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I. INTRODUCTION

Imagine a system with thousands or millions of independent components, all capable of

generating and communicating data. A man-made system of this complexity was unthinkable

a few decades ago, but today it is a reality – computers, cell phones, sensors, and actuators

are all linked to the Internet, and every wired or wireless device is capable of generating and

disseminating prodigious volumes of data. This system is not a single centrally-controlled device,

rather it is an ever-growing patchwork of autonomous systems and components, perhaps more

organic in nature than any human artifact that has come before. And we struggle to manage and

understand this creation, which in many ways has taken on a life of its own. Indeed, several

international conferences are dedicated to the scientific study of emergent Internet phenomena.

This article considers a particularly salient aspect of this struggle that revolves around large-

scale distributed sources of data and their storage, transmission, and retrieval. The task of

transmitting information from one point to another is a common and well-understood exercise. But

the problem of efficiently transmitting or sharing information from and among a vast number of

distributed nodes remains a great challenge, primarily because we do not yet have well developed

theories and tools for distributed signal processing, communications, and information theory in

large-scale networked systems.

The problem is illustrated by a simple example. Consider a network of n nodes, each having

a piece of information or data xj , j = 1, . . . , n. These data could be files to be shared, or simply

scalar values corresponding to node attributes or sensor measurements. Let us assume that each

xj is a scalar quantity for the sake of this illustration. Collectively these data x = [x1, . . . , xn]T ,

arranged in a vector, are called networked data to emphasize both the distributed nature of the

data and the fact that they may be shared over the underlying communications infrastructure of the

network. The networked data vector may be very large; n may be a thousand or a million or more.
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Thus, even the process of gathering x at a single point is daunting (requiring n communications

at least), and yet this global sense of the networked data is crucial in applications ranging from

network security to wireless sensing. Suppose, however, that it is possible to construct a highly

compressed version of x, efficiently and in a decentralized fashion. This would offer many

obvious benefits, provided that the compressed version could be processed to recover x to within

a reasonable accuracy.

There are several decentralized compression strategies that could be utilized. One possibility is

that the correlations between data at different nodes are known a priori. Then distributed source

coding techniques, such as Slepian-Wolf coding, can be used to design compression schemes

without collaboration between nodes (see [1] and the references therein for an excellent overview

of such approaches). Unfortunately, in many applications prior knowledge of the precise correla-

tions in the data is unavailable, making it difficult or impossible to apply such distributed source

coding techniques. This situation motivates collaborative, in-network processing and compression,

where unknown correlations and dependencies between the networked data can be learned and

exploited by exchanging information between network nodes. But, the design and implementation

of effective collaborative processing algorithms can be quite challenging, since they too rely on

some prior knowledge of the anticipated correlations and depend on somewhat sophisticated

communications and node processing capabilities.

This article describes a very different approach to the decentralized compression of networked

data. Specifically, consider a compression of the form y = Ax, where A = {Ai,j} is a k × n

“sensing” matrix with far fewer rows than columns (i.e., k � n). The compressed data vector

y is k × 1, and therefore it is much easier to store, transmit, and retrieve compared to the

uncompressed networked data x. The theory of compressed sensing guarantees that, for certain

matrices A, which are non-adaptive and often quite unstructured, x can be accurately recovered

from y whenever x itself is compressible in some domain (e.g., frequency, wavelet, time) [2]–[5].

To carry the illustration further, and to motivate the approaches proposed in this article, let us

look at a very concrete example. Suppose that most of the network nodes have the same nominal

data value, but the few remaining nodes have different values. For instance, the values could

correspond to security statistics or sensor readings at each node. The networked data vector

in this case is mostly constant, except for a few deviations in certain locations, and it is the
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minority that may be of most interest in security or sensing applications. Clearly x is quite

compressible; the nominal value plus the locations and values of the few deviant cases suffice

for its specification.

