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~ Abstract—Identification of time-varying linear systems, which This is due to the fact that such systems introduce both time-
introduce both time-shifts (delays) and frequency-shift§Doppler-  shifts delay$ and frequency-shiftsoppler-shifty to the
shifts), is a central task in many engineering applicationsThis input signal. It is now a well-established fact in the litera

paper studies the problem of identification of underspreadihear - . . . .
systems (ULSs), whose responses lie within a unit-area regi in that a time-varying linear systeril can only be identified

the delay-Doppler space, by probing them with a known input from a single observation i (4(¢)) is known to lie within a
signal. Itis shown that sufficiently-underspread parametic linear ~ regionR of the delay—Doppler space such thata(R) < 1
systems, described by a finite set of delays and Doppler-stéf [3]—[6]. Identifiable time-varying linear systems are tean

are identifiable from a single observation as long as the fime ,nqerspreadas opposed to nonidentifiabtwerspreadinear
bandwidth product of the input signal is proportional to the ¢ hich satisf R 1131 161.1
square of the total number of delay—Doppler pairs in the sysgm. SYSEMS, Which salis yrea(R) > 1 [3], [6]-

In addition, an algorithm is developed that enables identiftation In this paper, we study the problem of identification of
of parametric ULSs from an input train of pulses in polynomial underspread linear systems (ULSs) whose responses can be

time by exploiting recent results on sub-Nyquist samplingdr time  described by a finite set of delays and Doppler-shifts. That i
delay estimation and classical results on recovery of freqgncies

from a sum of complex exponentials. Finally, application of K

these results to super-resolution target detection usingadar is H(z(t)) = Zakx(t — Tk)eﬁ””kt 1
discussed. Specifically, it is shown that the proposed prodare
allows to distinguish between multiple targets with very abse
proximity in the delay—Doppler space, resulting in a resoltion where (7, v,) denotes a delay—Doppler pair ang € C is

that substantially exceeds that of standard matched-filtdng the complex attenuation factor associated With v.). Unlike
based techniques without introducing leakage effects infilent ¢t of the existing work in the literature, however, ourlgoa
in recently proposed compressed sensing-based radar metham . . . . ! L]
. ~in this paper is to explicitly characterize conditions or th
Index Terms—Compressed sensing, Delay—Doppler estimation, handwidth and temporal support of the input signal that ensu
rotational invariance techniques, super-resolution rada system identification of such ULSs from single observations. The
identification, time-varying linear systems . . . ’
importance of this goal can be best put into perspective by
realizing that ULSs of the form (1) tend to arise frequently
. INTRODUCTION in many applications. Consider, for example, a single{amde

) S o transmitter communicating wirelessly with a single-amizn
Physical systems arising in a number of application aregsejver in a mobile environment. Over a small-enough time

can often be described as linear and time varying [1], [Zhterval, the channel between the transmitter and recésver
Identification of such systems may help improve overall pegs the form (1) with each tripletr,, vx, o) corresponding to
formance, e.g., the bit-error rate in communications [¥], ¢ distinct physical path between the transmitter and receiv
constitute an integral part of the overall system operagag., [7). |dentification of# can enable one to establish a relatively
target detection using radar or active sonar [2]. error-free communication link between the transmitter and
Mathematically, identification of a given time-varyingdiar - receiver. But wireless systems also need to identify chianne
system?{ involves probing it with a known input signal(t) ysing signals that have as sméthe—bandwidth produchs
and identifying 7 by analyzing the single system outpupossible so that they can allocate the rest of the temporal
H(z(t)) [3], as illustrated in Fig. 1. Unlike time-invariantdegrees of freedom to communicating data [7], [8].
linear systems, however, a single observation of a time-gimjlarly, in the case of target detection using radar or
varying linear system does not lead to a unique solutionssnlyctive sonar, the (noiseless, clutter-free) received asigs
additional constraints on the system response are imposgdihe form (1) with each tripletry, vx, i) corresponding

to an echo of the transmitted signal from a distinct target
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Fig. 1. Schematic representation of identification of a twagying linear systen?#{ by probing it with a known input signal. Characterization avf
identification scheme involves specification of the inpuiher, 2:(¢), and the accompanying sampling and recovery stages.

and bandwidth as possible. This is because the tempdrdkrested in characterizing the minimum temporal degoées
support of the radar waveform is directly tied to the time ifreedom of the input signal needed to ensure identificatf@n o
takes to identify all the targets while the bandwidth of thparametric ULSH. The connection to sub-Nyquist sampling
waveform—among other technical considerations—is tied tmn be understood by noting that the sub-Nyquist sampling
the sampling rate of the radar receiver [2]. results of [10] enable recovery of the delays associated wit

Given the ubiquity of time-varying linear systems in en?{ using a small-bandwidth input signal. Further, the “train-
gineering applications, there exists considerable amaiint of-pulses” nature of the input signal combined with resalts
existing literature that studies identification of suchtegss recovery of frequencies from a sum of complex exponentials
in an abstract setting. Kailath was the first to recognizé thd4] allow recovery of the Doppler-shifts and attenuation
the identifiability of a time-varying linear systefid from a factors using an input signal of small temporal support.
single observation is directly tied to the area of the region Several works in the past have considered identification
R that containsH(d(t)) [4]. Kailath’s seminal work in [4] of specialized versions of parametric ULSs. SpecificaBy, [
laid the foundations for the future works of Bello [5], Kozel{15]-[18] treat parametric ULSs whose delays and Doppler-
and Pfander [3], and Pfander and Walnut [6], which establishifts lie on a quantized grid in the delay—Doppler space. On
the nonidentifiability of overspread linear systems and/jgi® the other hand, [19] considers the case in which there are
constructive proofs for the identifiability of arbitrary \&s. no more than two Doppler-shifts associated with the same
However, none of these results shed any light on the bandwidtelay. The proposed recovery procedures in [19] also have
and temporal support of the input signal needed to ensumgponential complexity, since they require exhaustivectess
identification of ULSs of the form (1). On the contrary, thén a K-dimensional space, and stable initializations of these
constructive proofs provided in [3]-[6] require use of ihpuprocedures stipulate that the system output be observed by a
signals with infinite bandwidth and temporal support. M-element antenna array withl 2 K.

