column submatrices (having no more than S
columns) in the range (1 − δS , 1 + δS). We will use this
interpretation in our proofs, and the main results will be
obtained using Geršgorin’s Disc Theorem, which is an elegant
result in classical eigenanalysis. We state this result here as a
lemma, without proof. There are many valid references—see,
for example, [28].

Lemma 2 (Geršgorin). The eigenvalues of an m × m ma-
trix M all lie in the union of m discs di = di(ci, ri),

i = 1, 2, . . . ,m, centered at ci = Mi,i, and with radius

ri =
m∑
j=1
j 6=i

|Mi,j |.

To begin, we consider any subset of column indices T ⊂
{1, . . . , n} of size |T | ≤ S, and let XT be the submatrix
formed by retaining the columns of X indexed by the entries
of T . The singular values of XT are the eigenvalues of its
|T | × |T | Gram matrix G(X, T ) = X ′TXT . Suppose that,
for some integer S ≥ 1 and some positive values δd and δo
chosen such that δd+δo = δS ∈ (0, 1), every diagonal element
of G(X, T ) satisfies |Gi,i(X, T ) − 1| < δd and every off-
diagonal element Gi,j(X, T ), i 6= j, satisfies |Gi,j(X, T )| <
δo/S. Then the center of each Geršgorin disc associated with
the matrix G(X, T ) deviates from 1 by no more than δd and
the radius of each disc is no larger than (S − 1)δo/S < δo.
By Lemma 2, the eigenvalues of G(X, T ) are all in the range
(1− δd − δo, 1 + δd + δo) = (1− δS , 1 + δS).

Now, notice that every Gram matrixG(X, T ) is a submatrix
of the full Gram matrix G = G(X, {1, . . . , n}). Thus, instead
of considering each submatrix separately, we can instead
establish the above conditions on the elements of the full Gram
matrix G, and that suffices to ensure that the eigenvalues of
all submatrices (formed by any choice of T , |T | ≤ S) are
controlled simultaneously. In the proofs that follow, we will
show that every diagonal element of G is close to one (with
high probability), and every off-diagonal element is bounded
in magnitude (again, with high probability), and the final result
will follow from a simple union bound.

It is instructive to note that because of the convolutional
structure imposed by the linear, time-invariant observation
model we consider here, the sufficient conditions to estab-
lish on the diagonal and off-diagonal elements of the Gram
matrix of the resulting observation matrix essentially amount
to properties of the autocorrelation function of the probe
sequence. For the full observation matrix shown in (2), for
example, each diagonal element is identical and equal to the
autocorrelation of the probe sequence at lag zero. Similarly,
each off-diagonal element corresponds to the autocorrelation
at different nonzero lags (as stated in Section II, the probe
sequence is assumed to be zero outside of the specified range).
For the partial observation matrix of (1), the diagonal and
off-diagonal elements correspond to windowed versions of
the autocorrelation function at different lags. In the following
subsections we quantify these autocorrelations for certain
random input sequences. However, we note that the proof
technique described above can be used to establish RIP for any
input sequence (including possibly deterministic sequences);
one would only need to verify that the autocorrelation function
of the sequence satisfies the required conditions.

A. Bounded Entries

First we establish RIP for random Toeplitz matrices, for
both the full observation matrices as shown in (2) as well
as the partial matrices like (1), when the probe sequence
{xi} consists of i.i.d. realizations of any bounded zero-mean
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random variable. We scale the distributions on xi appropriately
so that columns of the observation matrices are unit-normed
in expectation. Suitable distributions are

• xi ∼ unif
[
−
√

3/ξ,
√

3/ξ
]
,

• xi ∼
{

1/
√
ξ with prob. 1/2

−1/
√
ξ w.p. 1/2 ,

• xi ∼

 1/
√
ξq w.p. q/2

0 w.p. 1− q
−1/
√
ξq w.p. q/2

, q ∈ (0, 1) fixed,

where ξ = k for partial matrices and ξ = p for full matrices.
Before we state the first main results of the paper, we

provide two lemmas that will be useful in the proofs. First,
we describe the concentration of a sum of squares of bounded
random variables.

Lemma 3. Let xi, i = 1, . . . , k be a sequence of i.i.d., zero-
mean bounded random variables such that |xi| ≤ a, and with
variance E

[
x2
i

]
= σ2. Then,

Pr

(∣∣∣∣∣
k∑
i=1

x2
i − kσ2

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− 2t2

ka4

)
.