Consider a few possible situations in this networked data compression problem. First, if the

nominal value were known to all nodes, than the desired compression is accomplished simply by

the deviant nodes sending a notification of such. Second, if the nominal value were not known,

but the deviant cases were assumed to be isolated, then the nodes could simply compare their

own values to those of their nearest neighbors to determine the nominal value and any deviation

of their own. Again, notifications from the deviant nodes would provide the desired compression.

There is a third, more general, scenario in which such simple local processing schemes can break

down. Suppose that the nominal value is unknown to the nodes a priori, and that the deviant

cases could be isolated or clustered. Since the deviant nodes may be clustered together, simply

comparing values between neighboring nodes may not reveal them all, and perhaps not even the

majority of them depending on the extent of clustering. Indeed, distributed processing schemes

in general are difficult to design without prior knowledge of the anticipated relations among data

at neighboring nodes. This serves as a motivation for the theory and methods discussed here.

Compressed sensing offers an alternative measurement approach that does not require any

specific prior signal knowledge and is an effective (and efficient) strategy in each of the situations

described above. The values of all nodes can be recovered from the compressed data y = Ax,

provided its size k is proportional to the number of deviant nodes. As we shall see, y can be

efficiently computed in a distributed manner, and by virtue of its small size, it is naturally easy to

store and transmit. In fact, in certain wireless network applications (see Section IV-B for details),

it is even possible to compute y in the air itself, rather than in silicon! Thus, compressed sensing

offers two highly desirable features for networked data analysis. The method is decentralized,

meaning that distributed data can be encoded without a central controller, and universal, in the

sense that sampling does not require a priori knowledge or assumptions about the data. For these

reasons, the advantages of compressed sensing have already caught on in the research community,

as evidenced by several recent works [6]–[10].
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II. COMPRESSED SENSING BASICS

The essential purpose of sensing and sampling systems is to accurately capture the salient

information in a signal of interest. Generically, such systems can be viewed as having the

following core components. First, in a preconditioning step, the system introduces some form of

sensing diversity, which gives each physically distinct signal from a specified class of candidates a

distinct signature or fingerprint. Next, the “diversified” signal is sampled and recorded, and finally

the system reconstructs the original signal from the sampled data. Because inadequate sampling of

a signal can induce aliasing, meaning that the same set of samples may describe many different

signals, the preconditioning step is necessary to eliminate spurious (incorrect) solutions. For

example, low-pass filtering is a type of preconditioning that maps every signal having frequency

less than the filter cutoff frequency to itself, while all higher frequency components are mapped

to zero, and this step is sufficient to ensure that the signal reconstructed from a set of uniform

samples is unique and equal to the original signal.

The theory of compressed sensing (CS) extends traditional sensing and sampling systems

(designed with bandlimited signals in mind) to a much broader class of signals. According to

CS theory, any sufficiently compressible signal can be accurately recovered from a small number

of non-adaptive, randomized linear projection samples. For example, suppose that x ∈ Rn is

m-sparse (i.e., it has no more than m nonzero entries) where m is much smaller than the signal

length n. Sparse vectors are very compressible, since they can be completely described by the

locations and amplitudes of the non-zero entries. Rather than sampling each element of x, CS

directs us to first precondition the signal by operating on it with a diversifying matrix, yielding

a signal whose entries are mixtures of the non-zero entries of the original signal. The resulting

signal is then sampled k times to obtain a low-dimensional vector of observations. Overall, the

acquisition process can be described by the observation model y = Ax + ε, where the matrix

A is a k × n CS matrix that describes the joint operations of diversification and subsampling,

and ε represents errors due to noise or other perturbations. The main results of CS theory have

established that if the number of CS samples is a small integer multiple greater than the number

of non-zero entries in x, then these samples sufficiently “encode” the salient information in the

sparse signal and an accurate reconstruction from y is possible. These results are very promising
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because at least 2m pieces of information (the location and amplitude of each nonzero entry)

are generally required to describe any m-sparse signal, and CS is an effective way to obtain this

information in a simple, non-adaptive manner. The next few subsections explain, in some detail,

how this is accomplished.