In contrast, to the best of our knowledge, this is the first pa- While the insights of [9], [15]-[18] can be extended to arbi-
per to develop a theory for identification of ULSs of the forntrary parametric ULSs by taking infinitesimally-fine quaiati
(1), henceforth referred to gmrametricULSs, that parallels tion of the delay—Doppler space, this will require inputnsits
that of [3]-[6] for identification of arbitrary ULSs. One ofwith infinite bandwidth and temporal support. In contrast; o
the main contributions of this paper is that we establishaisiability to avoid quantization of the delay—Doppler space is
a constructive proof that sufficiently-underspread patame due to the fact that we treat the system-identification bl
linear systems are identifiable as long as the time—banbwidiirectly in the analog domain. This follows the philosophy i
product of the input signal is proportional to the squarehef t much of the recent work in analog compressed sensing, termed
total number of delay—Doppler pairs in the system. Equallyampling, which provides a framework for incorporating and
importantly, as part of our constructive proof, we condseteexploiting structure in analog signals without the need for
specify the nature of the input signal (a finite train of pa)se quantization [20]-[25]. This is in particular the key enagl
and the structure of a corresponding polynomial-time (ifactor that helps us avoid the catastrophic implicationthef
the number of delay—Doppler pairs) recovery procedure tHatkage effects in the context of radar target detection.
enable identification of parametric ULSs. These ideas a® al Before concluding this discussion, we note that responses
immediately applicable to super-resolution target déect of arbitrary ULSs can always be represented as (1) under the
using radar and we show in the latter part of the paper tHahit K — oo. Therefore, the main result of this paper can
our approach indeed results in a resolution that substigntisalso be construed as an alternate constructive proof of the
exceeds that of standard matched-filtering based techmiqigentifiability of sufficiently-underspread linear systenNev-
without introducing leakage effects inherent in recenttg-p ertheless, just like [3]-[6], this interpretation of theepented
posed compressed sensing-based radar methods [9]. results again seem to suggest that identification of arfjitra

The key developments in the paper leverage recent reswtsSs requires use of input signals with infinite bandwidth
on sub-Nyquist sampling for time-delay estimation [10] andnd temporal support.
classical results on direction-of-arrival (DOA) estinaaiti11]— The rest of this paper is organized as follows. In Section II,
[14]. Unlike the traditional DOA estimation literature, Wwo we formalize the problem of identification of parametric WS
ever, we do not assume that the system output is obseratoing with the accompanying assumptions. In Section Ill, we
by an array of antennas. Additionally, in contrast to [1Q]y o propose a polynomial-time recovery procedure used for the
goal here is not a reduction in the sampling rate; rather,n&e adentification of parametric ULSs, while Section IV spedfie



the conditions on the input signal needed to guarantee aniqu Next, we use/ and)V to denote the temporal support and
identification using the proposed procedure. We compare the two-sided bandwidth of the known input signdt) used
results of this paper to some of the related literature do probe?, respectively. We propose using input signals that
identification of parametric ULSs in Section V and discuss aorrespond to a finite train of pulses:

application of our results to super-resolution target cliia N_1

using radar in Section VI. Finally, we present results of gom z(t) = Z 2ng(t—nT), 0<t<T A3)
numerical experiments in Section VII.

We make use of the following notational convention here g(t) is a prototype pulse of bandwidthy that is

throughout this paper. Vectors and matrices are denoted . X
bold-faced lowercase and bold-faced uppercase letters, %%sentlally) temporally supported ¢&, 7] and is assumed

4 o . i
spectively. Thenth element of a vectom is written as lto hixe unl;t.energyf |g(t)|1€lﬁ_ b, ang‘g" €C} ":'. anJIVt
a,, and the(i, j)th element of a matrixA is denoted by tﬁggt'mgrob;rr:% s%?ﬁenr%% ot ;p?ramhlcrr]srp;roprﬁr Icc;g?n;s
A;. Superscripts-)*, ()" and () represent conjugation, ime—bandwidth product of(t), whi ugnly detl

iransposition, and conjugate transposition, respegtivi the number of temporal degrees of freedom available for

sP ’ . 1ug P L P estimating™ [8]: N = T7/T o TW.J2 The final two
addition, the Fourier transform of a continuous-time Slgnfz;';llssum tions that we make concern the relationship between
2 (1) € Ly(C) is defined byX (w) = [°°_ & (t) e~7=!dt, while P P

(x(t),y(t) = [ x(t)y*(t)dt denotes the inner productthe delay spread;,,, and the Doppler spreadyq, of #,

¢ . : - d the t [ oft and bandwidt f g(t):

between two continuous-time signals i (C). Similarly, the aAr12 TT1 er(;]plora suppd a;: . an ,WII W O”g( )h h
discrete-time Fourier transform of a sequenge] € ¢3(C) is [A2] The elay spread o : IS stnc;y smda er than the
defined byA (e/T) =", a[n]e~/*"T and is periodic in temporal support 0§(t): Tinae < 7', an
w with period27 /7. Finally, we useA' to write the Moore— [A3] The Dpppler spread ot is much smaller than the
Penrose pseudoinverse of a mataix bandwidth ofg(t): imax <W. |

Note that, since/V « 1/T, [A3] equivalently imposes that

II. PROBLEM FORMULATION AND MAIN RESULTS Umaz 1 < 1. This assumption states that the temporal scale

In this section, we formalize the problem of identificatior?f variations in# is large relative to the temporal scale of

of a parametric ULSH{ whose response is described by a tot riations in_:c_(t). Itis worth poinFing out that linear systems
of K arbitrary delay—Doppler-shifts of the input signal. Thdhatare sufficiently underspread in the sensethat Vo, <

task of identification ofH essentially requires specifying twol can always be made to satig#2] and[A3] for any given

distinct but highly intertwined steps. First, we need tocsfye budget of the time—bandwidth product.
the conditions on the bandwidth and temporal support of tfRemarkl. In order to elaborate on the validity ¢A2] and
input signalz(t) that ensure identification o from a single [A3], note that there exist many communication applications
observation. Second, we need to provide a polynomial-tirdéiere underlying linear systems tend to be highly undesspre
recovery procedure that takes as inpi(tz()) and provides an [1, § 14.2]. Similarly,[A2] and[A3] in the context of radar
estimatel{ of the system response by exploiting the propertidgrget detection simply mean that the targets are not too far
of z(t) specified in the first step. We begin by detailing ouaway from the radar and that their velocities are not too high
system model and the accompanying assumptions. Consider, for example, ah-band radar (operating frequency

In (1), some of the delays;., might be repeated. Expressingf 1.3 GHz) that transmits a pulsgt) of bandwidth/V = 10
H in terms of K, < K distinctdelays in this case leads to MHz after everyT" = 50 us. Then both[A2] and[A3] are

K. Ko _satisfied Whenk th((e distance bet)vveeg tr:]e ra(;j_a: anld any tfarget
. 27wt IS at most7.5 Km (7,4 =~ 50 us) and the radial velocity o
H®) =3 > ayalt —m)e’ 2) any target is at most85 km/h (V. ~ 445 Hz) [2].

The following theorem summarizes our key result concern-

ng identification of parametric ULSs.

n=0

i=1 j=1
wherev;; denotes thejth Doppler-shift associated with the.
ith distinct delayr;, o;; € C denotes the attenuation facto?
associated with the delay—Doppler pair;,v;;), and K = Theorem 1 (Identification of Parametric Underspread Lin-
Zfi’l K, ;. We choose to expresH(z(t)) as in (2) so as ear Systems)Suppose that{ is a parametric ULS that
to facilitate the forthcoming analysis. Throughout thetgls is completely described by a total df = Zfi*l K,
the paper, we use = {r;, i = 1,...,K,} to denote the triplets (r;,v;;, «;;). Then, irrespective of the distribution of
set of K, distinct delays associated witH. The first main {(7;,v;;)} within the delay—-Doppler spacé{ can be iden-
assumption that we make concerns the footprintoin the tified in polynomial-time from a single observatiG(z(t))
delay—Doppler space: as long as it satisfiefA1]-{A3], the probing sequencgr,, }
[A1l] The responseé{(5(t)) of H lies within a rectangular remains bounded away from zero in the sense that > 0

region of the delay—Doppler space; in other word$or everyn =0,..., N — 1, and the time—bandwidth product