Proof: Recall Hoeffding’s inequality, which states that
a sequence of k independent bounded random variables zi
satisfying ai ≤ zi ≤ bi with probability one, satisfies

Pr (|sk − E [sk]| ≥ t) ≤ 2 exp

(
− 2t2∑k

i=1(bi − ai)2

)
,

where sk =
∑k
i=1 zi. In our case, we let zi = x2

i , so zi ∈
[0, a2] with probability one, and since sk =

∑k
i=1 x

2
i , E [sk] =

kσ2. The result follows.
Next, we describe how the inner product between vectors

whose entries are bounded random variables concentrates
about its mean.

Lemma 4. Let xi and yi, i = 1, . . . , k be sequences of i.i.d.,
zero-mean, bounded random variables satisfying |xi| ≤ a (and
thus |xiyi| ≤ a2). Then,

Pr

(∣∣∣∣∣
k∑
i=1

xiyi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2

2ka4

)
.

Proof: Again we apply Hoeffding’s inequality to the sum
sk =

∑k
i=1 zi, this time with zi = xiyi. In this case we have

−a2 ≤ zi ≤ a2 and since the elements are independent and
have zero mean, E [sk] = 0. The result follows.

We are now in a position to state and prove the first main
result of the paper.

Theorem 4. Let {xi}n+k−1
i=1 be a sequence whose entries are

i.i.d. realizations of bounded zero-mean random variables with
variance E

[
x2
i

]
= 1/k, satisfying |xi| ≤

√
c/k for some

c ≥ 1 (several such distributions are given above). Let

X =


xn xn−1 . . . x2 x1

xn+1 xn . . . x3 x2

...
...

...
...

...
xn+k−1 xn+k−2 . . . xk+1 xk

 ,

be the k × n Toeplitz matrix generated by the sequence, and
assume n > 2. Then, for any δS ∈ (0, 1), there exist constants
c1 and c2 depending only on δS and c, such that whenever k ≥
c2S

2 log n, X satisfies RIP(S,δS) with probability exceeding
1 − exp(−c1k/S2). Specifically, for any c1 ≤ δ2S/32c2, it
suffices to choose

c2 ≥
(

96c2

δ2S − 32c1c2

)
.

Proof: Following the discussion of Geršgorin’s Theorem,
we need to establish conditions on the diagonal and off-
diagonal elements of the Gram matrix G = X ′X . Applying
Lemma 3 we see that each diagonal element Gi,i =

∑k
j=1 x

2
j

satisfies

Pr (|Gi,i − 1| ≥ δd) ≤ 2 exp
(
−2kδ2d

c2

)
,

and by the union bound

Pr

(
n⋃
i=1

{|Gi,i − 1| ≥ δd}

)
≤ 2n exp

(
−2kδ2d

c2

)
.

This establishes the required condition on the diagonal ele-
ments of the Gram matrix.

Next we treat the off-diagonal elements. Notice that entry
Gi,j is simply the inner product between columns i and j
of the matrix X . For example, one such term for the matrix
specified in Theorem 4 is given by

Gn−1,n = x1x2 + x2x3 + x3x4 + x4x5 + · · ·+ xkxk+1.

One issue is immediately apparent—the entries of the sum are
not independent, so standard concentration inequalities cannot
be applied directly. In the example here, the first two terms
are dependent (they both depend on x2), as are the second
and third (both depend on x3), and the third and fourth (both
depend on x4). But notice that the first and third terms are
independent, as are the second and fourth, etc. Overall the
sum may be split into two sums of i.i.d. random variables,
where each component sum is formed simply by grouping
alternating terms. The number of terms in each sum is either
the same (if k is even) or differs by one if k is odd.

In fact this decomposition into two sums over independent
entries is possible for every Gi,j , and this observation is the
key to tolerating the dependencies that arise from the structure
in the sensing matrix. Note that the terms in any such sum
are each dependent with at most two other terms in the sum.
Each sum can be rearranged such that the dependent terms are
“chained”—that is, the `-th (rearranged) term is dependent
with (at most) the (` − 1)-st term and the (` + 1)-st terms.
This rearranged sum has the same structure as the example
above, and can be split in a similar fashion simply by grouping
alternating terms.

