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Abstract—Linear, time-varying (LTV) systems composed of
time shifts, frequency shifts, and complex amplitude scalings are
operators that act on continuous finite-energy waveforms. This
paper presents a novel, resource-efficient method for identifying
the parametric description of such systems, i.e., the time shifts,
frequency shifts, and scalings, from the sampled response to
linear frequency modulated (LFM) waveforms, with emphasis on
the application to radar processing. If the LTV operator is probed
with a sufficiently diverse set of LFM waveforms, then the system
can be identified with high accuracy. In the case of noiseless
measurements, the identification is perfect, while in the case of
noisy measurements, the accuracy is inversely proportional to
the noise level. The use of parametric estimation techniques with
recently proposed denoising algorithms allows the estimation of
the parameters with high accuracy.

Index Terms—Parameter estimation, radar signal processing,
signal denoising, time-varying channels, waveform design

I. INTRODUCTION

IN active sensing, a physical system is probed by a known
waveform to identify the physical parameters of the system

by processing the corresponding system response. This paper
is concerned with physical systems that are modeled by linear
time-varying (LTV) systems described by time and frequency
shifted versions of the input waveform. For example, the
response y(t) to an input waveform x(t) that is time shifted
by τ and frequency shifted by f is given by

y(t) = x(t− τ)ej2πft. (1)

The time-varying nature of the system is due to the mod-
ulation by the complex sinusoid, which is time-dependent.
Such LTV system models are important in radar processing,
channel estimation for communication systems, and other
areas, because the time and frequency shifts directly relate to
path distances and velocities associated with physical objects,
which scatter the probing signal. In the communications liter-
ature [1]–[3], the time and frequency shifts are often modeled
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probabilistically, while in radar applications they are modeled
as deterministic and fixed over short time intervals. This paper
will concentrate on the latter.

LTV systems are good models for multipath channels in
which multiple copies of the transmitted signal, each with a
time delay and a Doppler shift, are acquired by the receiver.
Assuming the bandwidth of the signal is small relative to the
carrier frequency, the Doppler shift is adequately modeled by a
frequency shift [4]. Fig. 1 depicts a reference scene to illustrate
a possible multipath channel. The transmitter and receiver are
collocated, as in a monostatic radar system. Each object is
identified by its path length, or, through the speed of light, the
time delay from transmission to reception. The moving car and
airplane are further identified by a Doppler shift determined
by their respective (radial) velocities. The receiver processes
the received signal using the transmitted signal as a reference.
The approach presented in this paper, as well as traditional
approaches, is also readily adaptable to other scenarios, such
as a non-collocated transmitter and receiver. In this case, the
receiver uses prior information about the transmitted signal,
e.g., predefined pilot tones that are common in communication
systems, or estimates the transmitted signal from the direct
path between the transmitter and receiver. The method can
also be adapted to a multi-antenna scenario in which the array
is electronically steered. For clarity of exposition, this paper
concentrates on a collocated transmitter and receiver using a
single omni-directional antenna for each, so the receiver has
a perfect copy of the transmitted signal.

A. Existing Techniques for Identification

Traditional processing employs a matched filter (MF),
which correlates the received signal against hypothesized time
and frequency shifts of the probe signal. Matched filtering is
the maximum likelihood estimator for a single return (i.e.,
scatterer) in white Gaussian noise [4], but the detection of
multiple targets is hampered by the spreading of the target
peak. The spreading is captured in the ambiguity function
(i.e., 2-dimensional cross-correlation of time and frequency
shifts) of the probe signal and limits the resolution of the time
shifts and frequency shifts of targets in close proximity [5].
An example ambiguity function is shown in Fig. 2 for a linear
frequency modulated (LFM) pulse. This waveform will be
described in greater detail in Section II-A, but the detail to note
is the line of large intensity from −50 ms to 50 ms that couples
the time and frequency shifts. Thus, even in the absence of
noise the detection of multiple returns is fundamentally limited
by the waveform itself, as captured by the ambiguity function.
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Fig. 1: In a multipath channel, the received signal (Rx)
contains multiple copies of the transmitted signal (Tx) that
are reflections from various objects. If the Tx and Rx are
collocated, then the time shift is proportional to the distance
from the Tx/Rx to the object and the frequency shift is
proportional to the object’s radial velocity. Note that any
objects located along each circle would impart the same time
shift.

Fig. 2: Ambiguity function of an LFM pulse.

Two targets described by parameters that happened to fall on
that line would be indistinguishable from one another. Matched
filtering, or approximations to it, still finds large utility in
practice because it is simply and efficiently computed by the
fast Fourier transform (FFT) [4].

Recently, other techniques have been proposed that are not
fundamentally limited by the signal ambiguity function. One
technique uses ideas from the compressed sensing literature to
efficiently identify LTV systems composed of a small number
of returns, relative to the entire time-frequency shift space
considered, and whose parameters live on a discretized grid of
the time-frequency shift space [6]. This technique leverages the
rich set of analysis techniques and recovery algorithms offered
by compressed sensing. The chief disadvantage is the necessity
to discretize the time-frequency shift space because real-world
LTV systems rarely conform to this assumption. The mismatch
to the assumed discretized basis has been shown to cause poor
performance [7]. A similar but more general idea is explored
in [8] in which fundamental limits of identification are related
to the time-frequency shift spread of the LTV operator using
a similar discretization of the time-frequency shift space.

Parametric techniques have also been proposed as an alter-
native to matched-filter processing, including [9] and [10]. The
common thread to both of these approaches is a sequential
recovery of the time shift followed by the frequency shift,
or vice-versa. A primary drawback is the sequential nature
of the identification, especially when noise is considered.
Errors in the first step propagate to the second step and
hamper the second stage of recovery. In fact, the technique
proposed in [10] does not consider noise in the analysis. These
techniques are also less efficient because the targets must be
resolvable in both steps of the recovery. The disadvantages
will be discussed in more detail later and compared to the
requirements of the proposed technique.

B. Our Contributions

We propose a technique that allows simultaneous identifica-
tion of the time shifts, frequency shifts, and amplitude scalings
of the returns from the LTV system. The technique utilizes
linear frequency modulation (LFM) pulses, i.e., linear chirps,
as the probing waveform. An LFM waveform has the form

x(t) = ej2πfct
2

g(t)

where g(t) = 0 ∀t 6∈ [0, Tp] and fc is the chirp rate
that determines how fast the frequency sweeps. The returns
from these probing waveforms, after pre-processing, are a
superposition of sinusoids with frequency determined by the
time and frequency shift of the target. If a diverse set of LFM
waveforms with different chirp rates fc is used to probe the
system, then we can determine the time shifts and frequency
shifts of the targets that produced the returns. When multiple
targets are present, we show that a diverse set of LFM pulses
is sufficient to recover the description of each target. In the
case of noisy measurements, we show that the accuracy of
the estimated target parameters is proportional to the signal-
to-noise ratio (SNR). We also characterize the resource effi-
ciency of the technique through analysis of the time-bandwidth
product of the LFM waveform, which is characterized by the
largest possible time and frequency shift of the target returns.
A comparison of the technique presented in this paper and
selected other techniques is summarized in Table I. Notice that
our approach improves on both the resolution and the number
of samples required.