(Tisvij) € [0, Tmax] X [~Vmaz/2 Vmaz/2]. This is of the known input signal(¢) satisfies the condition

indeed the case in many engineering applications (see,

e.g., [1], [2]). The parameters, ., andv,, .. are termed TW 2 81K Kyimas “)

in the parlance of linear systems as théay.spreachnd 2Recall that the temporal support and the bandwidth of artrarki pulse
the Doppler spreadof the system, respectively. g(t) are related to each other ¥ o 1/7".



where K, 4 = max; K,,; is the maximum number ofsub-Nyquist sampling scheme was introduced for the purpose
Doppler-shifts associated with any one of the distinct gela of recovering a set of unknown delays from signals of the
In addition, the time—bandwidth product oft) is guaranteed form (5). Here, we focus on one special case of that scheme,
to satisfy(4) as long asTW > 2r(K + 1)2. which consists of a low-pass filter (LPF) followed by a
The rest of this paper is devoted to providing a proof Ol*mform sampler. _Th|s e_lrch|.tectu.re may be preferable frm a
|%nplementat|on viewpoint since it requires only one sangpli
Theorem 1. In terms of a general roadmap for the proo e :
hannel, thereby simplifying analog front-end of the santpl

we first exploit the sub-Nyquist sampling results of [10 . . . .
to argue thatz(¢) with small bandwidth suffices to recoverﬁardware' The LPF, besides being required by the sampling

. . : w... _ stage, also serves as the front-end of the system-idetitfica
the delays associated withl. We then exploit the “train- . . . .
i . hardware and rejects noise and interference outside thke- wor
of-pulses” structure of:(¢t) and classical results on recovery,
Ing spectral band.

of frequencies from a sum of complex exponentials [14] {0 Our sampling stage first passes the system ougpi)t =

argue that:(¢) with small temporal support suffices to recove . TR
the Doppler-shifts and attenuation factors associated Wit %(I(t)) through a L.PF whose impulse response is given by
s*(—t) and then uniformly samples the LPF output at times

The statement of Theorem 1 will then follow by a simpl
L , . . = nT/p}. We assume that the frequency resporséw),
combination of the two claims concerning the bandwidth a%f the LPF is contained in the spectral bafiddefined as

temporal support of(¢). We will make use of (2) and (3) in

the following to describe: F_ |, T @)
. . - Tp7 Tp )
[1] The polynomial-time recovery procedure used for the
identification of# (cf. Section IIl), and and is zero for frequencies ¢ F. Here, the parameter is
[2] The accompanying conditions ar(t) needed to guar- assumed to be even and satisfies the condition2 K, ; exact
antee identification of{ (cf. Section IV). requirements omp to ensure identification g will be given
in Section IV. In order to relate the sampled output of the
I1l. POLYNOMIAL -TIME IDENTIFICATION OF ULSs LPF with the multi-channel sampling formulation of [10], we

In this section, we characterize the polynomial-time recofi€finep sampling (sub)sequencgs;[n]} as
ery procedure used for identification of ULSs of the form (2).
Inyofder to facilitate understanding of the proposed atgmi( : celn] = (y(t), st =nT = (€= DT/p)), £=1,....p. (8)
shown in Fig. 2, we conceptually partition the method intghese sequences correspond to periodically splitting dne- s
two stages: sampling and recovery. The rest of this sectipfes at the output of the LPF, which is generated at a rate
is devoted to describing these two steps in detail. Befog# /7, into p slower sequences at a rate ©f7 each
proceeding further, however, it is instructive to first male® using a serial-to-parallel converter; see Fig. 2 for a sctam

of (2) and (3) and rewrite the output & as representation of this splitting.
K, KuiN—1 Next, we define the vectar (/") as thep-length vector
H(z(t)) = Z Z Z Qijane??™itg(t — 1, — nT) whose/th element isC; (e/7), which denotes theliscrete-

im1 j=1 n=0 time Fourier transform(DTFT) of ¢¢[n]. In a similar fashion,
K, KuiN-1 we definea (e7+7") as thekK,-length vector whoséth element

W Z Z Z ijan e T g(t — 7, — nT) is given by 4; (e7“T), the DTFT ofa;[n]. It can be shown
i1 =1 n=0 following the developments carried out in [10] that these tw
K, N—1 vectors are related to each other by

= - 7;) ai[n]g(t — i — nT) (5) c (e,ij) - W (eij) N (7)D (ej“T,T) a (6ij) . (9)

where (a) follows from the assumptiom,, .7 < 1, which Here, W (/) is ap x p matrix with (¢,m)th element
implies thate/?7viit ~ ei2mviinT for all t € [(n — 1)T,nT), . ) )
and the sequencdsi;[n]},i = 1,..., K,, are defined as W, (797 = eﬂ'w(Z*l)T/PTs** (w + lm’) G <w + %m’) I

X T
. (10)
a;[n] = Z aijxneﬂ”””"T, n=0,...,.N—1. (6)
= wherem’ =m —p/2 —1, N(1) is ap x K, Vandermonde

matrix with (m, i)th element
A. The Sampling Stage

We leverage the ideas of [10] on time-delay estimation
from sub-Nyquist samples to describe the sampling stageasfd D (e/“7,7) is a K, x K, diagonal matrix whose
our recovery procedure. While the primary objective in [10fth diagonal element is given by 7“7, Assuming for
is time-delay estimation from low-rate samples, the dgwelothe time being thatw (e-jWT) is a stably-invertible matrix,
ment here is carried out with an eye towards identificatiome define themodified measurement vectet (eJ'“’T) =
of parametric ULSs regardless of the distribution of systeW —! (e/“”') ¢ (¢/7). Denoting
parameters within the delay—Doppler space—the so-called , . .
super-resolution identificatiorin [10], a general multi-channel b (7)) =D (/T 1) a (7), (12)

Noi (1) = e I Fm'™ (11)
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Fig. 2. Schematic representation of the polynomial-tineevery procedure for identification of parametric undegsgrlinear systems from single observations.

we see from (10) that F is a p-point discrete Fourier transform (DFT) matrix with
d (eij) —N(r)b (eij) ' (13) (¢,m)th element equal to

. . . . 1 2m
SinceNN (7) is not a function ofw, (13) can be expressed in Fun = —e‘?%“‘l)(m_l), (18)
the discrete-time domain using the linearity of the DTFT as p

d[n] = N (t)bn], ne€Z. (14) andv (e#T) is ap x p diagonal matrix whosenth diagonal

) element is given by
Here, the elements of the vectai&:] andbin| are discrete- )

time sequences that are given by the inverse DTFT of thg  (oiwT) — — g* (w+ 2r m—p/2— 1)) G (w+ 2 m—rp/2—
elements ofd (¢/“7) andb (e/“T'), respectively. () T T ( / T ( /
The key insight to be drawn here is that (13), and its (19)

time-domain equivalent (14), can be viewed as an infini{e can now be easily seen from the decomposition in (16)
ensemble of modified measurement vectors in which eagfat, in order forw (eij) to be stably invertible, each

element corresponds to a distinct matti(7) that, in turn, of the above three matrices has to be stably invertible. By
depends on the set of (distinct) delaysLinear measurement construction, both® (e7“T) and F¥ are stably invertible.
models of the form (14)—in which the measurement matrikhe invertibility requirement on the diagonal matd (/<)

is completely determined by a set of (unknown) parametersteads to the following conditions on the pulgét) and the
have been studied extensively in a number of research arR@fnel s*(—t) of the LPF.