Rewrite the sum Gi,j =
∑k
i=1 zi, where the zi’s are

identically distributed zero-mean random variables that satisfy
−c/k ≤ zi ≤ c/k. When k is even, the sum can be
decomposed as

Gi,j =
t1=k/2∑
i=1

zπ1(i) +
t2=k/2∑
i=1

zπ2(i),
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where t1 and t2 denote the number of terms in each sum,
and zπ1(i) and zπ2(i) denote the rearranged and reindexed
terms. The permutation operators π1 and π2 need not be known
explicitly—it is enough to simply know such operators exist.
When k is odd, note that t1 and t2 will differ by one, but each
will be no greater than (k + 1)/2.

Generically, we write Gi,j = G1
i,j + G2

i,j . Applying
Lemma 4 with a2 = c/k to the component sums having t1
and t2 terms gives

Pr
(
|Gi,j | ≥

δo
S

)
≤ Pr

({∣∣G1
i,j

∣∣ > δo
2S

}
or
{∣∣G2

i,j

∣∣ > δo
2S

})
≤ 2 max

{
Pr
(∣∣G1

i,j

∣∣ > δo
2S

)
,Pr

(∣∣G2
i,j

∣∣ > δo
2S

)}
≤ 2 max

{
2 exp

(
− k2δ2o

8t1c2S2

)
, 2 exp

(
− k2δ2o

8t2c2S2

)}
.

It is easy to see that larger values of t1 and t2 decrease the
error exponent, resulting in bounds that decay more slowly.
For our purposes, to obtain a uniform bound independent of
the parity of k, we use the (loose) upper bound t1 ≤ t2 < k
to obtain

Pr
(
|Gi,j | ≥

δo
S

)
≤ 4 exp

(
− kδ2o

8c2S2

)
.

To establish the condition for every off-diagonal element, we
first note that, by symmetry, Gi,j = Gj,i. Thus, the total num-
ber of unique off-diagonal elements Gi,j is (n2−n)/2 < n2/2,
and we can apply the union of events bound to obtain

Pr

 n⋃
i=1

n⋃
j=1
j 6=i

{
|Gi,j | ≥

δo
S

} ≤ 2n2 exp
(
− kδ2o

8c2S2

)
.

This establishes the required condition on the off-diagonal
elements of the Gram matrix.

Now, recall that the RIP of order S holds with a prescribed
δS ∈ (0, 1) where δS = δd+ δo, when every diagonal element
deviates from 1 by no more than δd, and every off-diagonal
element is less than δo/S in magnitude. To obtain the result
claimed in Theorem 4, we assume n ≥ 3, let δd = δo = δS/2
and use the union bound to obtain

Pr (X does not satisfy RIP(S, δS))

≤ 2n2 exp
(
− kδ2o

8c2S2

)
+ 2n exp

(
−2kδ2d

c2

)
≤ 3n2 exp

(
− kδ2S

32c2S2

)
.

For c1 < δ2S/32c2, the upper bound

Pr (X does not satisfy RIP(S, δS)) ≤ exp
(
−c1k
S2

)
,

holds whenever

k ≥
(

96c2

δ2S − 32c1c2

)
S2 log n,

which proves the theorem.

The same technique can be applied to the full observation
matrices as in (2). This leads to the second main result of the
paper.

Theorem 5. Let {xi}pi=1 be a sequence whose entries are
i.i.d. realizations of bounded zero-mean random variables with
variance E

[
x2
i

]
= 1/p, satisfying |xi| ≤

√
c/p for some c ≥

1 (the example distributions listed at the start of the section
again suffice). Let

X =



x1 0

x2
. . .

...
. . . x1

xp x2

. . .
...

0 xp


,

be the (n + p − 1) × n full Toeplitz matrix generated by the
sequence, and assume n > 2. Then, for any δS ∈ (0, 1) there
exist constants c1 and c2 depending only on δS and c, such that
for any sparsity level S ≤ c2

√
p/ log n, X satisfies RIP(S,δS)

with probability exceeding 1−exp(−c1p/S2). Specifically, for
any c1 < δ2S/16c2, it suffices to choose

c2 ≤
√
δ2S − 16c1c2

48c2
.

Remark 2. Notice the difference in the statements of results
in Theorems 4 and 5, which highlight an inherent difference in
the respective observation models. In the setting of Theorem 4,
the user is allowed the flexibility to obtain more measurements
“on the fly,” and the resulting (rescaled) matrices satisfy the
RIP with higher orders S (or smaller parameters δS). Contrast
that with the setting of Theorem 5, where the number of
observations is fixed a priori. This effectively imposes an upper
limit on the order S (or a lower limit on the parameter δS)
for which the RIP is satisfied.