This work builds upon initial work in which we presented
preliminary analysis of using a diverse set of LFM pulses
for recovery from noiseless measurements [11] and noisy
measurements [12]. In the present work, we expand the
analysis of noisy measurements, expand the discussion of the
usefulness of diversity, and include expanded Monte Carlo
numerical experiments including the use of a denoising step
in the recovery. The remainder of this paper is organized as
follows. Section II sets up the model for LTV systems and
specifies the response of these systems to a train of LFM
pulses. Section III discusses the proposed processing scheme
that first uses analog preprocessing on the received LFM pulses
to setup a digital frequency recovery algorithm. Section IV
analyzes the proposed recovery algorithm performance from
the noiseless LTV system response, while Section V analyzes
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Approach Num. of Samples Time-Bandwidth Resolution w/o noise Avg. Complexity Resolution w/ noise
Matched Filter [4] W · τmax

1
∆τ ·∆f ∆τ ∝ 1

W
, ∆f ∝ 1

M
poly(∆τ,∆f ) ∆τ ∝ 1

W
, ∆f ∝ 1

M

Herman-Strohmer [6] M ·K2 K2 ∆τ ∝ 1
W

, ∆f ∝ 1
M

poly(K) ∆τ ∝ 1
W

, ∆f ∝ 1
M

Friedlander [9] M ·K2 K2 ∞ poly(K) ∆τ ∝ 1
M3N

, ∆f ∝ 1
N3M

Bajwa et al. [10] – K2 ∞ poly(K) –
Harms et al. (this paper) M ·K K2 ∞ poly(K) ∆τ,∆f ∝ 1

(MN)3

TABLE I: Summary comparison of the approach described in this paper to several relevant alternative approaches. The values
listed indicate how the quantity scales in terms of the signal bandwidth W , number of samples K, number of pulses M , number
of samples per pulse N , and maximum time shift considered τmax. The time shift resolution and frequency shift resolution are
indicated by ∆τ and ∆f , respectively. Please see Sections II and III for more details about these quantities and Section IV-F
for more details about the comparison. Other constants are left off for clarity, and poly(·) means polynomial scaling. A ‘–’
indicates that the column is not addressed by the approach.

the performance using a noisy system response. We finish up
with numerical experiments to verify the proposed procedure
in Section VI and conclude in Section VII.

II. LTV SYSTEM DESCRIPTION AND RESPONSE

An LTV system is an operator described by time shifts,
frequency shifts, and complex scalings. The LTV operator acts
on probing waveforms and produces a response that consists of
time-shifted, frequency-shifted, and scaled copies of the prob-
ing waveform. Each parameter triplet (τk, fk, ck) is associated
with a target or object, owing to the physical interpretation
of a radar scene or multipath communication system. The
objective is to identify the LTV operator by estimating each
triplet (τk, fk, ck). In causal systems, as considered in this
paper, the time shifts are time delays, i.e., τk > 0. The
system response is a superposition of the modified probing
waveforms. Fig. 3 shows a block diagram of the LTV system
description where x(t) denotes the probing waveform that
illuminates the system and h(τ, f, c) = c·x(t−τ)ej2πft is the
response of the operator acting on a single target. Assuming
there are K targets, the received signal1 is

y(t) =

K∑
k=1

ckx(t− τk)ej2πfkt + ε(t) (2)

for t ∈ [0, T ] where T is the processing interval (during which
the parameters are assumed fixed) and ε(t) is a noise term. The
time and frequency shifts are assumed to be limited2, i.e., fk ∈
(−fmax, fmax) and τk ∈ (0, τmax) ∀k such that max(τk) <
τmax and max(|fk|) < fmax. The choice of T is important
to ensure the parameters are (approximately) fixed over the
processing interval. A moving target that has a frequency shift
due to the Doppler effect changes range over time, and hence
the time shift changes, so T must be small enough so that the
change in time shift is negligible.

As a brief aside about LTV operators that produce a
response of the form (2), we note that a general LTV operator
with a continuous spreading function, such as those considered
in [8], can be decomposed into a finite sum of discrete

1The received and transmitted signals are modeled as complex signals in
this paper. This is implemented in practice using I/Q modulation [13].

2In practice, these limitations are set by the physical limits of the system
and scenario. For example, a radar system has limited sensitivity and can only
detect returns from targets over some finite range. Targets are also limited to
a finite velocity.

x(t) -
∑K
k=1 h(τk, fk, ck) -

⊕?
ε(t)

- y(t)

Fig. 3: The LTV system described by (2). The system intro-
duces time shifts τk, frequency shifts fk, and complex scalings
ck that modify the probing waveform x(t). Additive noise ε(t)
corrupts the signal returns to produce the received signal y(t).

targets of the form (2) if the spreading function admits a
Fourier decomposition. We also note that the advantages of
the method described in this paper are realized when such a
decomposition results in small K because the identification
results are a function of K. Larger K will require more
resources. However, in many applications K is small or can
be well-approximately by a small number of targets.

A. Probing Waveform: Linear Frequency Modulated Pulses

The probing waveform must be designed to produce an
identifiable system response. The important property of a
probing waveform is that it provides a sufficient number of
degrees of freedom in the system response. For example, a
pure tone does not provide any information about the time shift
because the phase of the return is corrupted by the unknown
phase imparted by the target.

The waveforms considered in this paper are linear frequency
modulated (LFM) pulses, or windowed chirps, which enjoy
wide use in radar applications [4]. These waveforms are
complex sinusoids in which the frequency sweeps linearly in
time across some bandwidth. Consider a train of M such (non-
overlapping) pulses,

x(t) =

M−1∑
m=0

xm(t−mT ) (3)

where each pulse is a windowed LFM waveform with sweep
rate fmc and frequency offset fm0

xm(t) = ej2π(f
m
c t2+fm

0 t)g(t) (4)

with a square window function

g(t) =

{
1, 0 ≤ t ≤ Tp
0, otherwise.
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Fig. 4: The time-frequency plot and the Fourier transform char-
acterize the spectral content of an LFM pulse with f0 = −100
Hz, fc = 2000 Hz/s, and Tp = 0.1 s. Most energy is contained
in a bandwidth of ≈ 2fcTp.

Square windows allow a clear analysis, though other window
functions are possible, e.g., a continuous window that tapers
at each end. The discussion of the latter is beyond the scope
of the current analysis. The pulse has duration Tp, and the
pulse repetition interval (PRI) is T . The time-frequency plot
of an example pulse at baseband is shown in Fig. 4a. The
time-frequency characterization, however, does not completely
capture the spectral content of the LFM pulse because the total
occupied bandwidth is larger than the difference between the
starting and ending frequencies due to the windowing in time
of the pulse. The Fourier transform of (4) is

X(f) = F{xm(t)} =

∫ Tp

0

ej2π(f
m
c t2+(fm

0 −f)t)dt. (5)

The integral in (5) is difficult to evaluate due to the quadratic
term in the exponent. The integral can be formulated in terms
of Fresnel integrals and numerically evaluated as in [14].
The upshot is that most of the energy of the LFM pulse is
contained in a bandwidth of approximately 2fmc Tp with some
energy leaking outside of this bandwidth. Because the pulse
duration is Tp, the time-bandwidth product of a single pulse is
approximately 2fmc T

2
p . Other chirp, or chirp-like, pulses are

possible such as a linear frequency-stepped pulse as analyzed
in [9]. In this case, fmc = 0 and fm0 = f0 + δf ·m where δf
is the frequency step for each pulse.

B. LTV System Response to LFM Pulses

Combing (2) and (3), the response of the LTV operator to
these LFM pulses is

y(t) =

M−1∑
m=0

ym(t) (6)

where

ym(t) =

K∑
k=1

ckxm(t− τk −mT )ej2πfkt + εm(t) (7)

is the received signal for the mth pulse with

εm(t) =

{
ε(t), mT ≤ t ≤ (m+ 1)T

0, otherwise

- t
0 τmax Tp T

To
� - Tg

� -

Fig. 5: Timing diagram of a pulse, the measurement period,
and the guard period. We require that Tg = T−Tp ≥ τmax and
Tp > τmax. The measurement period To has a lower bound
(described later) that depends on the number of targets and
the noise power.

the windowed noise process over the time interval of the mth

pulse. The window g(t) limits the temporal extent of xm(t),
so ym(t) is guaranteed to be zero outside of the interval mT ≤
t ≤ Tp+τmax+mT for m = 0, . . . ,M−1. If T ≥ Tp+τmax,
then the received pulses ym1

(t) and ym2
(t) do not overlap for

m1 6= m2. We therefore have a guard interval of Tg = T −Tp
during which no signal is transmitted, and the requirement for
non-overlapping received pulses is Tg ≥ τmax. We also restrict
the measurement interval for the mth pulse to

mT + τmax ≤ t ≤ mT + Tp

to ensure all returns from the mth pulse, and only those
from the mth pulse, are present. We denote the measurement
interval as To = Tp−τmax. Fig. 5 provides a pictorial summary
of the timing requirements.