such as system identification [26] and direction-of-atrasd . T ) )
spectrum estimation [14], [27]. One specific class of meshogondition 1. In order for ¥ (e/“*) to be stably invertible,
that has proven to be quite useful in these areas in effigien!® continuous-time Fourier transform gf(¢) has to satisfy

recovering the parameters that describe the measurement ma a<|GW)<b aeweF (20)

trix are the so-calledsubspace method®7]. Consequently, -

our approach in the recovery stage will be to first use sutespde’ Some positive constanis> 0 and b < oc.

methods in order to recover the setfrom d[n]. Afterwards, condition 2. In order for ¥ (e/“7) to be stably invertible,
since N' ()N (7) = T because of the assumption thajne continuous-time Fourier transform of the LRF(~t) has

p > 2K, we will recovera (¢/“") from d[n] using linear 5 satisfy

filtering operations as follows [cf. (12), (13)]

a (ej“’T) =D! (ej“’T,‘r) NT(r)d (e/*7). (15)
Finally, the Doppler-shifts and attenuation factors asged
with # are determined from the vectas (/) by an Condition 1 requires that the bandwidtti of the prototype

c<|SWw)<d aeweF (21)

for some positive constants> 0 andd < co.

additional use of the subspace methods. pulseg(t) has to satisfy
Before proceeding to the recovery stage, we justify the o
assumption thaW (e/«T) canipe stably inverted. To this end, w > TP (22)
observe from (19) thaw (ej‘ ) can be dgcomposed as In Section IV, we will derive additional conditions on the
W (e4T) = @ () FH W (7)), (16) parametep and combine them with (22) to obtain equivalent
where® (¢7+T) is ap x p diagonal matrix withth diagonal requirements on the time—bandwidth product of the input sig
element nal z(t) that will ensure invertibility of the matrisw (e7«7").

. , We conclude discussion of the sampling stage by point-
wT -1 _jw(—1)T
P (6'7 )Z\/ﬁ(—l) JUITI, (17) ing out that the decomposition in (16) also provides an



TABLE |

DELAY RECOVERY ALGORITHM 2) Recovery of the Doppler-Shifts and Attenuation Factors:
Once the unknown delays are found, we can recover the
(i) Construct the matrix vectorsa[n] through the frequency relation (15). Next, define
| M for each delayr;, the set of corresponding Doppler-shifts
R H
Rad = — Z Z dm [n]dm [n]v .
M et vi=A{vij, j=1,..., K} (26)

wheredr, is the M = p/2 length subvector which is given by and recall that theéth element ofa[n] is given by (6). We can

dnnl=[ dmln] dmiiln] .. dmiacln) 7. therefore write theV-length sequencéa;[n]} for each index
) _ 1 in the following matrix—vector form
(i) Recover K as the rank oR 4. o
(ii) Perform asingular value decompositio(8VD) of R4 and construct - Nev.
the matrixE, consisting of thel(; singular vectors corresponding to a; = XR(vi)a, (27)

the K~ nonzero singular values @44 as its columns. i e
(iv) Compute the matrix® = EliEsT, whereE,, and E;| denote the wherea, is a lengthV vector whosenth element isu;[n], X

submatrices extracted froBs by removing its first row and its last isanN x N d'agonal matrix whoseth d'agonal element is

row, respectively. given byz,, R(v;) is anN x K, ; Vandermonde matrix with
(v) Compute the eigenvalues @, \;,: =1,2,..., K. n. Nth element’274"T  andas is lenath4, ; vector with
(vi) Recover the unknown delays as follows: = — L arg(\;). (1) ' ! 9 vl

jth elementw;;. The matrixX in (27) can be inverted under
the assumption that the sequeres,} satisfies|z,| > 0 for
everyn =0,...,N — 1, resulting in

efficient way to implement the digital-correction filter ban
W~ (e7+T). This is because (16) implies that a; = R(vi)av, (28)

w1 (eﬂ'wT) =gl (eij) Fé! (eij) . (23) wherea; = X~ 'a,;. From a simple inspection, we can express

. . ) ~ the elements of; as
Therefore the implementation 8%~ (/') can be done in

three stages, where each stage corresponds to one of tee thre
matrices in (23). Specifically, define the set of digital fite

{de[n]} and{yy[n]} as _ _ .

- L1 jeT It is now easy to see from this representation that recovery o
eln] = IDTFT{®' (™)} [n], 1<l<p (24)  the Doppler-shifts from the sequencés;[n|} is equivalent
and to the problem of recovering distinct frequencies from a

_ (weighted) sum of complex exponentials. In the context of
Geln] = IDTFT {@,! (/") } [n], 1<€<p, (25) our problem, for each fixed index the frequency of theth

where IDTFT denotes the inverse DTFT operation. The fir§Ponential isv;; = 2mv;;nT and its amplitude igv;;.

correction stage involves filtering the sequengesn]} using Fortunately, the problem.of recovering frequ_enues from a
the set of filters{¢[n]}. Next, multiplication with the DFT SUM Of complex exponentials has been studied extensively
matrix F can be efficiently implemented by applying the fasf" the literature and various strategies exist for solvihg t
Fourier transform (FFT) to the outputs of the filters in thetfir Problem (see [14] for a review). One of these techniques
stage. Finally, the third correction stage involves fitigrthe @t has gained interest recently, especially in the btgea
resulting sequences using the set of filtérs[n]} to get the ©" finite rate of innovation [30]-{33], is thennihilating-filter
desired sequenceii,[n]}. This last correction stage can pdnethod. The annl_h|lat|ng—fllter approach, in contrast tmeo
interpreted as an equalization step that compensates dor @ (€ Other techniques, allows the recovery of the freqieanc
non-flatness of the frequency responses of the prototypmpLﬂ‘SSOC'ated with theth index even at the critical value of

and the kernel of the LPF. A detailed schematic represemtati’_— 2Xvi- On the other hand, subspace methods such as
of the sampling stage, which is based on the precedifipr RIT [12], matrix-pencil algorithm [13], and the Tufts
interpretation ofWw ! (eij) is provided in Fig. 2. and Kumaresan approach [11] are generally more robust to

noise but also require more samples th#i, ;. Once the

Doppler-shifts for each indexhave been recovered then, since

B. The Recovery Stage Rf(v;)R(v;) = I because of the requirement thét> 2K, ;,
We conclude this section by describing in detail the recpvethe attenuation factorgw;; } are determined as

stage, which—as noted earlier—consists of two steps. In the it B .

first step, we rely on subspace methods to recover the delays o; =RI(wi)ai, i=1,.... K. (30)