Proof: The proof proceeds in a similar fashion to the
proof of Theorem 4. Each column of the “full” observation
matrix now contains p entries of the probe sequence, and is
identical modulo an integer shift. From Lemma 3, the diagonal
elements of the Gram matrix satisfy

Pr

(
n⋃
i=1

{|Gi,i − 1| ≥ δd}

)
≤ 2 exp

(
−2pδ2d

c2

)
.

The off-diagonal elements are still composed of sums of
dependent random variables, however, in this case the number
of nonzero terms comprising each sum varies. At most (when
i and j differ by 1), Gi,j will consist of a sum of p−1 terms.
On the other extreme, if p ≤ |j − i|, each term of the inner
product is zero trivially. In any event, we can still apply the
results of Lemma 4 and upper-bound the error for each term
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by the worst-case behavior. This gives

Pr
(
|Gi,j | ≥

δo
S

)
≤ Pr

({∣∣G1
i,j

∣∣ > δo
2S

}
or
{∣∣G2

i,j

∣∣ > δo
2S

})
≤ 2 max

{
Pr
(∣∣G1

i,j

∣∣ > δo
2S

)
,Pr

(∣∣G2
i,j

∣∣ > δo
2S

)}
≤ 2 max

{
2 exp

(
− p2δ2o

8t1c2S2

)
, 2 exp

(
− p2δ2o

8t2c2S2

)}
.

Notice that now, regardless of the parity of p, the number of
terms in each partial sum (t1 and t2) is no greater than p/2.
The bound

Pr

 n⋃
i=1

n⋃
j=1
j 6=i

{
|Gi,j | ≥

δo
S

} ≤ 2n2 exp
(
− pδ2o

4c2S2

)
.

follows. As before, we let δd = δo = δS/2 and assume n ≥ 3,
to obtain

Pr (X does not satisfy RIP(S, δS))

≤ 3n2 exp
(
− pδ2S

16c2S2

)
.

For any c1 < δ2S/16c2 and

S ≤
√
δ2S − 16c1c2

48c2
·
√

p

log n
,

the matrix X satisfies RIP(S,δS) with probability at least 1−
exp(−c1p/S2), proving the theorem.

B. Gaussian Entries

Similar results to those of Theorems 4 and 5 can also
be obtained if the entries of the probe sequence are drawn
independently from certain unbounded distributions. For ex-
ample, probe sequences consisting of i.i.d. Gaussian entries
also generate Toeplitz matrices that satisfy the RIP.

Following the proof techniques above, we first need to
establish that the sum of squares of i.i.d. Gaussian random
variables concentrates about its mean. For that, we utilize the
following result from [29, Sec. 4, Lem. 1].

Lemma 5. Let {xi}ki=1 be i.i.d. Gaussian variables with mean
0 and variance σ2. The sum of squares of the xi’s satisfies

Pr

(
k∑
i=1

x2
i − kσ2 ≥ 2σ2

√
kt+ 2σ2t

)
≤ exp(−t),

and

Pr

(
k∑
i=1

x2
i − kσ2 ≤ −2σ2

√
kt

)
≤ exp(−t).

For 0 ≤ t ≤ 1, the symmetric bound

Pr

(∣∣∣∣∣
k∑
i=1

x2
i − kσ2

∣∣∣∣∣ ≥ 4σ2
√
kt

)
≤ 2 exp(−t),

follows.

In addition, we can quantify the concentration of inner
products between zero-mean Gaussian random vectors as
follows.

Lemma 6. Let xi and yi, i = 1, . . . , k be sequences of i.i.d.,
zero-mean Gaussian random variables with variance σ2. Then,

Pr

(∣∣∣∣∣
k∑
i=1

xiyi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− t2

4σ2(kσ2 + t/2)

)
.

Proof: The proof basically follows the derivation of
Bernstein’s Inequality. Using the Chernoff bound, we obtain

Pr

(
k∑
i=1

xiyi ≥ t

)
≤ exp (−st)

k∏
i=1

E [exp (sxiyi)] ,

which holds for all s ≥ 0 and all t > 0. Fix a term inside the
product and expand the exponential in a Taylor Series, which
gives

E [exp (sxiyi)]

= E
[
1 + (sxiyi) +

(sxiyi)2

2!
+

(sxiyi)3

3!
+ . . .