Compressed Sensing for Networked Data

Fig. 1. A simple reconstruction example on a network of n = 16 nodes. One distinguished sensor observes a positive
value while the remaining n−1 observe zero. The task is to identify which sensor is different using as few observations
as possible. One effective approach is to project the data onto random vectors, as depicted in the second column (where
nodes indicated in black multiply their data value by −1 and those in white by +1). The third column shows that
about n/2 hypothesis sensors are consistent with each random projection observation, but the number of hypotheses
that are simultaneously consistent with all observations (shown in the fourth column) decreases exponentially with the
number of observations. The random projection observations are approximately performing binary bisections of the
hypothesis space, and only about log n observations are needed to determine which sensor reads the non-zero value.

To illustrate the CS random projection encoding and reconstruction ideas, consider a simplifi-

cation of the example described in the introduction. Suppose that in a network of n sensors, only

one of the sensors is observing some positive value, while the rest of the sensors observe zero. The

goal is to identify which sensor is different using a minimum number of observations. Consider

making random projection observations of the data, where each observation is the projection

of the sensor readings onto a random vector having entries ±1 each with probability 1/2. The

value of each observation, along with knowledge of the random vector onto which the data was

projected, can be used to identify a set of about n/2 hypothesis sensors that are consistent with

that particular observation. The estimate of the anomalous sensor given k observations is simply

the intersection of the k hypotheses sets defined by the observations. It is easy to see that, on
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average, about log n observations are required before the correct (unique) estimate is obtained.

Define the `0 quasi-norm ‖z‖0 to be equal to the number of nonzero entries in the vector z. Then

this simple procedure can be thought of as the solution of the optimization problem

arg min
z
‖z‖0 subject to y = Az. (1)

A. Encoding Requirements

Suppose that for some observation matrix A there is a nonzero m-sparse signal x such that

the observations y = Ax = 0. One could not possibly hope to recover x in this setting, since

the observations do not provide any information about the signal. Another similar problem arises

if two distinct m-sparse signals, say x and x′, are mapped to the same compressed data (i.e.,

Ax = Ax′). These two scenarios describe situations where certain sparse vectors lie in the null

space of the observation matrix.

Matrices that are resilient to these ambiguities are those that satisfy the Restricted Isometry

Property (RIP), sometimes also called the Uniform Uncertainty Principle (UUP) [2], [11]. For-

mally, a k × n sensing matrix with unit-norm rows (i.e.,
∑n

j=1 A2
i,j = 1 for i = 1, 2, . . . , k) is

said to satisfy a RIP of order s whenever

(1− δs)
k

n
‖x‖2

2 ≤ ‖Ax‖2
2 ≤ (1 + δs)

k

n
‖x‖2

2 (2)

holds simultaneously for all s-sparse vectors x ∈ Rn for sufficiently small values of δs. The

RIP is so-named because it describes matrices that impose a near-isometry (approximate length

preservation) on a restricted set of subspaces (the subspaces of s-sparse vectors).

In practice, sensing matrices that satisfy the RIP are easy to generate. It has been established

that k × n matrices whose entries are independent and identically distributed realizations of

certain zero-mean random variables with variance 1/n satisfy a RIP with very high probability

when k ≥ const · log n ·m [2], [3], [12]. Physical limitations of real sensing systems motivate

the unit-norm restriction on the rows of A, which essentially limits the amount of “sampling

energy” allotted to each observation.
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B. Decoding: Algorithms and Bounds

Because compressed sensing is a form of subsampling, aliasing is present and needs to be

accounted for in the reconstruction process. The same compressed data could be generated by

many n-dimensional vectors, but the RIP implies that only one of these is sparse. This might

seem to require that any reconstruction algorithm must exhaustively search over all sparse vectors,

but fortunately the process is much more tractable. Given a vector of (noise-free) observations

y = Ax, the unknown m-sparse signal x can recovered exactly as the unique solution to

arg min
z
‖z‖1 subject to y = Az, (3)

where ‖z‖1 =
∑n

i=1 |zi| denotes the `1-norm, provided the restricted isometry constants satisfy

δm + δ2m + δ3m < 1, which is a slightly stronger condition than necessary to ensure that neither

of the encoding ambiguities described earlier can happen [2]. The recovery procedure can be cast

as a linear program, so it is very easy to solve even when n is very large.