Each received pulse (7) is a superposition of frequency-
offset chirps. Substituting (4) into (7) yields

ym(t) =

K∑
k=1

ckej2π[θ
m
k +νm

k t+(fm
c t2+fm

0 t)]g(t− τk) + εm(t)

where

θmk = fmc τ
2
k (8)

νmk = fk − 2fmc τk (9)

are, respectively, the phase offset and frequency offset of the
chirp associated with the kth target return and determined by
the time shift and frequency shift of the kth target.3 The pure
chirp term, ej2π(f

m
c t2+fm

0 t), does not depend on any parameter
of the kth target.

III. IDENTIFICATION OF LTV SYSTEMS

The goal in LTV system identification is to identify (i.e.,
estimate or recover) the composite time shifts, frequency
shifts, and amplitude scalings by probing the system with
known waveforms that provide sufficient diversity in the
system response. In the case of LFM probing waveforms, the
identification is split into three parts: 1) analog preprocessing
and sampling of the received signal, 2) frequency estimation
(the parameters in (8) and (9)), and 3) matching of the
recovered frequencies to determine the time and frequency
shifts. Fig. 6 provides a summary where the procedure has
been split between the analog and digital pieces.

3Note that a phase term fm0 τk has been subsumed into the complex scaling
ck assuming that fm0 = fRF ∀m is the RF center frequency common to
every pulse. We present the analysis at baseband while acknowledging that
ck has a component due to fRF .
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(b) Digital processing

Fig. 6: Block diagram describing the identification of an LTV system. The received signal y(t) is filtered, dechirped, and
sampled pulse by pulse. The samples are then used to recover the constituent sinusoids in the processed returns of each pulse.
Finally, the recovered frequencies are matched to recover the time shifts, frequency shifts, and scalings of the LTV system.

A. Analog Receiver Processing

The analog preprocessing of the received returns is shown
in Fig. 6a. The received signal is first dechirped to remove the
pure chirp component. The dechirped received signal for the
mth pulse is

ỹm(t) = e−j2π(f
m
c t2+fm

0 t)ym(t)

=

K∑
k=1

ckej2πθ
m
k ej2πν

m
k tg(t− τk) + ε̃m(t) (10)

where ε̃m(t) = e−j2π(f
m
c t2+fm

0 t)εm(t). The dechirped signal
is a sum of complex sinusoids with frequencies νmk and
phases θmk . The noise term ε̃m(t) is phase modulated by
the dechirping process, but its magnitude is unaffected. For
example, if the noise process εm(t) is independent complex
(circularly symmetric) Gaussian noise, then so is ε̃m(t) with
the same statistics. The magnitude |ε̃m(t)| is unaffected and
the phase remains uniformly distributed in [0, 2π).

The dechirped signal is then sampled over the measurement
interval so that the output measurements are

ỹm[n] = ỹm(nTs) =

K∑
k=1

ckej2πθ
m
k ej2πν

m
k nTs + ε̃m[n] (11)

for n = 0, ..., N − 1 with Ts the sampling period and
ε̃m[n] = ε̃m(nTs). We first note that the Nyquist criterion
(to prevent aliasing of the different sinusoids in (11)) requires
that Ts·max(νmk ) ≤ 1

2 , or

fs ≥ 2(fmax + 2fmc τmax) (12)

where fs = 1
Ts

is the sampling rate. Note that this Nyquist
criterion does not depend directly on the bandwidth of the
probing LFM waveform, which is approximately 2fmc Tp.
Generally, Tp � τmax, so the sampling constraint on fs is
much smaller than the bandwidth of the LFM waveform. There
is also an implicit relation between fmax and Tp requiring that
the product cannot be too large, i.e., fmax·Tp < η for some
constant η. The product is proportional to the distance traveled
by a moving target during time Tp and cannot be too large to
satisfy the assumption of the parameters remaining fixed.

The dechirping (10) converts the time and frequency shifted
LFM pulses into complex sinusoids with frequency and phase

determined by the time and frequency shift. We can write
ck = |ck|ej2πφk and (10) becomes

ỹm[n] =

K∑
k=1

|ck|ej2πψ
m
k ej2πν

m
k nTs + ε̃m[n] (13)

with ψmk = φk + θmk = φk + fmc τ
2
k . We have transformed a

chirp estimation problem into a sinusoid estimation problem
in which the frequencies and phases of the sinusoids are
parametrically defined by the time shifts, frequency shifts, and
phase offsets of the LTV operator. The problem remains of
recovering the parameters of the sinusoids and solving for the
LTV time shifts and frequency shifts.

B. Digital Receiver Processing

The dechirped and sampled signal ỹm[n] is the input to a
digital processing stage that ultimately recovers the LTV sys-
tem description by recovering the K target triplets (τk, fk, ck).
The digital recovery proceeds in two steps as shown in Fig. 6b.
The first step is recovery of the frequencies (9), phases (8), and
amplitudes ĉk from each pulse m = 1, . . . ,M . The parametric
relationship between these frequencies and phases and the time
shifts and frequency shifts is then exploited to recover the
target triplets, as described in the following sections. The case
of noise free samples is analyzed first, followed by the case
of noise corrupted samples. The procedure is more clearly
explained without considering noise in Section IV, and the
extension to the case of noisy measurements is straightforward
in Section V.

IV. IDENTIFICATION OF LTV SYSTEMS FROM
UNCORRUPTED SAMPLES

We begin by analyzing the noise-free case with ε(t) = 0,
and by extension ε̃m[n] = 0. The noise-free case is useful for
two reasons. First, it gives a baseline for performance in terms
of several benchmarks considered. Second, it provides an
intuitive understanding of the identification procedure. Given
the dechirped and sampled measurements (11), we first recover
the frequencies and phases of the resulting sinusoids and then
extract the time and frequency shifts from these frequencies
and phases.
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A. Recovery of Time Shifts and Frequency Shifts

The first stage of the digital processing is recovery of
the frequencies and phases from the noise-free samples (11),
i.e., with ε̃[n] = 0. Specifically, ψmk and νmk are recovered
from (13). The samples ỹm[n] from each pulse are the input,
and some frequency recovery algorithm is used to recover
the constituent frequencies. For completeness, we summarize
the Kumaresan-Tufts (KT) algorithm [15] as one possible fre-
quency recovery technique but emphasize that other parametric
techniques, such as MUSIC [16] or ESPRIT [17] and their
variations, could be easily used in its place. Additionally, we
could use non-parametric Fourier-based techniques, e.g., an
FFT followed by peak detection.

The KT algorithm solves the prediction equation y+Yh =
0 where h = [h[1], . . . , h[L]]T are the coefficients of the
predictor filter

H(z) = zL+h[1]zL−1 + · · ·+h[L−1]z+h[L] =

L∏
i=1

(z− ẑi),

L is the predictor order of the filter, and ẑi are the roots of
the polynomial. Using the forward-backward predictor matrix

Y =



y[L] y[L− 1] · · · y[1]
...

...
...

...
y[N − 1] y[N − 2] · · · y[N − L]
y∗[2] y∗[3] · · · y∗[L+ 1]

...
...

...
...

y∗[N − L+ 1] y∗[N − L+ 2] · · · y∗[N ]


,

and forward-backward predictor vector y

y =
[
y[L+ 1] · · · y[N ] y∗[1] · · · y∗[N − L]

]T
,

the prediction equation solution is

h = −(YHY)−1YHy = −R−1r (14)

where R = YHY is the data correlation matrix and r = YHy
is the data correlation vector. Notice that the structure of Y,
and by extension R, means all have rank K, the number of
constituent sinusoids.

The prediction filter H(z) has L roots, denoted by ẑi, where
K roots lie on the unit circle and the rest reside inside the
unit circle. The recovered frequencies ν̂k are found from the
K roots on the unit circle ẑk = exp(j2πν̂kTs).