T from d[n] [cf. (14)]. In the second step, we make use of the

recovered delays to obtain the Doppler-shifts and attéomat V. SUFFICIENT CONDITIONS FORIDENTIFICATION

factors associated with each of the delays. Our focus in Section Ill was on developing a recovery
1) Recovery of the Delaystn order to recoverr from algorithm for the identification of ULSs. We now turn to

d[n], we rely on the approach advocated in [10] and malgpecify conditions that guarantee that the proposed prweed

use of the well-known ESPRIT algorithm [28] together witltecovers the set of triplet$(n,yij,aij)} that describe the

an additional smoothing stage [29]. The exact algorithm marametric ULSH. We present these requirements in terms

given in Table I; we refer the reader to [10], [28] for detailsof equivalent conditions on the time—bandwidth prodfidgt)

Ko
a;[n] = Z aijeﬂ’”’”"T, 0<n<N-1. (29)
j=1



of the input signalz(¢). This is a natural way to describeunique recovery of; from (28) is
the performance of system identification schemes sihtg
roughly defines the number of temporal degrees of freedom N 2 2Ky, (34)

available for estimating{ [8]. Condition (34) is intuitive in the sense that there areé, ;

To begin with, recall that the recovery stage involves firginknowns in (28) K, unknown Doppler-shifts andy, ;
determining the unknown delays from the set of equations ynknown attenuation factors) and therefore at lezt, ;
given by (14) (cf. Section IlI-B). Therefore, to ensure that  equations are required to solve for these unknown parameter
algorithm successfully returns the parametersHofwe first  Finally, since we need to ensure unique recovery of the
need to provide conditions that guarantee a unique solutip@ppler-shifts and attenuation factors for each distirefag

to (14). To facilitate the forthcoming analysis, we &fA] = . we have the condition
{d[n],n € Z} andb[A] = {b[n],n € Z} denote the set of
all vectorsd [n] and b [n], respectively. Using this notation, N 2 2max Ky, (35)

we can rewrite (14) as . -
(14) which trivially ensures that (34) holds for every-1, ..., K.

d[A] =N (7)b[A]. (31) We summarize these results in the following theorem.

We now leverage the analysis carried out in [10] to provid-Ezheorem 2 (Suffit_:ient Condition_s for System !dentification)
sufficient conditions for a unique solution to (31); see [f@] SUPPOse thati is a parametric ULS that is completely

a formal proof. describ.ed by a _total oK = ziK:Tl. K,,.,Z— triplets (7, v45, qij.).
- Then, irrespective of the distribution df(7;,v;;)} within
Proposition 1. If (7, b[A] # 0) solves(31) and if the delay—Doppler space, the recovery procedure specified i

) _ Section Il with samples taken gt = 2nw/W} uniquely
p > 2K —dim(span(b [A])) (32) identifies? from a single observatiof(x(t)) as long as the
then giB[A]) is the unique solution of(31). Here, system satisfie[sAl]—[A3],tr_1e probing sequende:,, } remains
span(b[A]) is used to denote the subspace of minimal dPounded away from zero in the sense thal| > 0 for every
mensions that contairis [A]. n = 0,...,N — 1, and the time-bandwidth product of the

(known) input signal:(¢) satisfies the condition
Proposition 1 suggests that a unique solution to (31)—

and, by extension, unique recovery of the set of delays TW 2 87K Ky max (36)
is guaranteed through a proper selection of the parameter,heare Ky maw = max; K, is the maximum number of

In particular, since dinfspan(b [A])_)_ IS @ positive nUMber ponhier-shifts associated with any one of the distinct gela
in general, we have from Proposition 1 that> 2K, is a

sufficient condition for unique recovery ef andb [A]. From Proof: Recall from the previous discussion that the de-
Condition 1 in Section I, we have seen that the paramet@ys, Doppler-shifts, and attenuation factors associatid

p effectively determines the minimum bandwidiw of the 7 can be uniquely recovered as long 88 > 2K, iz,
prototype pulse [cf. (22)]. Combining the conditipn> 2k, W > %5=, andp > 2K,.. Now takeN = ;E’T and note that
and the one obtained earlier in (22) leads to the followirignder the assumptionVW > 87K K\, maz, We trivially have

sufficient condition on the bandwidth of the input signal fofV > 2K, ma.- Further, since]l” = NT' and since sampling

unique recovery ofr andb [A]: rate of 2r/WW implies p = 27/(WT), we also have that
W =2 = p=2K,, completing the proof. [ ]
W > 47TKT. (33) Theorem 2 implicitly assumes thaf,. (or an upper bound
- T

on K;) and K, ., (Or an upper bound off, ,,4.;) are known

The second step in the recovery stage involves recoveriﬁbthe transmitter side. We explore this point in furtheradet
the Doppler-shifts and attenuation factors (cf. SectidsB)l in Section V and numerically study the effects of “model-
We now investigate the conditions required for unique recpv order mismatch” on the robustness of the proposed recovery
of the Doppler-shifts. Recall that the vectdsg:] anda[n] are procedure. It is also instructive (especially for compamis
related to each other by the invertible frequency relatit?),( purposes with related work such as [9], [17]) to present a
Therefore, since the diagonal matm(ej“T, 7-) is invertible weaker version of Theorem 2 that only requires knowledge of
and completely specified by, the condition given in (33) the total number of delay—Doppler paifs.
also guarantees unique recovery of the vecadr$ from b[n].
Further, it can be easily verified that the matiik(v;) in
(28) has the same parametric structure as that required
Proposition 1. We can therefore once again appeal to

results of Proposition 1 in providing conditions for uniqu%1 single observatiort(z(¢)) as long as the time—bandwidth

recovery of the Doppler-s_,hiftiui} fro”_‘ the vectors{éi} product of the known input signal(t) satisfies the condition
[cf. (28)]. To that end, we interchangewith N and K, with TW > 2n(K + 1)2

K, ; in Proposition 1 and use the fact that dispan(a;)) = 1

(since it is a nonzero vector). Therefore, by making use of Proof: This corollary is a simple consequence of Theo-

Proposition 1, we conclude that a sufficient condition fatem 2 and the fact thak'; K, 00 < W. To prove the

Corollary 1 (Weaker Sufficient Conditions for System Identi-

fication). Suppose that the assumptions of Theorem 2 hold.
en the recovery procedure specified in Section Il with

tngples taken aft = 2n7/W} uniquely identifiesH from



latter fact, note that for any fixe®# and K, we always have recovery procedures proposed in [9], [17] is limitedWo—!
Kymaz < K—(K;—1). Indeed, ifK, .. Were greater than in the delay space an@ ! in the Doppler space because
K — (K, — 1) then either>.%" K,;, > K or there exists of the assumption that; = r W~ and v;; = £; 7.4

ani such thatk,; = 0, both of which are contradictions. Similarly, in another related recent paper [18], two recgve
Consequently, for any fixe&', we have that procedures are proposed that have been numerically shown to
uniquely identify# as long as7T W > 1 and each(r;, v;;)

2
K7 Kymao < —K7 + (K + 1)K (37) corresponds to one of the points in the quantized delay—
and since the maximum of K2+ (K + 1)K, occurs atk, = Doppler space with resolution proportionaltg—! and 7 1
K2+1, we getK, Ky mas < (Kzl)z_ m n the delay space and the Doppler space, respectively. Note

that the assumption of a quantized delay—Doppler space can
have unintended consequences in certain applications and w
carry out a detailed discussion of this issue in the nexi@ect

fh the context of radar target detection.