]
≤ E

[
1 +
|sxiyi|2

2!
+
|sxiyi|3

3!
+
|sxiyi|4

4!
+ . . .

]
.

Now, since the xi’s and yi’s are Gaussian and independent,
we have

E [|xiyi|p] = E [|xi|p] · E [|yi|p]
= (E [|xi|p])2 .

Further, the absolute moments of xi are given generally by
E[|xi|p] = 2p/2Γ ((p− 1)/2)σp/

√
π for integers p ≥ 1.

Simplifying the expression, we have

E[|xi|p] =
{

1 · 3 · 5 · · · (p− 1) · σp, p even√
2/π · 2(p−1)/2 ·

(
p−1
2

)
! · σp, p odd

.

When p ≥ 2 is even we have

(E[|xi|p])2 ≤ 1 · 1 · 3 · 3 · · · (p− 1) · (p− 1) · σ2p

≤ p! σ2p,

by inspection. When p is odd, say p = 2ω+1 for some ω ≥ 1,
we have√

2
π
· 2(p−1)/2 ·

(
p− 1

2

)
! =

√
2
π
· 2ω · ω!

≤ 2 · 4 · · · 2ω,

and thus,

(E[|xi|p])2 ≤ 2 · 2 · 4 · 4 · · · 2ω · 2ω · σ2p

≤ 2 · 3 · 4 · 5 · · · 2ω · (2ω + 1) · σ2p

≤ p! σ2p.

In either case, (E[|xi|p])2 ≤ p!σ2p, and so the expectation can
be bounded by

E [exp (sxiyi)] ≤ 1 + s2σ4 + s3σ6 + s4σ8 + . . .

= 1 + s2σ4
∞∑
j=0

(sσ2)j .
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Now, assume sσ2 = ν < 1 to obtain

E [exp (sxiyi)] ≤ 1 +
s2σ4

1− ν
≤ exp

(
s2σ4

1− ν

)
.

Combining results, we have

Pr

(
k∑
i=1

xiyi ≥ t

)
≤ exp

(
−st+

ks2σ4

1− ν

)
,

or equivalently,

Pr

(
k∑
i=1

xiyi ≥
γ

s
+
ksσ4

1− ν

)
≤ exp (−γ) .

Now substitute s = ν/σ2, let α = kνσ2/(1 − ν) and β =
γσ2/ν, and simplify to obtain

Pr (Z ≥ α+ β) ≤ exp
(
− αβ

σ2(kσ2 + α)

)
.

Letting α = β = t/2, for t < 2, we obtain

Pr (Z ≥ t) ≤ exp
(
− t2

4σ2(kσ2 + t/2)

)
.

The other half of the bound can be obtained similarly using
the fact that

Pr (Z ≤ −t) ≤ Pr (−sZ ≥ st) ≤ exp (−st) E [exp (−sZ)] ,

and

E [exp (−sZ)]

≤ E
[
1 +
|sxiyi|2

2!
+
|sxiyi|3

3!
+
|sxiyi|4

4!
+ . . .

]
,

as above, making the bounds symmetric and identical. The
result follows.

Leveraging the above lemmas, we can establish the follow-
ing.

Theorem 6. Let {xi}n+k−1
i=1 be a sequence whose entries are

i.i.d. Gaussian random variables with mean zero and variance
E
[
x2
i

]
= 1/k. Let

X =


xn xn−1 . . . x2 x1

xn+1 xn . . . x3 x2

...
...

...
...

...
xn+k−1 xn+k−2 . . . xk+1 xk

 ,
be the k × n Toeplitz matrix generated by the sequence, and
assume n > 2. Then, for any δS ∈ (0, 1) there exist constants
c1 an c2 depending only on δS , such that whenever k ≥
c2S

2 log n, X satisfies RIP(S,δS) with probability exceeding
1− exp(−c1k/S2).

Proof: Following the proof method used in the previous
subsection, we first use the symmetric bound in Lemma 5 to
establish that

Pr

(
n⋃
i=1

{|Gi,i − 1| ≥ δd}

)
≤ 2n exp

(
−kδ

2
d

16

)
.