Compressed sensing remains quite effective even when the samples are corrupted by additive

noise, which is important from a practical point of view since any real system will be subjected

to measurement inaccuracies. A variety of reconstruction methods have been proposed to recover

(an approximation of) x when observations are corrupted by noise. For example, estimates x̂ can

be obtained as the solutions of either

arg min
z
‖z‖1 subject to ‖AT (y −Az)‖∞ ≤ λ1, (4)

where ‖z‖∞ = maxi=1,...,n |z(i)| [5], or the penalized least squares minimization

arg min
z

{
‖y −Az‖2

2 + λ2‖z‖0

}
(5)

as proposed in [4], for appropriately chosen regularization constants λ1 and λ2 that each depend

on the noise variance. In either case, the reconstruction satisfies

E
[
‖x− x̂‖2

2

n

]
≤ const ·

(
k

m log n

)−1

, (6)

where the leading constant does not depend on k, m or n. In practice, the optimization (4) can

be solved by a linear program, while (5) is often solved by convex relaxation – replacing the `0
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penalty with the `1 penalty.

The appeal of CS is readily apparent from the error bound in (6) which (ignoring the constant

and logarithmic factors) is proportional to m/k, the variance of an estimator of m parameters

from k observations. In other words, CS is able to both identify the locations and estimate the

amplitudes of the non-zero entries without any specific prior knowledge about the signal except

its assumed sparsity. For this reason CS is often referred to as a universal approach, since it can

effectively recover any sufficiently sparse signal from a set of nonadaptive samples.

C. Transform Domain Sparsity

Suppose the observed signal x is not sparse, but instead a suitably transformed version of it

is. That is, if T is a transformation matrix then θ = Tx is sparse. The CS observations can

be written as y = Ax = AT−1θ, and if A is a random CS matrix satisfying the RIP, then

in many cases so is the product matrix AT−1 [12]. Consequently, CS does not require prior

knowledge or assumptions regarding the domain in which the networked data are compressible,

again highlighting its universality.

The sparse vector θ (and hence x) can be accurately recovered from y using the reconstruction

techniques described above. For example, in the noiseless setting one can solve

θ̂ = arg min
z
‖z‖1 subject to y = AT−1z, (7)

to obtain an exact reconstruction of the transform coefficients of x. Note that, while the samples

do not require selection of an appropriate sparsifying transform, the reconstruction does.

In other settings signals of interest may not be exactly sparse, but instead most of the energy

might be concentrated on a relatively small set of entries while the remaining entries are very

small. The degree of effective sparsity of such signals can be quantified with respect to a given

basis. Formally, for a signal x let xs be the approximation of x formed by retaining the s

coefficients having largest magnitude in the transformed representation θ = Tx. Then x is called

α-compressible if the approximation error obeys

‖x− xs‖2
2

n
≤ const · s−2α (8)

for some α = α(x,T) > 0. This model could describe, for example, signals whose ordered
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(transformed) coefficient amplitudes exhibit a power-law decay. Such behavior is associated with

images that are smooth or have bounded variation [3], [11], and is often observed in the wavelet

coefficients of natural images. In this setting, CS reconstruction techniques can again be applied to

obtain an estimate of the transformed coefficients directly. For example, the estimate x̂ = T−1θ̂,

obtained by solving

θ̂ = arg min
z

{
‖y −AT−1z‖2

2 + λ‖z‖0

}
, (9)

satisfies

E
[
‖x− x̂‖2

2

n

]
≤ const ·

(
k

log n

)−2α/2α+1

, (10)

which quantifies the simultaneous balancing of the errors due to approximation and estimation [4].

The result guarantees that even when signals are only approximately sparse, consistent estimation

is still possible.