The phases ψ̂mk and amplitudes |ĉk| are recovered as so-
lutions to a least-squares problem. Let Fν̂ be the matrix
of sinusoids with the estimated frequencies ν̂mk defined by
[Fν̂ ]n,k = exp(j2πν̂mk nTs). Collecting the samples into a
vector ỹm = [ỹm[0], ..., ỹm[N−1]]T , the least-squares solution

ζ̂ = arg min
ζ
||Fν̂ζ − ỹm||22 (15)

with entries ζ̂k = |ĉk|exp(j2πψ̂mk ) provides the amplitudes
and phases. The procedure is summarized in Algorithm 1.

Recovering ψmk and νmk from a single LFM pulse (i.e., M =
1) is insufficient to determine the time and frequency shifts.
Recovery of ν1k provides a linear relationship (9) to possible
time shifts and frequency shifts that could produce a sinusoid

Algorithm 1 KT algorithm for recovering the frequency and
phase of complex sinusoids from sampled measurements

1: Data: ỹm[n]
2: Calculate coefficients h = −(YHY)−1YHy = −R−1r.
3: Find the roots on the unit circle, |ẑk| = 1, of H(z).
4: Calculate the frequencies ν̂mk = Ts

2πphase(ẑk).
5: Calculate ψ̂mk and |ĉk| from the least-squares solution ζ̂k.
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Fig. 7: The constraints imposed by two LFM pulses probing
an LTV system consisting of a single target with τmax = 0.01s
and fmax = 100Hz. The line with positive slope corresponds
to the constraint imposed by the positive chirp, while the line
with negative slope corresponds to the negative chirp. The
intersection of the lines is the time–frequency shift pair that
explains the recovered frequency from each pulse.

of that frequency. The recovered phase ψ1
k does not provide

information about the time shift due to the unknown target
phase φk. For example, the line with positive slope in Fig. 7
shows the constraint imposed by (9) in the case of a single
target return (K = 1). There exist infinitely many solutions.

However, we can send another LFM pulse with a different
chirp rate, e.g., f2c = −f1c . The so-called positive and negative
chirps in combination provide sufficient information to recover
the time and frequency shift of the lone target. The frequencies
in this case are

ν1k = fk − 2f1c τk and ν2k = fk + 2f1c τk (16)

and only one time–frequency shift pair satisfies both con-
straints simultaneously, shown by the intersection of the lines
in Fig. 7. The time shift and frequency shift are

τ1 =
ν11 − ν21
−4f1c

and f1 =
ν11 + ν21

2
. (17)

Note that the only requirement is f2c 6= f1c (for a single target
in the absence of noise).

The recovery is more complicated for multiple targets. For
example, Fig. 8a shows the set of constraints provided by
four LFM pulses (M = 4) when there are five targets in
the received signal. Each point of intersection between any
two lines satisfies the constraints imposed by the pair of LFM
pulses. Recovery requires the use of the phase information and
more LFM pulses with different chirp rates. The procedure to
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(a) fc = ±3000 Hz/s.
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(b) fc = ±6000 Hz/s.

Fig. 8: The constraints imposed by four LFM pulses for an
example scene with five targets (τmax = 0.01s and fmax =
100Hz). The lines with positive slope (solid black) enforce
constraints from the positive chirp, while the lines with neg-
ative slope (dotted red) enforce constraints from the negative
chirp. The line intersections show all possible time–frequency
shift pairs that can explain the recovered frequencies. Both
sets of constraints are needed to disambiguate the true targets.

recover multiple targets, which is one of the main novelties of
this paper, is presented in the next subsection.

B. Resolving Ambiguity Between LFM Pulses

The recovered sinusoid parameters from each pulse are
ψmk = φk + fmc τ

2
k and νmk = fk − 2fmc τk for targets

k = 1, . . . ,K and pulses m = 1, . . . ,M . This is a system of
equations in which each target contributes three unknowns (φk,
τk, and fk) and each pulse contributes one linear constraint
and one quadratic constraint. We will first concentrate on
the frequency νmk because it contains both the time shift
and frequency shift and is linear. For this constraint, each
target contributes two unknowns (fk and τk) while each pulse
contributes a single constraint.

Collect the unknown parameters into a column vector

β = [f1, . . . , fK , τ1, . . . , τK ]T (18)

and the recovered frequencies for the mth pulse into a column
vector

νm = [νm1 , . . . , ν
m
K ]T . (19)

The constraints from the mth pulse can be written via the
matrix equation

Amβ = νm (20)

with the matrix

Am =
[
IK −2fmc IK

]
=
[
1 −2fmc

]
⊗ Ik (21)

representing the constraints and where ⊗ denotes the Kro-
necker product. The K × K identity matrix is denoted IK .
The matrix equation (20) is underdetermined as there are 2K
unknowns and K equations. We can add more constraints by
sending more LFM pulses. Each LFM pulse contributes a set
of K constraints of the form (20), while β must satisfy all
sets of constraints simultaneously. However, the frequencies
νmk are unordered and the relationship between the pulses is
not immediate. In other words, if the recovered frequencies are
sorted in ascending order so that νm1 ≤ νm2 ≤ . . . ≤ νmK , then
νmk may not have been produced by the same target as νpk for
m 6= p. This is most easily understood by examining the plot
in Fig. 8a. The solid black lines show the constraints imposed
by an LFM pulse with fc = 3000 Hz/s, and the dashed red
lines show the constraints imposed by an LFM pulse with
fc = −3000 Hz/s. We know that each target produced a single
frequency, so any set of 5 intersecting points satisfying this
constraint could explain the received signal.

We formalize this process by putting the constraints (20)
into a single equation. The MK × 2K matrix A contains the
constraints from each pulse and the MK×1 vector ν contains
the recovered frequencies from each pulse:

A =

A1

...
AM

 =

1 −2f1c
...

...
1 −2fMc

⊗IK = B⊗IK , ν =

 ν
1

...
νM

 .
The parameter vector satisfies

Aβ = Pν (22)

where the matrix P = diag(IK ,P2, . . . ,PM ) is a block
diagonal matrix and Pm are permutation matrices that account
for the unordered nature of νm, which requires that each
frequency be matched with the target that produced it.

As an illustrative example, consider Fig. 8a. The figure
shows the linear constraints imposed by the frequency relations
in (16) for five targets (shown as blue circles). Without
knowledge of the true target locations (in time and frequency
shift space), any set of five intersections between the red and
black lines that also satisfies τ ≤ τmax could explain the
recovered frequencies. In this example scene, there are a total
of four valid explanations of the recovered frequencies. The
pairs of lines with no ambiguities can be matched with no
further information. For example, the true target at a time
shift of 1ms and frequency shift of −80Hz can be matched.
The ambiguous matchings are resolved through use of the
recovered phase terms and a second LFM pulse. We first
explain how the phase information can be used.
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Consider the case of two LFM pulses (M = 2) and let
f2c = −f1c . Index the frequencies for the first pulse with k
and for the second pulse with ` and note two relations:

ν1k − ν2`
−4fc

=
fk − f`
−4f1c

+
τk + τ`

2
(23)

ψ1
k − ψ2

`

2f1c
=
φk − φ`

2f1c
+
τ2k + τ2`

2
. (24)

If k and ` correspond to the same target, then fk = f`,
τk = τ`, φk = φ`, and the frequencies and the phases satisfy

ν1k − ν2k
−4fc

= τk and
ψ1
k − ψ2

k

2f1c
= τ2k (25)

where both quantities only depend on τk. We check if the
following relationship is satisfied(

ν1k − ν2`
−4f1c

)2

=
ψ1
k − ψ2

`

2f1c
. (26)

If this condition holds true, then we declare that k and `
describe the same target. Otherwise, we continue checking.
This procedure is summarized in lines 1-10 of Algorithm 2.