The off-diagonal elements exhibit the same dependencies
treated in the proofs of Theorems 4 and 5. Again splitting

each sum into two sums over independent entries, we leverage
Lemma 6 to obtain

Pr
(
|Gi,j | ≥

δo
S

)
≤ 2 max

{
2 exp

(
− kδ2o

4S2(t1/k + 1/2)

)
,

2 exp
(
− kδ2o

4S2(t2/k + 1/2)

)}
,

for any 0 ≤ δd ≤ 1, where again t1 and t2 are the number
of terms in each sum. Using the conservative upper bound
t1 ≤ t2 ≤ k we obtain

Pr

 n⋃
i=1

n⋃
j=1
j 6=i

{
|Gi,j | ≥

δo
S

} ≤ 2n2 exp
(
− kδ

2
o

6S2

)
.

Now, let δd = 2δS/3 and δo = δS/3 and assume n ≥ 3, to
obtain

Pr (X does not satisfy RIP(S, δS)) ≤ 3n2 exp
(
− kδ2S

54S2

)
.

For any c1 < δ2S/54 and

k ≥
(

162
δ2S − 54c1

)
S2 log n,

the matrix X satisfies RIP(S,δS) with probability at least 1−
exp(−c1k/S2), proving the theorem.

For the full observation matrix, composed of entries from a
Gaussian sequence, the following is true.

Theorem 7. Let {xi}pi=1 be a sequence whose entries are
i.i.d. realizations of zero-mean Gaussian random variables
with variance 1/p. Let

X =



x1 0

x2
. . .

...
. . . x1

xp x2

. . .
...

0 xp


,

be the (n + p − 1) × n full Toeplitz matrix generated by the
sequence, and assume n > 2. Then, for any δS ∈ (0, 1) there
exist constants c1 and c2 depending only on δS , such that
for any sparsity level S ≤ c2

√
p/ log n X satisfies RIP of

order S with parameter δS with probability exceeding 1 −
exp(−c1p/S2).

Proof: The proof is analogous to the proof of Theorem 5.
The columns of X are identical (modulo an integer shift), so

Pr

(
n⋃
i=1

{|Gi,i − 1| ≥ δd}

)
≤ 2 exp

(
−pδ

2
d

16

)
.

and now,

Pr

 n⋃
i=1

n⋃
j=1
j 6=i

{
|Gi,j | ≥

δo
S

} ≤ 2n2 exp
(
− pδ

2
o

4S2

)
.



11

Letting δd = 2δS/3 and δo = δS/3 and assuming n ≥ 3, we
have that for any c1 < δ2S/36 and

S ≤
√
δ2S − 36c1

108
·
√

p

log n
,

the matrix X satisfies RIP(S,δS) with probability at least 1−
exp(−c1p/S2), proving the theorem.

IV. DISCUSSION

A. Generalizations and Dependency Tolerance using Graph
Coloring

It is easy to see that the results of Theorems 4-7 also
apply directly to Hankel matrices, which are Toeplitz-like
matrices whose entries are identical along anti-diagonals. In
addition, the proof techniques utilized to obtain the results of
Theorems 4 and 6 also can be used to establish the RIP for
(left- or right-shifted) partial circulant matrices of the form

X =


xn xn−1 . . . . . . . . . x3 x2 x1

x1 xn . . . . . . . . . x4 x3 x2

...
...

...
...

...
...

...
...

xk−1 xk−2 . . . x1 xn . . . xk+1 xk

 ,
generated by a random sequence of length n.

The techniques developed here can also be applied in
more general settings where the observation matrices exhibit
structured statistical dependencies. Recall that, in the above
proofs, dependencies were tolerated using an approach similar
to that used in [14], partitioning sums of dependent random
variables into two component sums of fully independent
random variables. The actual partitioning was not performed
directly, rather the only facts required in the proof were that
such partitions exist, and that the number of terms in each
component sum was specified. If, for a given observation
matrix, similar partitioning can be established, analogous
results will follow.

We generalize the approach utilized in this paper using
techniques from graph theory. See, for example, [30] for basic
reference. Let Σ =

∑k
i=1 xi be a sum of identically distributed

random variables. We associate the sum Σ with an undirected
graph g(Σ) = (V,E) of degree ∆g , by associating a vertex
i ∈ V = {1, 2, . . . , k} to each term xi in the sum and creating
an edge set E such that an edge e = (i, j) between vertices
is contained in the edge set if and only if xi and xj are
statistically dependent. The degree of the graph ∆g is defined
to be the maximum number of edges originating from any of
the vertices. Notice that any fully-disconnected subgraph of
g(Σ), by definition, represents a collection of i.i.d. random
variables.