. ) " . Finally, the work in [19] leverages some of the results in
of parametric ULSs under certain conditions. In particuiae DOA estimation to propose a scheme for the identification

of the key contributions of the preceding analysis is that i t f the f 2Y without iringthat
parlays a key sub-Nyquist sampling result of [10] into cendtl _mear systems of the form (2) without requiring tha

: : . : : = W=t andv;; = ¢; T '. Nevertheless, our results
tions on the time—bandwidth produ@t)V, of the input signal ri/V Vij iT N u "

. . _ _ differ from those in [19] in three important respects. Firge
z(t) that guarantee identification of arbitrary linear systems %xplicitly state the relationship between the time—barithwi
long as they are sufficiently underspread. Specificallyhm t

. d f the input signalz(¢) and th ber of delay—
parlance of system identification, Corollary 1 states that tpro uct7 YV of the input signal(#) and the number of delay

; o : Doppler pairsK = Zfifl K, ; that guarantees recovery of
recovery procedure of Section Ill achieviedinitesimally-fine thle system response by studying the sampling and recovery

resolutionin the delay—Doppler space as long as the tempocsqages of our proposed recovery procedure. On the other

degrees of freedom available to excite a ULS are on t@

V. DISCUSSION

In Sections Il and IV, we proposed and analyzed
polynomial-time recovery procedure that ensures ideatific

and, the method proposed in [19] assumes the sampling
2 HS H H 1
order of Q(K#). In addition, we carry out extensive numerica tage to be given and, as such, fails to make explicit the

experiments in Section VII, which confirm that—as long ag : : .

hy 5 E g .2 “connection between the time—bandwidth product:(f) and
the condition7WV > 2m(K + 1). IS saysﬁed the ability the number of delay-Doppler pairs. Second, the algorithms
of the proposed procedure to dl_stmgws_h bgtween (r?50|$%iposed in [19] have exponential complexity, since they
close_ly spaced (_Jlelay—_DoppIer paurs 1S primarily a funcisgn O[equire exhaustive searches inkadimensional space, which
the S|gnal-fco-n0|se ratio (SNR) a_nd its performance dagsa can be computationally prohibitive for large-enough valoé
g.rac_e-fully in the presence of noise. In .ordgr .to_ be§t putt . Last, but not the least, recovery methods proposed in [19]
significance of our results into perspective, it is instiueto are guaranteed to work as long as there are no more than two
compare them with corresponding results in recent "teeatudelay—Doppler pairs having the same deayx; K, < 2
We then discuss an application of these results to SUPERd the system output is observed byMneIemZen?;n_ten'na

re?ﬂgﬁfg;&g? I(;?;?ecélgdnyuci‘lggiézggrvxllgriecggge\c/iglly in th%rray with M Z K. In contrast, our recovery algorithm does
NG . Y ot impose any restrictions on the distribution {dfr;, v;;
communications and radar literature—treating identiicaof b Y i, vij)}

parametric ULSs: see, e.g., [2], [9], [15]-[19]. One of thW|th|nthe delay-Doppler space and is guaranteed to work wit

& single observation of the system output
approaches that is commonly taken in many of these works, 9 y put.

such as in [9], [15]-[18], is to quantize the delay—Doppler
space(r, v) by assuming that both; and v;; lie on a grid. VI. APPLICATION: SUPER-RESOLUTION RADAR

The following theorem is representative of some of the known We have established in Section IV that the polynomial-time
results in this casé. recovery procedure of Section Il achieves infinitesimdiihe
resolution in the delay—Doppler space under mild assumgtio
on the temporal degrees of freedom of the input signal. This
makes the proposed algorithm extremely useful for appdinat
areas in which the system performance depends critically on
the ability to resolve closely spaced delay—Doppler pds.
particular, our method can be used for super-resolutiayetar

g . : detection using radar. This is because the noiselesseelutt
the system satisfi¢a1]{A3] and the time—bandwidth prOdUCtfree received signal in the case of monostatic radars istlgxac

. . - B 5
of the input signale(t) satisfiesTW = Q(K*/log TW). of the form (1) with each tripletry, vk, ax) corresponding

There are two conclusions that can be immediately draw® an echo of the radar waveform{t) from a distinct target
from Theorem 3. First, both [9], [17] require about the same

; . ~ANote that there is also a Bayesian variant of Theorem 3 inH&{ tequires
scaling of the temporal degrees of freedom as that requw% ~ Q(K) under the assumption th& has a uniform statistical prior

by Corollary 1:7W ~ Q(K?). Second, the resolution of thegyer the quantized delay—Doppler space. A somewhat siB#gesian variant
of Corollary 1 can also be obtained by trivially extending ttesults of this
3It is worth mentioning here that a somewhat similar results vedso paper to the case wheH is assumed to have a uniform statistical prior over
obtained independently in [34] in an abstract setting. the non-quantizeddelay—Doppler space.

Theorem 3 ([9], [17]). Suppose thaH is a parametric ULS
that is completely described by a total &f = Zfifl K, ;
triplets (7;, v;5, «;;). Further, let the delays and the Doppler-
shifts of the system be such that = »,W~! and vij =
éijT’l for r; € Z+ and/;; € Z. ThenH can be identified in
polynomial-time from a single observatiéf(z(t)) as long as
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Fig. 3.  Quantized representation of nine targets (reptedeby x) in (a)

the delay—-Doppler space withy,q, = 10 pus and vmaez = 10 kHz.

The quantized delay-Doppler approximation of the targetsesponds i

W = 1.2 MHz and 7 = 0.48 ms. 05 ‘
0.4+ ® O Estimated Targets
0.3 7
®
[2].5 The fact that our recovery procedure allows to ider 7 H 1
arbitrary parametric ULSs, therefore, enables us to djsfi  >* *'| ® ‘ i
between multiple targets even if their radial positionsquige = i
close to each other and/or their radial velocities are simi & Y ® |
the so-called super-resolution detection of targets. 02t .
On the other hand, note that apart from the fact o3 i
none of the methods based on the assumption of a qua ~o4r ® 1
delay—Doppler space can ever carry out super-resolutige 0% TTo1 0z o3 04 o5 06 07 o8 o0s 1
detection, a major drawback of the radar target dete Delay (e
approach in works such as [9], [18] is that targets in the-real (b)

world do not in fact correspond to points in the quantizeg 4 son between the target.detecti tocma matched
) . . ig. 4. Comparison between the target-detection perfoceari matched-
delay-Doppler space, which caudeakageof their energies filtering and our proposed recovery procedure for the caseird targets

in the quantized space. In order to elaborate further on thigpresented by) in the delay-Doppler space With,az = 10 1S, Vmasz =
point, definel = [Wtpa.| and M = [Tvpa,/2] and 10 kHz,(;/V :bl.z I\)EIHZ,)andT: 0.48 Q\? The st;quenlc{ar,z})cor(rjesponds

. g . to a random binary£1) sequence withV = 48, the pulseg(t) is designe
note that (Canomcal) quantization CorreSponqS to transfay to have a nearly-flat frequency response in the working sglecand 7, and
the C = [0, Timaz] X [—Vmaz/2, Vmaz/2] cONtinuous delay— the pulse repetition interval is taken to Be= 10 us. (a) Target detection
Doppler space into & = {0,...,L} x {-M/2,...,M/2} by matched-filtering the received sigrigl(z(t)) with the input signak:(t).
two-dimensional quantized grid, which in turn transforrne t (b) Target detection using the proposed recovery procesfifep = 12.
received signaH (z(t)) at the radar into [35], [36, Chapter 4]

L M contributes energy to its owfi,, 7,,,) in Q but also leaks its
7:[(;1:(7:)) ~ Z Z G (t — 7p)ed 2 Pmt (38) energy to the nearby points in the quantized space.