III. SPARSIFYING NETWORKED DATA

Compressed sensing can be very effective when x is sparse or highly compressible in a certain

basis or dictionary. But, while transform-based compression is well-developed in traditional signal

and image processing domains, the understanding of sparsifying/compressing bases for networked

data is far from complete. There are, however, a few promising new approaches to the design of

transforms for networked data. It is natural to associate a graph with a given network, where the

vertices of the graph represent the nodes of the network, and edges between vertices represent

anticipated relationships among the data at adjacent nodes. The edges may reflect relationships

due to communication links or correlations and dependencies that are anticipated between data at

neighboring nodes. Exploiting the structure of the connectivity is the key to obtaining effective

sparsifying transformations for networked data, and a few methods are described below.

A. Spatial Compression

Suppose a wireless sensor network is deployed to monitor a certain spatially-varying phe-

nomenon such as temperature, light, or moisture. The physical field being measured can be

viewed as a signal or image with a degree of spatial correlation or smoothness. If the sensors are

geographically placed in a uniform fashion, then sparsifying transforms may be readily borrowed
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from traditional signal processing. Figure 2(a) illustrates a typical such situation where the

underlying graph is a regular lattice. In these settings, the sensor locations can be viewed as

sampling locations and tools like the Discrete Fourier Transform (DFT) or Discrete Wavelet

Transform (DWT) may be used to decorrelate and sparsify the sensor data. In more general

settings, wavelet techniques can be extended to also handle the irregular distribution of sampling

locations [13].

(a) (b)

Fig. 2. Sparsifying transformation techniques depend on graph topologies. The smoothly varying field in (a) is
monitored by a network of wireless sensors deployed uniformly over the region, and standard transform techniques
can be used to sparsify the networked data. For more abstract graph topologies, graph wavelets can be effective. In
(b), the graph (Haar) wavelet coefficient at the location of the black node and scale three is given by the difference
of the average data values at the nodes in the red and blue regions.

B. Graph Wavelets

Standard signal transforms cannot be applied in more general situations. For example, many

network monitoring applications rely on the analysis of communication traffic levels at the

network nodes. Changes in the behavior of traffic levels can be indicative of variations in

network usage, component failures or misconfigurations, or malicious activities. There are strong

correlations between traffic levels at different nodes, but the topology and routing affect the nature

of these relationships in complex ways. Moreover, since network topology is rarely based on a

regular lattice, the graphs needed to represent such networks can be quite complex as well. Graph

wavelets, developed with these challenges in mind, adapt the design principles of the DWT to

arbitrary graphs [14].
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To understand the construction of graph wavelets, it is useful to first consider the Haar wavelet

transform, which is the simplest form of DWT. The wavelet coefficients are essentially obtained

as digital differences of the data at different scales of aggregation. The coefficients at the first

scale are differences between neighboring data points, and those at subsequent spatial scales

are computed by first aggregating data in neighborhoods (dyadic intervals in one dimension

and square regions in two dimensions) and then computing differences between neighboring

aggregations. Other versions of the DWT are distinguished by more general aggregation/averaging

and differencing operations.

Graph wavelets are a generalization of this construction, where the number of hops between

nodes in a network provides a natural distance measure that can be used to define neighborhoods.

The size of each neighborhood (with radius defined by the number of hops) provides a natural

measure of scale, with smaller sizes corresponding to finer spatial analysis of the networked data.

Graph wavelet coefficients are then defined by aggregating data at different scales, and computing

differences between aggregated data, as shown in Figure 2(b). Further details and generalizations,

along with an application of graph wavelets to the analysis of network traffic data, may be found

in [14].

C. Diffusion Wavelets

Diffusion wavelets provide an alternative approach to constructing a multi-scale representation

for data defined on a graph. Unlike graph wavelets which produce an overcomplete dictionary,

diffusion wavelets construct an orthonormal basis for functions supported on a graph. The

diffusion wavelet construction process produces a basis tailored to a specific graph by analyzing

eigenvectors of a diffusion matrix derived from the graph adjacency matrix (hence the name

“diffusion wavelets”). The resulting basis vectors are generally localized to neighborhoods of

varying size and may also lead to a sparsifying representation of data on a graph. A thorough

treatment of this topic can be found in [15].