There is one more source of ambiguity caused by the un-
known target phases φk. The hypothesized time shift τh(k, `)
is the time shift that results from (25)

τh(k, `) =
ν1k − ν2`
−4f1c

=
fk − f`
−4f1c

+
τk + τ`

2
. (27)

The relationship (26) can be satisfied even if k and ` do not
correspond to the same target. Substituting (24) into (26)

τh(k, `)2 =
ψ1
k − ψ2

`

2f1c
=
φk − φ`

2f1c
+
τ2k + τ2`

2
, (28)

and rearranging gives the condition on φk−φ` for ambiguity:

φk − φ` = 2f1c τh(k, `)2 − f1c
(
τ2k + τ2`

)
. (29)

However, notice that if there is an ambiguity from the
solution of (22) then there will be at least one other false
target in addition to the one just described. In this case, target
k will contribute to the frequency and phase of the second
LFM pulse (m = 2) and target ` will contribute to the first
LFM pulse (m = 1). The condition on the target phases in
this case is

φk − φ` = −2f1c τh(`, k)2 + f1c
(
τ2k + τ2`

)
. (30)

We can use (27) to find the condition under which both of
these conditions are ambiguous: |fk − f`| = 2f1c |τk − τ`|,
which is resolved if another pair of LFM pulses is sent with
a different chirp rate f3c 6= f1c .

C. Recovery of Target Amplitude and Phase

With the time and frequency shifts recovered and ambigui-
ties resolved, the target phase φk is recovered via φ̂k = 1

2 (ψ̂1
k+

ψ̂2
k) and the amplitude is recovered via (15): |ĉk| = |ζ̂k|.

Algorithm 2 Algorithm for recovering the time and frequency
shifts from the measurements

1: Data: ỹm[n]
2: Use Algorithm 1 to find the frequencies ν̂mk and phases
ψ̂mk for k = 1, . . . ,K and m = 1, . . . ,M

3: Find possible target time and frequency shifts by solv-
ing (20) for m = 1, 2

4: for k = 1, ...,K do
5: for ` = 1, ...,K do
6: Calculate delay hypothesis τh(k, `).
7: if 0 ≤ τh(k, `) ≤ τmax and τh(k, `)2 =

ψ1
k−ψ

2
`

2f1
c

then
8: Declare k possibly matched with `
9: end if

10: end for
11: end for
12: Detect ambiguous matchings where a sinusoid k has

multiple matchings `, and vice-versa. Repeat 1-10 for
m = 3, 4 to resolve the ambiguities.

13: Calculate the recovered frequency shift f̂k = 1
2 ν̂

1
k + ν̂2k .

14: Calculate the recovered time shift τ̂k = 1
4f1

c
ν̂1k − ν̂2k .

15: Calculate the recovered target phase φ̂k = 1
2 ψ̂

1
k + ψ̂2

k.

16: Calculate the recovered target amplitude |ĉk| = |ζ̂k|.

D. Sufficient Conditions for Perfect Noiseless Recovery

The following theorem, first presented in [11], establishes
that we can perfectly recover the time and frequency shifts if
we transmit four LFM pulses, i.e., M = 4.

Theorem 1 (Perfect Recovery of Time Shifts and Frequency
Shifts). For a given τmax and fmax and M = 4, choose f2c =
−f1c and f4c = −f3c such that f1c 6= f3c and satisfying Lemma 2
in Appendix B. Take the samples ỹm[n] for m = 1, 2, 3, 4 with
fs satisfying (12) and the number of samples per pulse N
satisfying N ≥ K + 1. Then Algorithms 1 and 2 perfectly
recover the time shifts τk, frequency shifts fk, and (complex)
scalings ck.

Proof. Algorithm 1 offers perfect reconstruction of the fre-
quencies and phases in the absence of any noise in the
measurements [15]. Note that the matrix Y, and subsequently
R, have rank K in this case.

The matching procedure in Algorithm 2 relies on νmk not
being aliased and θm(τ) being bijective. The restriction on fs
ensures the former and Lemma 2 ensures the latter.

E. Resource Usage

We now provide a brief discussion of resource usage to
highlight the advantages of our approach. We concentrate on
two main points of resource usage: 1) the rate of samples
and number of samples required for recovery and 2) the time-
bandwidth product of the waveform used in recovery of the
delay and Doppler.

1) Sampling rate and number of samples: The sampling
rate must satisfy the Nyquist condition (12) to avoid anti-
aliasing. The lower bound on fs depends on fmax and τmax,
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and an increase in either requires a corresponding increase
in fs. We first compare this sampling rate to the rate re-
quired to sample the unprocessed LFM pulse (i.e., without
dechirping). The bandwidth of an LFM pulse is approximately
W ≈ 1/Tp + fcTp meaning that processing of this signal
directly (e.g., with cross-correlation processing) would require
a sampling rate proportional to W . In contrast, our approach
requires a sampling rate (12) of fs ≥ 2(fmax + 2fcτmax).
Recall that To = Tp−τmax meaning Tp > τmax. To satisfy the
assumption of fixed parameters over the measurement interval,
we require that fmax <

η
Tp

as well where η is a fixed constant
set by the physics of the scenario and generally η < 1. Our
approach therefore requires a lower sampling rate than a direct
sampling of the LFM pulse.

In addition to the lower bound on the sampling rate, the
frequency estimation step requires a minimum number of
samples, captured in Theorem 1, to recover the K frequen-
cies associated with each target. In the case of uncorrupted
measurements, the KT algorithm requires N ≥ K + 1
measurements to recover K distinct frequencies. Recall that
the measurements used in the recovery algorithm are taken
over the measurement interval To, so we have a lower bound
on the measurement interval:

To ≥
N

fs
. (31)

Further, the transmitted pulse duration Tp and pulse repe-
tition interval T (of each pulse) are set based on To. First,
choose a To satisfying (31), and then choose

Tp = To + τmax ≥
N

fs
+ τmax (32)

and

T = Tp + Tg ≥
N

fs
+ 2τmax (33)

where Tg ≥ τmax. The total time processing time, denoted T ,
needed for M pulses is then T = M ·T .

2) Time-bandwidth Product: Given the previous discussion
of sampling rate and number of samples, the total time needed
to recover the LTV characterization is T = M ·T . The
bandwidth of an LFM pulse is approximately W ≈ 1

Tp
+fcTps,

so that the time-bandwidth product, T ·W , of a single LFM
pulse is approximately T ·W ≈M ·T · (1/Tp + fcTp) , which
means that T ·W must scale with 1 +K2.

3) Computational Complexity: On first inspection, the ap-
pearance of the permutation matrix in (22) makes it look like
the complexity of finding a solution to the matching problem
is factorial in K. However, note that many of the possible
solutions will actually not be feasible given the τmax and
fmax constraints. Also, note that once a true target is found,
then the frequency from each pulse corresponding to that
target can be eliminated from the search, effectively fixing
that portion of the permutation matrix and shrinking the size
of the problem. The problem solution can then be found by
performing comparisons of parameters from pulse to pulse that
is polynomial in K.

F. Discussion and Comparison

We now place this work in context of other recent advances
in LTV system characterization. In [10] and [9], sequential
processing is employed. In the case of [10], the delays are
first recovered followed by Dopplers at each recovered delay;
in the case of [9], the Dopplers are first recovered followed
by the delays at each recovered Doppler. One disadvantage
to such a sequential approach is that errors in the first
stage propagate through to the second stage. In contrast, our
approach in this paper requires only one recovery stage so
errors do not propagate. Both of these techniques also require
the transmission of a series of pulses. In the case of [9], these
pulses are stepped-frequency pulses, quite similar in spirit to
an LFM pulse. Because a sequential technique is employed, an
assumption must be made on the maximum number of delays
associated with any single Doppler. The required number of
samples for recovery depends on the number of distinct delays
associated with each Doppler. As a worst-case scenario, if
there are K targets parameterizing an LTV system, then the
minimum number of samples needed to describe the system
is on the order of K2. In contrast, the approach described in
this paper requires the minimum number of samples to be on
the order of K.