=0 me——M Owing to the fact that leakage can cause missed detections
and false alarms, conventional radar literature in factisen
- Ko ; S .
where &g, = Zfi*l > a;jed™m=Tvii)singm —  to focus only on recovery procedures that do no impose any

Tvi;)sind? — TWr;) and the quantized delay—Doppler pairstructure on the distribution of(7;,v;;)} within the delay—
(Te,om) € Q. It is now easy to conclude from (38) that,Doppler space. The most commonly used approach in the radar
unless the original targets (delay—Doppler pairs) happdiet signal processing literature corresponds to matchedifige

in @, most of the attenuation factofgv.,,} will be nonzero (MF) the received signal with the input signal¢) in the
because of the sinc kernels—the so-called “leakage éffeatelay—Doppler space [2]. The MF outpy{r,v) takes the
This has catastrophic implications for target detectiomgis form
radar since leakage makes it impossible to reliably identif

. K, Ku;
the original set of delays and Doppler-shifts. This limaat ) = | Hiz(t)z* (¢ — 1) exp(—i2mvt)dt — s AT — 11
of target-detection methods that are based on the assump%fc() v R (et ) exp(=] ) ; ; A ’
of a quantized delay—Doppler space is also depicted in (39)

Fig. 3 for the case of nine hypothetical targets. The figure

illustrates that each of the nine non-quantized targetonlyt Where A(r,v) = [, z(t)z*(t — 7) exp(—j27vt)dt is termed
the Woodward’'sambiguity functionof z(¢). It can be eas-

5In the radar literature, the term “monostatic” refers tothemon scenario ”y deduced from (39) that the resolution of the M.F-pased
of the radar transmitter and the radar receiver being caitmt recovery procedure is tied to theupport of the ambiguity
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Fig. 5. Delay—-Doppler representation of a parametric 3L $orresponding Fig. 6. Mean-squared error of the estimated delays and Bogpifts as a
to K = 6 delay—Doppler pairs with,q = 10 us andvpqz = 10 kHz. function of the signal-to-noise ratio.

function in the delay-Doppler space. Ideally, one woule likother words, the input signalt) is chosen to have bandwidth
to have A(r,v) = §(7)d(v) for super-resolution detection of)y = 8 In addition, unless otherwise noted, we use a
targets but two fundamental properties of ambiguity funesi probing sequencdz, } corresponding to a random binary
namely, |A(0,0)]* = [ |z(t)[?dt and [ |A(r,v)[*drdv = (+1) sequence withV = 30, which leads to a time—bandwidth
[ |z(t)[*dt, dictate that no real-world signal(t) can yield product of7W ~ 2407. Note that the chosen time—bandwidth
infinitesimally-fine resolution in this case either [2]. lact, product here is more than the lower bound of Theorem 2
the resolution of MF-based recovery techniques also temdsply a factor of 5 so as to increase the robustness to noise.
be on the order ofv~! and 7! in the delay space and Also, unless otherwise stated, all experiments in the fitig

the Doppler space, respectively, which severely limitsrtheyse an ideal (flat) LPF as the sampling filter (cf. Fig. 2).
ability to distinguish between two closely-spaced targats We use the ESPRIT method described in Section Il for
the delay—Doppler space. This inability of MF-based me¢hogecovery of the delays and the matrix-pencil method [13]
to resolve closely-spaced delay—Doppler pairs is depittedfor recovery of the corresponding Doppler-shifts. Givee th
Fig. 4. This figure compares the target-detection perfoo®arrich history of these two subspace methods, there exist many
of MF and the recovery procedure proposed in this paper fetandard techniques in the literature (see, e.g., [37]) 88

the case of nine closely-spaced targets. It is easy to see frproviding them with reliable estimates of the model orders i
Fig. 4(a) that matched-filtering the received sigitélz(t)) the presence of noise. As such, we assume in the following
with the input signalz(t) gives rise to peaks that are nothat both these methods have access to correct valués. of
centered at the true targets for a majority of the targets. @ad K, ;’'s. Finally, the performance metrics that we use in
the other hand, Fig. 4(b) illustrates that our recovery pdae this section are the (normalized) mean-squared error (MSE)
correctly identifies the locations of all nine of the targets of the estimated delays and Doppler-shifts (averaged by@r

the delay—Doppler space. noise realizations), defined as
1o 2
VII. NUMERICAL EXPERIMENTS ety = 5 Z [(Fi = 73)/Tmaz] s (40)
In this section, we explore various issues using numerical i=1
experiments that were not treated theoretically earliethi
. . ;ﬁed

paper. These include robustness of our method in the prese
of noise and the effects of truncated digital filters, use rutdi BERE:
number of samples, choice of probing sequeteg}, and 2 == (D1 — vij) v 2 (41)
model-order mismatch on the recovery performance. Through Povvler ¢ ; J; [P =35} tinas]

out this section, the numerical experiments correspond to a
parametric ULSH that is described by a total ok = 6 Wwhere7; and 7;; denote the estimated delays and Doppler-
delay—Doppler pairs with, =2 and K, ; = K, » = 3. The shifts, respectively.
locations of these pairs in the delay—Doppler space arengive 1) Robustness to NoiséiVe first examine the robustness
by Fig. 5, while the attenuation factors associated witthec of our method when the received sigrid(«(¢)) is corrupted
the six delay—Doppler pairs are taken to have unit amplgudey additive noise. The results of this experiment are shown
and random phases. in Fig. 6, which plots the MSE of the estimated delays and
In order to identify?{, we design the prototype pulgét) to Doppler-shifts as a function of the SNR. It can be seen from
have a constant frequency response over the working spectie figure that the ability of the proposed procedure to kesol
band F = [—%p, %p} with p = 4 and T = 10 us, that delay—Doppler pairs is primarily a function of the SNR and
is, G(w) = 1 whenw € F andG(w) =~ 0 whenw ¢ F. In its performance degrades gracefully in the presence ofnois
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Fig. 7. Mean-squared error of the estimated delays and Bogpifts as Fig. 8. Mean-squared error of the estimated delays and Bogpifts as a
a function of the signal-to-noise ratio for various lengthisthe impulse function of the signal-to-noise ratio for different numdef samples collected
responses of the filters. at the output of the sampling filter (corresponding to anlittea-pass filter).