The goal, then, is to partition g(Σ) into some number of
fully-disconnected subgraphs. In graph theory terminology,
any such partitioning—essentially a labeling of each vertex
such that vertices sharing an edge are labeled differently—
is called a (proper) coloring of the graph. Given a coloring
of g(Σ), the concentration behavior of each partial sum
associated with each subgraph can be obtained in a straight-
forward manner by standard concentration inequalities, and
the contribution of several such subgraphs can be quantified

using the union bound. Note, however, that trivial partitions
exist (let each subgraph contain only one vertex, for example),
leading to particularly poor concentration bounds. We seek
to partition g(Σ) into as few fully-disconnected subgraphs as
possible while ensuring that each subgraph contains as many
vertices as possible.

To achieve this, we consider equitable coloring of g(Σ).
An equitable coloring is a proper graph coloring where the
difference in size between the smallest and largest collections
of vertices sharing the same color is at most one. Proving a
conjecture of Paul Erdös, Hajnal and Szemerédi showed that
equitable colorings of a graph with degree ∆ exist for any
number of colors greater or equal to (∆+1) [31]. Along with
the above argument, this shows that the concentration behavior
of any sum Σ exhibiting limited statistical dependence, as
defined by the degree ∆g of the associated dependency graph
g(Σ), can be controlled using equitable graph coloring. This
procedure was also used to extend Hoeffding’s inequality to
such graph-dependent random variables in [32].

Utilizing this framework, we can obtain results that apply to
observation matrices with more general dependency structures.
The following result is representative.

Theorem 8. Let X be a k×n matrix whose entries are iden-
tically distributed realizations of bounded zero-mean random
variables with variance E

[
x2
i

]
= 1/k, satisfying x2

i ≤ c/k
for some c ≥ 1. Assume that the dependency degree among
elements in any column of X is no greater than some integer
∆d ≥ 0, and each inner product between columns exhibits
dependency degree no greater than some integer ∆o ≥ 0.
Then, for any δS ∈ (0, 1), there exist constants c1 and c2
depending on δS , the dependency degrees ∆d and ∆o, and
c, such that whenever k ≥ c2S

2 log n, X satisfies RIP(S,δS)
with probability exceeding 1− exp(−c1k/S2).

Proof: First consider the diagonal elements of the Gram
matrix of X , each of which satisfies

Pr (|Gi,i − 1| ≥ δd) ≤ 2(∆d + 1) exp
(
−2kδ2d

c2

⌊
k

∆d + 1

⌋)
,

and by the union bound

Pr

(
n⋃
i=1

{|Gi,i − 1| ≥ δd}

)

≤ 2n(∆d + 1) exp
(
−2δ2d
c2

⌊
k

∆d + 1

⌋)
,

where b·c is the floor function, which returns the largest integer
less than or equal to the argument. Similarly, the off-diagonal
elements satisfy

Pr

 n⋃
i=1

n⋃
j=1
j 6=i

{
|Gi,j | ≥

δo
S

}
≤ 2n2(∆o + 1) exp

(
− δ2o

8c2S2

⌊
k

∆o + 1

⌋)
.

The result follows from suitable bounding of the overall error
probability.
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B. Connections with Other Works

To the best of our knowledge, this paper is the first work to
establish the restricted isometry property for random Toeplitz
matrices with bounded or Gaussian entries. Here we briefly
describe connections between this paper and several related
works.

In the compressed sensing literature, the first work to
propose Toeplitz-structured observation matrices was [33],
where observations were obtained by convolving the incoming
unknown signal with a random filter—a filter whose taps
were generated as realizations of certain random variables—
followed by periodic downsampling of the output stream.
While this approach was shown to be effective in practice,
no theoretical guarantees were given. Without downsampling,
this initial approach is identical to the full observation model
analyzed here, and in fact the techniques presented here could
be utilized to establish conditions under which RIP would be
satisfied for certain downsampled random filtering systems.

The first theoretical results for using random Toeplitz matri-
ces in compressed sensing were established in [15]. Using an
equitable graph coloring approach applied to the RIP proof of
[10], we showed that k× n partial Toeplitz, Hankel, and left-
or right-shifted circulant random matrices satisfy the RIP of
order S with high probability, provided k = Ω

(
S3 log n

)
. This

sufficient condition is more restrictive than what we establish
here, where we reduce the exponent on S by one order of
magnitude.