One example of sparsification using diffusion wavelets is shown in Fig. 3, where the node

data correspond to traffic rates through routers in a computer network. There are several highly-

localized regions of activity, while most of the remaining network exhibits only moderate levels

of traffic. The traffic data are sparsely represented in the diffusion wavelet basis, and a small
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number of coefficients can provide an accurate estimate of the actual traffic patterns.
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Fig. 3. An illustration of the compressibility of spatially correlated networked data using diffusion wavelets. The
actual networked data shown in (a) are not sparse, but can be represented with a small number of diffusion wavelet
coefficients, as seen in (b).

IV. NETWORKED DATA COMPRESSION IN ACTION

This section describes two techniques for obtaining projections of networked data onto general

vectors, which can be thought of as the rows of the sensing matrix A. As described in Section II,

random projections are a useful choice when the underlying data is sparse, since consistent

estimation is possible without prior knowledge of the sparsifying (or compressing) basis or

representation. In addition, a variety of methods exist to sparsify data on arbitrary networks,

as outlined in Section III.

The first approach described below assumes that the network is any general multi-hop network.

This model could explain, for example, wireless sensor networks, wired local area networks,

weather or agricultural monitoring networks, or even portions of the Internet. In the multi-hop

setting the projections can be computed and delivered to every subset of nodes in the network

using gossip/consensus techniques, or they might be delivered to a single point using clustering

and aggregation. The second more specific approach described below is motivated by many

wireless sensor networks where explicit routing information is difficult to obtain and maintain. In

this setting, each sensor instead contributes its measurement in a joint fashion by simultaneous

transmission to a distant processing location, and the observations are accumulated and processed

at that (single) destination point.
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A. Compressed Sensing for Networked Data Storage and Retrieval

In general multi-hop networks, CS projections of the form yi =
∑n

j=1 Ai,jxj can be computed

in an efficient decentralized fashion because each compressed data value yi is a simple linear

combination of the values at each node. Two simple steps are required for the computation and

distribution of each CS sample yi, i = 1, . . . , k:

Step 1: Each of the n sensors, j = 1, . . . , n, locally computes the term Ai,jxj by multiplying

its data with the corresponding element of the compressing matrix. The compressing matrix

can be generated in a distributed fashion by letting each node locally generate a realization of

Ai,j using a pseudo-random number generator seeded with its identifier (in this example, the

integers j = 1, . . . , n serve as this identifier). Given the identifiers of the nodes in the network,

the requesting node can also easily reconstruct the random vectors {Ai,j}k
i=1 for each sensor

j = 1, . . . , n.

Step 2: The local terms Ai,jxj are simultaneously aggregated and distributed across the network

using randomized gossip, which is a simple iterative decentralized algorithm for computing

linear functions such as yi =
∑n

j=1 Ai,jxj (see Fig. 4). Because each node only exchanges

information with its immediate neighbors in the network, gossip algorithms are resilient to failures

or changes in the network topology. Moreover, when randomized gossip terminates, the value

of yi is available at every node in the network, so the network data cannot be compromised by

eliminating a single server or fusion center.

In many scenarios, gossip algorithms are efficient since they use network resources to si-

multaneously route and compute information. For example, in networks with power-law degree

distributions, such as the Internet, an optimized gossip algorithm uses on the order of kn

transmissions to compute all of the samples [16]. Generally k � n, so this is much more

efficient than exhaustively exchanging raw data values which would take about n2 transmissions.