2) Effects of Truncated Digital-Correction Filter Banks: quently, our sampling method theoretically requires aitey
Recall from Section Il that our recovery method is coman infinite number of samples at the back-end of this filtee Th
posed of various digital-correction stages (see also Fig. &ext numerical experiment examines the effect of collgctin
The filters used in these stages, which inclyde[n|} and finite number of samples on the estimation performance. The
{1¢[n]}, have infinite impulse responses in general so that the@rsults are reported in Fig. 8, which depicts the MSE of the
practical implementation requires truncation of their uige estimated delays (Fig. 8(a)) and Doppler-shifts (Fig. Bé&s)
responses. The truncated lengths of these filters alsondieter a function of SNR for different numbers of samples collected
the (computational) delay and the computational load of tla the output of the sampling filter (corresponding to anlidea
proposed procedure. Fig. 7 plots the MSE of the estimate®F). As in the case of truncation of digital-correctionefilt
delays (Fig. 7(a)) and Doppler-shifts (Fig. 7(b)) as a fiorct banks, there is always some SNR for every fixed number of
of the SNR for various lengths of the impulse responses of teamples beyond which the estimation error caused by the finit
filters. There are two important insights that can be drawmfr number of samples becomes more dominant than the error
the results of this experiment. First, for a fixed length af thdue to additive noise. Equally importantly, however, ndiat t
impulse responses, there is always some SNR beyond whigh) in these experiments corresponds to a traimof= 30
the estimation error caused by the truncation of the impulpeototype pulses. Therefore, under the assumptiop ef 4
responses becomes more dominant than the error causedsdayples per pulse peridd, it is clear that we require at least
the additive noise (as evident by the error floors in Fig. 7)V - p = 120 samples in total to represent just the input signal
Second, and perhaps most importantly, filters withtaps x(¢). On the other hand, Fig. 8 shows that collectiaf
seem to provide good estimation accuracy up to an SN& of samples, which is roughly twice the minimum number of sam-
dB, whereas filters with even ju8b taps yield good estimatesples required, provides good (delay and Doppler) estimatio
at SNRs belows0 dB. accuracy for SNRs up t@0 dB.

3) Effects of Finite Number of SampleBhe sampling filter ~ Finally, it is worth noting here that making use of an ideal
used at the front-end in Fig. 2 is bandlimited in nature andPF as the sampling filter requires collecting relativelyreno
therefore, has infinite support in the time domain. Conssamples at the filter back-end due to the slowly-decaying
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! ‘ ‘ ‘ p—r Sar\"lples Used
nature of the sinc kernel. Therefore, in order to reduci i =2 oa samples e
number of samples required at the back-end of the san -or —0—228 Samples Used |
filter for reasonable estimation accuracy, we can insteakk g ’
use of sampling filters whose (time-domain) kernels d &2 i
faster than the sinc kernel. One such possible choice E-aor )
raised-cosine filter with roll-off factor equal td, whos: ”2-50’ 1
frequency response is given §(w) = &5 (1 +cos(%w)) 2 -s0f i
whenw € F and S(w) = 0 whenw ¢ F. It is a well-know T 1
fact (and can be easily checked) that this filter decaysrfas “sor »
the time domain than the sinc kernel. However, the main % 10 2 Y w0 50 50 70 %0
here is that raised-cosine filter does not satisfy Condidn. Sonartortione fato ()
Section lll, since its frequency response is not bounded/awa (b)

from zero at the ends of the specFraI bafdsee, e.g., Fig. 9). Fig. 10. Mean-squared error of the estimated delays and IBeppifts as a
However, we now show that this problem can be overcomgction of the signal-to-noise ratio for different numberf samples collected
by slightly increasing the sampling rate and the bandwidghthe output of a raised-cosine sampling filter with rofi-faictor 1.
requirement stated in Section I1V. Specifically, note thaiper
sition 1 requires that the parametgr which controls the
minimal bandwidth ofz(¢) and the sampling rate of our pro-n =0, ..., N —1. However, it is quite expected thét,, } will
posed procedure, satisfips> 4 under the current simulation have an effect on the performance in the presence of noise
setup (sincek, = 2). We now instead choosg = 6 and and implementation issues related to truncated digitaréilt
argue that raised-cosine filter can be successfully usedrundnd use of finite number of samples. The next experiment
this choice ofp. To this end, recall from Section Il thatexamines this effect for four different choices of binary
the function of the digital-correction filterg, [n] andvys[n] probing sequences of lengith = 32 that periodically alternate
is to invert the frequency response of the sampling kerne¢tween+-1 and —1 everyr entries. The results are reported
corresponding to the frequency bands denotedlbgnd 6 in Fig. 11, which depicts the MSE of the estimated delays
in Fig. 9, respectively (under the assumption that the pul§eig. 11(a)) and Doppler-shifts (Fig. 11(b)) as a functidthe
g(t) has a flat frequency response). In the case of a rais&NR for probing sequences with=1,2,4, and32. We can
cosine filter, however, we cannot compensate for the non-ftaw two immediate conclusions from observing the resiilts o
nature of these two bands since they are not bounded avilap experiment. First, faster alternating probing segesr(in
from zero. Nevertheless, because of the fact that we arg usather words, sequences with higher frequency content)appe
p = 6, we can simply disregard channelsand 6 after the to provide better resilience against the truncation of telgi
first digital-correction stage and work with the rest of tberf filters and the use of finite number of samples. Second, the
channels %-4) only. We make use of this insight to repeaeffect of the choice of probing sequence is less pronountced a
the last numerical experiment using a raised-cosine filbek alow SNRs, since the error due to noise at low SNRs dominates
report the results in Fig. 10. It is easy to see from Fig. 1 thdhe errors caused by other implementation imperfections.
despite increasing to 6, raised-cosine filter performs better 5) Effects of Model-Order MismatchOur final numeri-
than an ideal LPF using fewer samples. cal experiment studies the situation where the conditidns o
4) Effects of the Probing Sequenc&heorem 2 in Sec- Theorem 2 do not exactly hold. To this end, we simulate
tion IV stipulates that the choice of the probing sequendgentification of a parametric ULS witli(, = 4 delays. For
{z,} has no impact on the noiseless performance of tiiee first 3 delays we takeK,; = 2, i = 1,2,3, whereas
proposed recovery procedure as long|as| > 0 for every we chooseK,, = 8 for the last delay. Finally, we take
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In this paper, we revisited the problem of identification
i of parametric underspread linear systems that are corhplete
described by a finite set of delays and Doppler-shifts. We
established that sufficiently-underspread parametréalirsys-
] tems are identifiable as long as the time—bandwidth product
of the input signal is proportional to the square of the total
number of delay—Doppler pairs. In addition, we concretely
60 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ specified the nature of the input signal and the structure
0 10 20 30 40 50 60 70 80 90 100 . . .
Signal-to-Noise Ratio (dB) of a corresponding polynomial-time recovery proceduré tha
) enable_iden_tificatipn of parametri_c underspread Iinealesyst
Extensive simulation results confirm that—as long as the+im
Fig. 11. Mean-squared error of the estimated delays and IBephifts as  bandwidth product of the input signal satisfies the reqaiisit
a function of the signal-to-noise ratio for various probseguences. conditions—the proposed recovery procedure is quite tobus
to noise and other implementation issues. This makes our
algorithm extremely useful for application areas in whibb t

the prototype pulsg(?) as at the start of this section (Withsystem performance depends crit_ically on t_he ability tolhes
bandwidth)y = ), but we use a probing sequenge, ! closely spaced delay—Doppler pairs. In particular, ouppsed
corresponding toTa randorf=1) sequence withV = 8. identification method can be used for super-resolutionetarg

Clearly, this does not satisfy the conditions of Theorem @&tection using radar.
because of the large number of Doppler-shifts associatéd wi
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