The work [18] does not use a sequential technique, but
instead uses a technique termed Doppler focusing where
multiple pulses are coherently processed to find delays at the
Dopplers which are in focus, meaning Dopplers in a small
interval around a nominal center. The approach uses low-
rate samples, i.e., below the bandwidth of the pulses, where
the number of samples depends linearly on the number of
targets K. These low-rate samples are used to find the low-
pass Fourier series coefficients of the received pulses. These
coefficients are shown to be samples of a sum of sinusoids
determined by the delays, Dopplers, and amplitudes of the
targets. Parametric recovery techniques can then be used to
recover the delays present in the focus zone. Alternatively,
compressed sensing-based techniques can be used if the delays
are assumed to lie on a grid. One disadvantage of this approach
is the basis mismatch that occurs if the actual delays do not lie
on the assumed grid [7]. Another disadvantage of this approach
results from the Doppler focusing. The width of the focus zone
is proportional to 1

MT where M is the number of pulses and
T is the pulse repetition interval. In the absence of any prior
knowledge about Doppler locations, a minimum number of
focus zones must be used, and delays calculated from each,
to ensure that all Dopplers are covered. Each focus zone also
has a resolution proportional to 1

MT meaning that all Dopplers
in this interval will be associated with the center Doppler.
Our approach described in this paper avoids this problem by
recovering the delays and Dopplers directly.

V. IDENTIFYING LTV OPERATORS FROM
NOISE-CORRUPTED SAMPLES

The more interesting situation in most applications is the
case of noisy samples, i.e., ε̃m[n] 6= 0. In this case, we can
use the procedure described above with some modifications
to make it more robust to noisy measurements. To start, we
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assume the noise samples εm[n] are i.i.d. Gaussian, so the
dechirped noise samples ε̃m[n] are i.i.d. Gaussian as well. We
use Algorithms 1 and 2 with small modifications described
below that are more robust to noisy measurements. Due to the
presence of noise, the estimate of the frequency and phase will
contain some error. However, the frequency estimator produces
consistent estimates with variance that approaches the Cramer-
Rao lower bound (CRLB). The variance of the estimate tells
us about our ability to resolve closely spaced frequencies,
and by extension targets. If two (or more) estimates are too
close to resolve, then the matching procedure cannot reliably
distinguish between them. Where, in the noiseless case, we had
an ambiguity equality (for a single pulse), in the noisy case
we have an ambiguity interval. The processing of further LFM
pulses shrinks the ambiguity interval to refine the estimates
and decrease the estimator variance (increase the estimator
resolution), asymptotically achieving zero variance. Finally,
we show that the estimator of the time shifts, frequency
shifts, and amplitudes converges asymptotically to the true
parameters, regardless of the parameter values. We further
argue that for most scenes of interest (i.e., locations of targets),
we can achieve resolution proportional to the noise power from
a finite number of samples and pulses.

A. Denoising via Atomic Norm Minimization

The KT algorithm described in the previous section, as well
as many other spectral estimation algorithms, is sensitive to
SNR in the sense that there is typically a threshold SNR, below
which, the recovery breaks down. To improve the performance
of the algorithm at lower input SNR, we propose using a
denoising step in the recovery. The procedure we propose uses
atomic norm minimization to pre-process the noisy samples
to increase the SNR of the samples fed into the spectral
estimation stage. The errors that result from the denoising
procedure are not necessarily independent or Gaussian, so
we provide justification by examining the empirical first and
second order statistics of the denoised samples through Monte
Carlo simulations. We begin with a brief description of the
atomic norm and its semidefinite characterization before de-
scribing the denoising procedure.

We start by defining the set of atoms

A = {a(t;φ, τ, f) : τ ∈ [0, τmax), f ∈ (−fmax, fmax), φ}

where a(t;φ, τ, f) = ejφ+j2πftp(t − τ) with an (almost)
arbitrary pulse p(t). We assume the atoms are contained in
L2, and the notation emphasizes that they are functions of t
and parameterized by a phase φ, time shift τ , and frequency
shift f . These atoms are, not coincidentally, also the building
blocks of the LTV model (2). Note that ck = |ck|ejφk so
that (2) can be written as a superposition of elements from A
scaled by real, positive coefficients |ck|, or we can subsume
the phase term into the complex coefficients and set φ = 0,
i.e.,

y(t) =

K∑
k=1

|ck|a(t;φk, τk, fk) =

K∑
k=1

cka(t; 0, τk, fk).

The atomic norm [19]–[21] of a signal y(t) (relative to a
set of atoms A) is

||y(t)||A = inf{γ > 0 : y ∈ γ· conv(A)}

= inf
ck,τk,fk

{
K∑
k=1

|ck| : y(t) =

K∑
k=1

cka(t; 0, τk, fk)

}
where the variables in the optimization satisfy |ck| ≥ 0,
τk ∈ [0, τmax), fk ∈ [−fmax, fmax] and conv(·) is the convex
hull operator. Similarly, we define a set of sampled atoms as
As = {as(n;φ, τ, f) : τ ∈ [0, τmax), f ∈ (−fmax, fmax), φ ∈
[0, 2π)} where as(n;φ, τ, f) = ejφ+j2πfnTsp(nTs − τ), with
n = 0, ..., N − 1, are vectors in CN , and Ts is the sampling
interval. The sampled atomic set is useful because we want to
denoise sampled measurements.

1) Dechirped and Sampled LFM Pulses: We are inter-
ested in the dechirped and sampled LFM pulses ỹm[n].
These signals can be built using the sampled atomic set
with p(nTs − τ) = ej2π(f

m
c τ2−fm

0 τ)e−j2π(2f
m
c τ)nTs so that

as(n;φ, τ, f) = ejφej2π(f
m
c τ2−fm

0 τ)ej2π(f−2f
m
c τ)nTs are sam-

pled sinusoids with frequency dependent on τ and f and phase
dependent on φ and τ . As before, we can change the param-
eters to ν and ψ so the atoms are as(n;ψ, ν) = ejψej2πνnTs .
The measurements are

ỹm[n] =

K∑
k=1

|ck|as(n;ψk, νk) + ε̃m[n] (34)

where ε̃m[n] is independent, white Gaussian noise.
2) Denoising: We are now in a position to leverage a

result from Bhaskar et al. [20] to denoise measurements of
the form (34). Consider ε̃m[n] independent Gaussian with
variance σ2 and samples ỹm[n], n = 0, ..., N − 1. We solve
the following atomic soft thresholding (AST) problem:

ŷ = arg min
z

1

2
||z[n]− ỹm[n]||22 + η||z[n]||As (35)

where η is a regularization parameter controlling the relative
impact of the mean-squared error and the atomic norm.

The following theorem captures the denoising performance
for the estimate ŷ of the AST problem for the case of Gaussian
noise [20, Theorem 2].

Theorem 2 (AST with Gaussian noise). Let

y?[n] =

K∑
k=1

gke
j2πnωk

for complex numbers g1, .., gK and unknown normalized fre-
quencies ω1, ..., ωK ∈ [0, 1]. Consider measurements given by
y[n] = y?[n] +w[n] where w[n] ∼ N (0, σ2IN ). The estimate
ŷ[n] obtained by solving (35) with η = σ

√
N logN has

asymptotic mean-squared-error

1

N
E||ŷ − y?||22 < σ

√
logN

N

K∑
k=1

|gk| (36)

for N sufficiently large (see [20] for details).

We apply Theorem 2 to our corrupted samples ỹm[n]
by equating the frequencies ωk = νkTs and the complex
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coefficients with the amplitude and phase gk = |ck|ejψk and
by letting ε̃m[n] ∼ N (0, σ2IN ). If we write the uncorrupted
measurements as

y?m[n] =

K∑
k=1

|ck|as(n;ψk, νk)

and the denoised measurements as ŷm[n], then the error
em[n] = ŷm[n]− y?m[n] satisfies (36) for sufficiently large N .
Note that em[n] is not guaranteed to be independent Gaussian,
but empirically is zero mean with variance (36) and tends to
generally follow Gaussian statistics.

The optimization problem (35) relies on calculating the
atomic norm of z[n]. This can be accomplished via a semidef-
inite programming (SDP) problem [20] so that the solution
of (35) is equivalent to the solution of

min
t,u,x

1

2
||x− ỹ[n]||22 +

γ

2
(t+ u1) (37)

s.t.
[
T (u) x
x∗ t

]
� 0

where the function T (u) forms a Toeplitz Hermitian matrix
from the entries in u (i.e., u1 on the diagonal, uN in the
upper right corner, etc.). The solution ŷ, which satisfies (36),
is the argument of the vector x from the optimization. The
denoised measurements are then provided to modified versions
of Algorithms 1 and 2.