In addition, the gossip procedure ensures that the samples are known at every node, so a user can

query any node in the network, request the compressed data values, and compute x̂ via one of the

reconstruction methods outlined in Section II. Of course, one could replace gossip computation

with aggregation up a spanning tree or around a cycle, if the network provides reliable routing

service. This may be more efficient if it is known ahead of time that the compressed data values
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Fig. 4. Randomized Gossip: The top panel depicts one gossip iteration, where the color of a node corresponds to
its local value. To begin, the network is initialized to a state where each node has a value xi(0), i = 1, . . . , n. Then
in an iterative, asynchronous fashion, a random node a is “activated” and chooses one of its neighbors b at random.
The two nodes then “gossip” – they exchange their values xa(l) and xb(l), or in the CS setting the values multiplied
by pseudo-random compression vector elements, and perform the update xa(l +1) = xb(l +1)←

(
xa(l)+xb(l)

)
/2,

while the data at all the other nodes remains unchanged. The bottom panel shows an example network of 100 nodes
with (left) random initial values, (middle) after each node has communicated five times with each of its neighbors,
and (left) after each node has communicated 50 times with each of its neighbors. It can be shown that for this simple
procedure, xi(l) converges to the average of the initial values, 1/n

∑n
j=1 xj(0), at every node in the network as l

tends to infinity as long as the random choice of neighbors is sufficient to ensure that information will eventually
propagate between every pair of nodes.

will only be retrieved at one location. For more on using gossip algorithms to compute and

distribute compressed data representations in multi-hop networks, see [7].

B. Compressed Sensing in Wireless Sensor Networks

Sensor networking is an emerging technology that promises an unprecedented ability to monitor

the physical world via a spatially distributed network of small, inexpensive wireless devices that

have the ability to self-organize into a well-connected network. A typical wireless sensor network,

as shown in Fig. 5, consists of a large number of wireless sensor nodes, spatially distributed over
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Receive Antenna Plane

Fig. 5. An illustration of a wireless sensor network and fusion center. A number of sensor nodes monitor the river
water for various forms of contamination and periodically report their findings over the air to the fusion center. CS
projection observations are obtained by each sensor transmitting a sinusoid with amplitude given by the product of
the sensor measurement and a pseudo-random weight. When the transmissions arrive in phase at the fusion center, the
amplitude of the resulting received waveform is the sum of the component wave amplitudes.

a region of interest, that can sense (and potentially actuate) the physical environment in a variety

of modalities, including acoustic, seismic, thermal, and infrared. A wide range of applications of

sensor networks are being envisioned in a number of areas, including geographical monitoring,

inventory management, homeland security, and health care.

The essential task in many applications of sensor networks is to extract some relevant in-

formation from distributed data and wirelessly deliver it to a distant destination, called the

fusion center (FC). While this task can be accomplished in a number of ways, one particularly

attractive technique leverages the theory of CS and corresponds to delivering random projections

of the sensor network data to the FC by exploiting recent results on uncoded (analog) coherent

transmission schemes in wireless sensor networks [17]–[20]. The proposed distributed commu-

nication architecture – introduced in [6], [8] and refined in [21] – requires only one (network)

transmission per random projection and is based on the notion of so-called “matched source-

channel communication” [19], [20]. Here, the CS projection observations are simultaneously

calculated (by the superposition of radio waves) and communicated using amplitude-modulated

coherent transmissions of randomly weighted sensed values directly from the nodes in the network

to the FC via the air interface. Algorithmically, sensor nodes sequentially perform the following

steps in order to communicate k random projections of the sensor network data to the FC:

Step 1: Each of the n sensors locally draws k elements of the random projection vectors {Ai,j}k
i=1

by using its network address as the seed of a pseudo-random number generator. Given the seed
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values and the addresses of the nodes in the network, the FC can also easily reconstruct the

random vectors {Ai,j}k
i=1 for each sensor j = 1, . . . , n.

Step 2: The sensor at location j multiplies its measurement xj with {Ai,j}k
i=1 to obtain a k-tuple

tj = (A1,j xj , . . . , Ak,j xj)
T , j = 1, . . . , n, (11)

and all the nodes coherently transmit their respective tj’s in an analog fashion over the network-

to-FC air interface using k time-slots (transmissions). Because of the additive nature of radio

waves, the corresponding received signal at the FC at the end of the k-th transmission is given

by

y =
n∑

j=1

tj + ε = Ax + ε, (12)

where ε is the noise generated by the communication receiver circuitry of the FC.