Our own previous work [16] was the first to use Geršgorin’s
Theorem to establish RIP for Toeplitz random matrices,
achieving the less restrictive sufficient condition on the num-
ber of observations required, k = Ω

(
S2 log n

)
. While that

work only treated matrices whose entries were drawn from a
symmetric Bernoulli distribution, here we extend the results
to random matrices whose entries are bounded or Gaussian-
distributed.

In contrast to the linear convolution observation model
utilized here, several recent works have also examined sparse
recovery using measurements arising from circular convo-
lution. In particular, the works [34], [35] considered the
problem of recovering matrices that can be expressed as the
superposition of a small number of component matrices from
their action on a given probe signal—the so-called sparse
matrix identification problem. Both of those works considered
the use of deterministic (Alltop) probe sequences, while [34]
also examined the use of random probes. This approach is
somewhat reminiscent of the system identification problem
considered here in cases where the component matrices are
time-frequency shift matrices. However, the noisy recovery
procedures proposed in each of those works were based on
coherence measures and utilized a weaker “bounded-noise”
optimization [5], [36], for which the error bounds can be
sufficiently weaker than the bounds that can be obtained
using the Dantzig selector and the RIP as here. A related
effort, [37], established guarantees for the recovery of sparse
signals using observations that arise from circular convolution
with a specially-constructed probe sequence (designed to have
exactly orthogonal circular shifts) followed by random down-

sampling or randomized “block averaging” of the output.
Finally, in [38] it was established that, subject to a similar

condition as what we obtain here—namely that the number of
rows of the matrix must be on the order of the square of the
sparsity level of the target signal—certain deterministic matri-
ces satisfy the RIP. Among these was a special type of block-
circulant matrix generated by a collection of ` > 1 columns,
where the elements of the matrix satisfy Xi+1,j+` = Xi,j ,
and the arithmetic on the indices is done modulo the signal
length n. In contrast, the generalization of our Toeplitz results
applies to “true” circulant matrices that are generated by shifts
of a single (random) row vector.

C. Eigenvalues by Geršgorin’s Theorem

The theory of sparse representation was an active area
of research even before the advent of compressed sensing.
The techniques that were developed in early works relied
on the notion of coherence of a matrix, which is quantified
by the largest (in magnitude) inner product between distinct
columns of the matrix. The interesting point to note is that
the notion of coherence can be parlayed into statements about
RIP, the connection coming by way of Geršgorin’s Theorem.
Reminiscent constructs can be found, for example, in [39]. In
addition, Geršgorin-like techniques arise in the proof of RIP
for the deterministic constructions of [38], and are mentioned
in [40] in the context of determining the eigenvalues of
randomly chosen submatrices of a given dictionary matrix.

Using Geršgorin’s Theorem to establish eigenvalues for
general dictionaries is not without its limitations. For example,
as noted in [40], the work of [41] shows that the minimum
coherence between columns of any (generally overcomplete)
finite Grassmanian frame cannot be too small. For large
k and n, the coherence scales like

√
1/k, which would

essentially imply a k = Ω(S2) requirement on the number
of observations, similar to what we obtain in our proofs.
Applying Geršgorin’s theorem to fully-independent random
matrices leads to similar restrictions. For example, a simple
application of Lemma 4 (analogous to the approach in the
proof of Theorem 4, but without the dependency tolerance
steps) shows that Geršgorin’s Theorem leads to the require-
ment that Ω(S2 log n) rows are needed in order for a fully
random observation matrix to satisfy the RIP of order S with
some fixed success probability. On the other hand, we know
from [1]–[4], [10] that k = O(S log n) measurements suffice
to establish RIP with the same probability of success.

Thus, while it is tempting to claim that the presence of
dependencies in the Toeplitz-structured matrices amounts to
an increase in the number of observations required for RIP
to be satisfied, such a claim does not follow from the work
presented here. Indeed, it is fully possible that the random
matrices considered in this work do satisfy the RIP when
k = O(S log n), but the proof techniques utilized here are
insufficient to establish that stronger result. The takeaway
message here is that Geršgorin’s Theorem provides a straight-
forward, but possibly suboptimal, approach to establishing RIP
for general observation matrices.
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