B. Frequency and Phase Recovery

Taking the denoised measurements as input, we make two
standard modifications to Algorithm 1 that better handle noise
in the measurements. The first change is replacement of the
correlation matrix R with the proxy correlation matrix R̃.
The proxy correlation matrix is computed by first finding the
singular value decomposition (SVD) of the correlation matrix
R = USVH . The proxy is then formed from R̃ = ŨS̃Ṽ

H

where S̃ contains only the K largest singular values and
Ũ and Ṽ contain the corresponding K singular vectors. In
the absence of noise, R is of rank K and therefore only
contains K non-zero singular values. In the presence of noisy
measurements, R is full rank but the singular values cluster
into two groups: the largest K contain most of the information
about the constituent frequencies while the remaining are close
to zero and contain information about the noise. Using only
the K largest reduces the effect of the noise [15].

The second change occurs when finding the K roots of the
prediction filter. In the absence of noise, K of the roots will
be on the unit circle while the rest reside inside the unit circle.
When noise is present, the K roots we are after will likely not
lie exactly on the unit circle. We therefore search for the K
roots that are closest to the unit circle [15]. Note that if K is
unknown a priori, which is often the case in practice, K can
be estimated from the clustering of the larger singular values
of R discussed above.

The variance of the frequency estimate approaches the
asymptotic Cramer-Rao bound, summarized in the following
lemma (Theorem 4.1 of [22]).

Algorithm 3 Algorithm for recovering the frequency and
phase of sinusoids from corrupted measurements

1: Data: ỹm[n]
2: Calculate proxy correlation matrix R̃ from the K largest

singular values of YHY.
3: Calculate the coefficients h = −R̃−1YHy.
4: Find the K roots ẑk of H(z) closest to the unit circle.
5: Calculate ν̂k = Ts

2πphase(ẑk).
6: Calculate ψ̂k and |ĉk| from the least-squares solution β̂k.

Lemma 1. Given N uniform samples of a signal consisting
of a superposition of sinusoids, e.g., given by the model (11),
corrupted by independent circularly symmetric complex Gaus-
sian noise with variance σ2, the KT algorithm (Algorithm 3)
produces a consistent estimate of the frequencies ν̂k, k =
1, . . . ,K, that is asymptotically efficient, that is, the variance
of the estimate approaches, as N → ∞, the asymptotic
Cramer-Rao bound:

lim
N→∞

var(ν̂k) ·N3 =
6

SNRkT 2
s

(38)

where SNRk = |ck|2
σ2 is the signal to noise ratio for the

kth target. Additionally, the estimate of the amplitude ĉk is
consistent and asymptotically efficient in the sense that it also
approaches the asymptotic Cramer-Rao bound:

lim
N→∞

var(ĉk) ·N = σ2.

Lemma 1 tells us that the estimates of the frequencies and
amplitudes converge to the true values (ν̂k → νk and ĉk → ck
as N → ∞) and that the rate of convergence is close to the
Cramer-Rao bound, at least to first order. The variance of the
frequency estimate decays, to first order, as

var(ν̂k) ≈ 6

N3SNRkT 2
s

, (39)

and the variance of the amplitude decays as

var(ĉk) ≈ σ2

N
.

We use these convergence rates as a rough measure of the
resolution offered by the KT algorithm.

C. Recovery of Time Shifts and Frequency Shifts

Note that the uncertainty introduced into the estimate of
the phases ψmk = φk + fmc τ

2
k causes trouble when trying

to recover τk. Because the relationship is quadratic, error
introduced into ψ̂mk affects recovery of smaller values of τk
more than larger ones. In fact, as τk → 0, the SNR → 0 as
well. We therefore exclude the phase information for recovery
from noisy measurements.

Uncertainty in the estimated frequencies affects the rela-
tion (22) by introducing an error term γ ∈ CM ·K into the
recovered frequencies ν̂ = ν + γ. The vector ν contains the
true frequencies, and because the estimator in Algorithm 3
is consistent (see Lemma 1), we consider γ to be a zero
mean vector with independent entries and variances (39). The
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following theorem establishes that if γ contains errors of finite
variance and the chirp rates of the transmitted LFM pulses
are different, then solving a least-squares problem produces
an exact solution β̂ asymptotically.

We first remind the reader of the problem formulation. With
noisy measurements, the accuracy of the estimate depends on
the number of LFM pulses used, M , because the number of
measurements increases with M . We make this explicit by
writing all vectors and matrices that have size dependent on
M as a function of M , e.g., ν̂(M) and A(M). The vector of
estimated frequencies is ν̂(M) = [ν̂1 · · · ν̂M ]T and ν̂(M) =
ν(M) + γ(M) where ν(M) contains the true frequencies and
γ(M) contains the errors. The matrix

A(M) =

1 −2f1c
...

...
1 −2fMc

⊗ IK (40)

contains the constraints relating the time shifts and frequency
shifts, and P(M) is a block diagonal permutation matrix. The
vector β∗ contains the true time shifts and frequency shifts of
the targets (whose size is not a function of M ).

Theorem 3. (Asymptotically Perfect Recovery with Noise) Fix
τmax and fmax. Choose {fac } for a = 0, 1, . . . ,M such that

1) fac 6= f bc for a 6= b, and
2) fac = −fa−1c for a odd.

If γ(M) is a vector of zero mean independent random vari-
ables with finite variance, the solution β̂(M) to

β̂(M) = arg min
β,P(M)

||A(M)β −P(M)ν̂(M)||22 (41)

converges in probability to the true parameters as M →∞:

β̂(M)
p→ β∗.

The proof relies on the weak law of large numbers and is
provided in Appendix A. Note that the second condition on
{fac } can be relaxed at the expense of slower convergence of
β̂(M).

VI. NUMERICAL EXPERIMENTS

We examine how well this procedure works using numerical
experiments. The KT algorithm provides perfect recovery of
frequencies in the absence of noise, so we first generate a
scene with targets at various time and frequency shifts. We
ensure that some of these targets are very close to each other
in time and frequency. The algorithm recovers all the targets
to machine precision when two pulses of different chirp rate
are used to generate the measurements. We then explore the
recovery of targets from noise-corrupted measurements by first
examining the accuracy of the recovery procedure through
Monte Carlo trials at a range of SNR environments. The
accuracy experiences a threshold SNR at which the error blows
up. We then pre-process the measurements with the denoising
procedure to show that at the same input SNR range, the
recovery has not yet reached the threshold.

Algorithm 4 Recovering the time and frequency shifts from
the noisy frequency estimates.

1: Data: ν̂mk for k = 1, . . . ,K and m = 1, . . . ,M
2: Find possible target time and frequency shifts by solving

min
β,P
||Amβ −Pmν̂m||22

for m = 1, . . . ,M
3: for k = 1, ...,K do
4: for ` = 1, ...,K do
5: Calculate the slope fc(k, `) between possible target

k and possible target ` (as calculated in step 2)
6: end for
7: end for
8: Find the slope that maximizes the distance from each of

the slopes fc(k, `). Send the (M + 1)th pulse with this
slope.

9: The estimated time and frequency shifts are found in β
10: The target amplitude estimates ĉk are found from the least-

squares estimate from Algorithm 3
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Fig. 9: Recovery from noise-free measurements is perfect to
machine precision.

A. Noise-free Recovery

We first ensure that we can perfectly recover the time shifts,
frequency shifts, and amplitudes from uncorrupted samples.
The results are shown in Fig. 9. The red x shows the true target
location, while the blue circle shows the recovered parameters.
The recovery is to machine precision, meaning the errors were
no larger than 10−10.