The steps above correspond to a completely decentralized way of delivering k random projec-

tions of the sensed data to the FC by employing k (network) transmissions. Another possibility

for realizing the same goal is to assume that the sensors are capable of local communications

and that a route which forms a spanning tree through the network to some nominated clusterhead

has been established. Then, each sensor node can locally compute {ti,j = Ai,jxj}k
i=1 and these

values can be aggregated up the tree to obtain t = Ax at the clusterhead which then encodes

and transmits this t to the FC. The main difference here is that the wireless method described

above can be implemented without any complex routing information and as a result might be a

more suitable and scalable option in many sensor networking applications.

Digital vs. Analog Communications: Which is better?

It has been long known in the communications research community that digital transmissions

are not always the best option in all communication scenarios, and often the performance of

analog communications in network settings can far surpass that of digital communications (see

[22] for an excellent tutorial review). As a simple illustration of why amplitude modulated, analog

transmissions are well-suited for the problem of communicating random projections of the sensor

network data to the FC, consider the following toy example:

Suppose two nodes A and B sense values 0 and 1, respectively and they need to communicate
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(in a distributed manner) the average of their sensed data to node C. Using analog communi-

cations, the nodes can multiply their values with 1/2 and then coherently transmit the resultant

values to node C resulting in (1/2) ·0+(1/2) ·1 = 0.5 at the destination. On the other hand, if the

nodes were to transmit their data using digital communications then transmitting simultaneously

over the same time/frequency slot can only result in node C decoding the received signal as either

0 or 1 (because of the digital nature of its receiver) and consequently, the two nodes would either

need to take turns in transmitting their values to node C or they would need to transmit over

different frequency slots. Either option results in double the time (or bandwidth) and energy. In

addition, the receiver would need to perform an arithmetic operation to achieve the final result.

V. CONCLUSIONS AND EXTENSIONS

This article described how compressed sensing techniques could be utilized to reconstruct

sparse or compressible networked data in a variety of practical settings, including general multi-

hop networks and wireless sensor networks. Compressed sensing provides two key features, uni-

versal sampling and decentralized encoding, making it a promising new paradigm for networked

data analysis. The focus here was primarily on managing resources during the encoding process,

but it is important to note that the decoding step also poses a significant challenge. Indeed, the

study of efficient decoding algorithms remains at the forefront of current research [23]–[25].

In addition, specialized measurement matrices, such as those resulting from Toeplitz-structured

matrices [26] and the incoherent basis sampling methods described in [27], lead to significant

reductions in the complexity of convex decoding methods. Fortunately, the sampling matrices

inherent to these methods can be easily implemented using the network projection approaches

described above. For example, Toeplitz-structured CS matrices naturally result when each node

uses the same random number generation scheme and seed value, where at initialization each node

advances its own random sequence by its unique (integer) identifier. Similarly, random samples

from any orthonormal basis (the observation model described in [27]) can easily be obtained in

the settings described above if each node is preloaded with its weights for each basis element

in the corresponding orthonormal transformation matrix. For each observation, the requesting

node (or fusion center) broadcasts a random integer between 1 and n to the nodes to specify

which transform coefficient from the predetermined basis should be obtained, and the projection
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is delivered using any suitable method described above.

Finally, it worth noting that matrices satisfying the RIP also approximately preserve additional

geometrical structure on subspaces of sparse vectors, such as angles and inner products, as

shown in [28]. A useful consequence of this result is that an ensemble of CS observations

can be “data mined” for events of interest [29], [30]. For example, consider a network whose

data may contain an anomaly that originated at one of m candidate nodes. An ensemble of CS

observations of the networked data, collected without any a priori information about the anomaly,

can be analyzed “post-mortem” to accurately determine which candidate node was the likely

source of the anomaly. Such extensions of CS theory suggest efficient and scalable techniques

for monitoring large-scale distributed networks, many of which can be performed without the

computational burden of reconstructing the complete networked data.
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