B. Estimation of the Time and Frequency Shift from Noisy
Samples

The accuracy of the recovery procedure from noisy mea-
surements, at various SNR environments, is shown in Fig. 10
for each parameter (time shift, frequency shift, and amplitude).
The RMSE at each SNR value is averaged over 1000 Monte
Carlo trials in which a random realization of noise has
been added to measurements containing k = 3 targets with
randomly generated parameters. The time shift parameter was
chosen uniformly from the interval [0, τmax) and the frequency
shift parameter uniformly from the interval (−fmax, fmax).
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Fig. 10: Recovery error from noisy measurements over 1000
Monte Carlo trials. Note the threshold at ≈ 10 dB below which
the error increases rapidly.
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Fig. 11: Recovery from noisy measurements that are first
denoised using atomic norm denoising.

The error is proportional to the noise level up to about 10 dB,
below which the errors start to grow much faster.

To show the improvement that can be gleaned from de-
noising, Fig. 11 shows the the results of running the same
Monte Carlo trials described above, with the addition of the
atomic norm denoising procedure described in Section V-A.
The denoising is performed on the measurements after the
random noise of the indicated input SNR has been added. This
means that for a given SNR value in both Fig. 10 and Fig. 11,
AWGN of the same variance is added to the measurements.
The results in Fig. 11 show that the threshold point is not
reached even at 0 dB SNR while it is reached at approximately
10 dB SNR in Fig. 10.

Finally, to investigate the effective resolution limits of the
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Fig. 12: Recovery error from noisy measurements over 1000
Monte Carlo trials with the parameters limited to [0, τmax/10)
and (−fmax/10, fmax/10).

approach, in Fig. 12 we performed the same Monte Carlo
trials described above but the time shift parameter has been
drawn uniformly at random from the interval [0, τmax/10) and
the frequency shift parameter has been drawn uniformly at
random from the interval (−fmax/10, fmax/10). This ensures
that more targets are chosen with parameters that are closely
spaced in the time shift frequency shift plane. The error is
shown to still be roughly proportional to the amount of noise
down to about 20 dB SNR, at which point it grows faster. This
seems to be consistent with Fig. 10 as the threshold, at which
point the error grows rapidly, occurs at a 10 dB higher SNR
because the reduction in the parameter space, from which the
parameters are chosen, has been reduced by a factor of 10
in each dimension. This means that the parameters are likely
to be much closer to each other. We emphasize here that the
limits on resolution using this method is an open problem
and requires further investigation and that the choice of LFM
parameters, namely the chirp rate fmc , has not been optimized
in any way for recovery. These average-case errors seem to
align with our intuition on the recovery.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a novel technique for identifying LTV
systems using LFM pulses as probing waveforms. This tech-
nique leverages a vast array of frequency recovery, or esti-
mation, algorithms in the existing literature. We have shown
that the KT algorithm, along with a denoising procedure,
provides excellent numerical results in simulated Monte Carlo
trials. The primary advantage to our approach is that the
resources needed (e.g., bandwidth and acquisition time) scale
proportionally to the complexity of the LTV system, i.e., the
number of scatterers in a radar scene or multi path sources
in a communication system. We also operate in a continuous
parameter space, so we have resolution limits that scale with
the amount of noise present in the measurements, all the
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way down to infinite resolution if there is no noise. A full
analysis of the resolution limits using this approach is an open
problem that requires non-asymptotic versions of the main
results. Additionally, the optimal choice of LFM chirp rates
fmc is an open problem.

APPENDIX A
PROOF OF THEOREM 3

Two sources of errors can cause errors in the solution
to (41), and the proof relies on proving that each has vanishing
influence asymptotically. First, the corruption of the frequency
estimates ν̂k = νk + γk by γk causes an error in the estimate
of the target parameters. The law of large numbers ensures
that this source of error has vanishing influence. Second, the
unordered nature of the estimated frequencies, captured by the
permutation matrix P, means that multiple solutions can exist
for finite M . Diversity in the selection of fmc ensures that the
solution to (41), simultaneously for all M pulses, is unique
asymptotically. We note here that this latter source of error
is highly dependent on the particular LTV system (or target
scene) and the choice of fmc . The fmc can be adaptively chosen
to most effectively identify the LTV parameters.

With the mild constraint that fmc 6= fqc for some m 6= q,
i.e., every pulse does not have the same chirp rate, we can use
the Moore-Penrose pseudoinverse of A to write (41) as

min
β,P
||β − (A∗A)−1A∗Pν̂||22. (42)

The estimated frequencies ν̂ = ν+γ we assume are corrupted
by γ that is independent and has finite variance. The term
(A∗A)−1A∗Pγ is the error in the parameter estimates due to
the error in the frequency estimates (which is in turn due to the
noise). We will show that this term gets smaller as more pulses
are processed. Recall that A = B⊗ IK , and we can write the
first term in the pseudoinverse (A∗A)−1 = ((B∗B)−1)⊗ IK .
The matrix B contains two columns, the first is all ones and
the second contains the chirp rates of the pulses fmc . If we
restrict our choice of chirp rates such that for m odd, the
chirp rate is fmc = −fm−1c , then the two columns of B
have zero inner product and the Gram matrix is diagonal4.
The pseudoinverse of A is thus ((B∗B)−1B∗) ⊗ I. Let us
write G = B∗B where G is diagonal with g11 = M and
g22 =

∑M
m=1 4(fmc )2 ≥ 4M minm(fmc )2. The pseudoinverse

of B is thus a scaled version of B∗. The first column of
B is scaled by 1/M and the second columns is scaled by
1/
∑M
m=1 4(fmc )2, which is bounded by a quantity propor-

tional to 1/M . The error term for each target parameter, after
carrying out the matrix multiplication, is a scaled sum of each
individual frequency error. Concentrating on the frequency
shifts, which are contained in the first half of the vector β,
we get the error for the kth frequency shift to be

M∑
m=1

1

M
γmk . (43)

Each γmk has the same variance σ̃2, which approaches (39),
and these are all independent of each other. The independence

4Note that this requirement can be relaxed, but the resulting Gram matrix
is not diagonal and the estimate variance vanishes more slowly.

is a direct result of the assumption of independent noise.
Each pulse is processed separately by the same deterministic
recovery algorithm, so if the noise in the input to the algorithm
is independent, then the errors in the output of the algorithm
are also independent. The variance of the scaled sum is
therefore reduced by the factor 1/M , so the error is vanishing
as M →∞.

The matrix P affects the recovery for a small number of
pulses by introducing ambiguity into the recovered parameters,
i.e., even in the absence of noise, the solution to (42) might
not be unique. By requiring a variety of chirp rates in the
pulses, we ensure the set of solutions from each pulses cluster
around the true parameters while the ambiguous solutions are
spread in the time shift–frequency shift plane. Asymptotically,
the clustering becomes tighter because the noise variance is
vanishing with 1/M .

APPENDIX B
AMBIGUOUS PHASE TERMS

Recall the delay-phase mapping (8). To highlight the de-
pendence on the delay τk, let us write θm(τ). To prevent
ambiguous phase terms, the complex exponential ej2πθ

m(τ)

must be bijective over 0 ≤ τ ≤ τmax, which requires the
quadratic function θm(τ) to be bijective over 0 ≤ τ ≤ τmax

and its range limited to an interval of length at most 1. The
following lemma provides necessary and sufficient conditions
to prevent these ambiguities.

Lemma 2 (Ambiguous Phase Terms). Let 0 ≤ τ ≤ τmax. The
function (of τ ) ej2πθ

m(τ) = ej2πf
m
c τ2

is bijective if and only
if

0 < |fmc | ≤
1

τ2max

. (44)

Proof. A function is bijective over an interval if and only if
it is strictly increasing or decreasing over that interval. We
examine θm(τ) and its derivative on the interval 0 ≤ τ ≤
τmax. The derivative is

d

dτ
θm(τ) = 2fmc τ. (45)

At τ = 0, θm(0) = 0 and d
dτ θ

m(τ)|τ=0 = 0. At τ = τmax,
θm(τmax) = fmc τ

2
max and the derivative also has the same sign

as fmc . In either case, θm(τ) is monotonically increasing or
decreasing on 0 ≤ τ ≤ τmax. We require

|θm(τmax)| = |fmc |τ2max < 1 (46)

leading directly to (45).
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