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Abstract—Identification of time-varying linear systems, which
introduce both time-shifts (delays) and frequency-shifts(Doppler-
shifts), is a central task in many engineering applications. This
paper studies the problem of identification of underspread linear
systems (ULSs), whose responses lie within a unit-area region in
the delay–Doppler space, by probing them with a known input
signal. It is shown that sufficiently-underspread parametric linear
systems, described by a finite set of delays and Doppler-shifts,
are identifiable from a single observation as long as the time–
bandwidth product of the input signal is proportional to the
square of the total number of delay–Doppler pairs in the system.
In addition, an algorithm is developed that enables identification
of parametric ULSs from an input train of pulses in polynomial
time by exploiting recent results on sub-Nyquist sampling for time
delay estimation and classical results on recovery of frequencies
from a sum of complex exponentials. Finally, application of
these results to super-resolution target detection using radar is
discussed. Specifically, it is shown that the proposed procedure
allows to distinguish between multiple targets with very close
proximity in the delay–Doppler space, resulting in a resolution
that substantially exceeds that of standard matched-filtering
based techniques without introducing leakage effects inherent
in recently proposed compressed sensing-based radar methods.

Index Terms—Compressed sensing, Delay–Doppler estimation,
rotational invariance techniques, super-resolution radar, system
identification, time-varying linear systems

I. I NTRODUCTION

Physical systems arising in a number of application areas
can often be described as linear and time varying [1], [2].
Identification of such systems may help improve overall per-
formance, e.g., the bit-error rate in communications [1], or
constitute an integral part of the overall system operation, e.g.,
target detection using radar or active sonar [2].

Mathematically, identification of a given time-varying linear
systemH involves probing it with a known input signalx(t)
and identifying H by analyzing the single system output
H(x(t)) [3], as illustrated in Fig. 1. Unlike time-invariant
linear systems, however, a single observation of a time-
varying linear system does not lead to a unique solution unless
additional constraints on the system response are imposed.
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This is due to the fact that such systems introduce both time-
shifts (delays) and frequency-shifts (Doppler-shifts) to the
input signal. It is now a well-established fact in the literature
that a time-varying linear systemH can only be identified
from a single observation ifH(δ(t)) is known to lie within a
regionR of the delay–Doppler space such thatarea(R) < 1
[3]–[6]. Identifiable time-varying linear systems are termed
underspread, as opposed to nonidentifiableoverspreadlinear
systems, which satisfyarea(R) > 1 [3], [6].1

In this paper, we study the problem of identification of
underspread linear systems (ULSs) whose responses can be
described by a finite set of delays and Doppler-shifts. That is,

H(x(t)) =

K∑

k=1

αkx(t− τk)e
j2πνkt (1)

where(τk, νk) denotes a delay–Doppler pair andαk ∈ C is
the complex attenuation factor associated with(τk, νk). Unlike
most of the existing work in the literature, however, our goal
in this paper is to explicitly characterize conditions on the
bandwidth and temporal support of the input signal that ensure
identification of such ULSs from single observations. The
importance of this goal can be best put into perspective by
realizing that ULSs of the form (1) tend to arise frequently
in many applications. Consider, for example, a single-antenna
transmitter communicating wirelessly with a single-antenna
receiver in a mobile environment. Over a small-enough time
interval, the channel between the transmitter and receiveris
of the form (1) with each triplet(τk, νk, αk) corresponding to
a distinct physical path between the transmitter and receiver
[7]. Identification ofH can enable one to establish a relatively
error-free communication link between the transmitter and
receiver. But wireless systems also need to identify channels
using signals that have as smalltime–bandwidth productas
possible so that they can allocate the rest of the temporal
degrees of freedom to communicating data [7], [8].

Similarly, in the case of target detection using radar or
active sonar, the (noiseless, clutter-free) received signal is
of the form (1) with each triplet(τk, νk, αk) corresponding
to an echo of the transmitted signal from a distinct target
in the delay–Doppler space [2]. Identification ofH in this
case enables one to accurately obtain the radial position and
velocity of the targets. Radar systems also strive to operate
with signals (waveforms) that have as small temporal support

1It is still an open research question as to whethercritically-spread
linear systems, which correspond toarea(R) = 1, are identifiable or
nonidentifiable [6]; see [3] for a partial answer to this question for the case
whenR is a rectangular region.
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Fig. 1. Schematic representation of identification of a time-varying linear systemH by probing it with a known input signal. Characterization ofan
identification scheme involves specification of the input probe,x(t), and the accompanying sampling and recovery stages.

and bandwidth as possible. This is because the temporal
support of the radar waveform is directly tied to the time it
takes to identify all the targets while the bandwidth of the
waveform—among other technical considerations—is tied to
the sampling rate of the radar receiver [2].

Given the ubiquity of time-varying linear systems in en-
gineering applications, there exists considerable amountof
existing literature that studies identification of such systems
in an abstract setting. Kailath was the first to recognize that
the identifiability of a time-varying linear systemH from a
single observation is directly tied to the area of the region
R that containsH(δ(t)) [4]. Kailath’s seminal work in [4]
laid the foundations for the future works of Bello [5], Kozek
and Pfander [3], and Pfander and Walnut [6], which establish
the nonidentifiability of overspread linear systems and provide
constructive proofs for the identifiability of arbitrary ULSs.
However, none of these results shed any light on the bandwidth
and temporal support of the input signal needed to ensure
identification of ULSs of the form (1). On the contrary, the
constructive proofs provided in [3]–[6] require use of input
signals with infinite bandwidth and temporal support.

In contrast, to the best of our knowledge, this is the first pa-
per to develop a theory for identification of ULSs of the form
(1), henceforth referred to asparametricULSs, that parallels
that of [3]–[6] for identification of arbitrary ULSs. One of
the main contributions of this paper is that we establish using
a constructive proof that sufficiently-underspread parametric
linear systems are identifiable as long as the time–bandwidth
product of the input signal is proportional to the square of the
total number of delay–Doppler pairs in the system. Equally
importantly, as part of our constructive proof, we concretely
specify the nature of the input signal (a finite train of pulses)
and the structure of a corresponding polynomial-time (in
the number of delay–Doppler pairs) recovery procedure that
enable identification of parametric ULSs. These ideas are also
immediately applicable to super-resolution target detection
using radar and we show in the latter part of the paper that
our approach indeed results in a resolution that substantially
exceeds that of standard matched-filtering based techniques
without introducing leakage effects inherent in recently pro-
posed compressed sensing-based radar methods [9].

The key developments in the paper leverage recent results
on sub-Nyquist sampling for time-delay estimation [10] and
classical results on direction-of-arrival (DOA) estimation [11]–
[14]. Unlike the traditional DOA estimation literature, how-
ever, we do not assume that the system output is observed
by an array of antennas. Additionally, in contrast to [10], our
goal here is not a reduction in the sampling rate; rather, we are

interested in characterizing the minimum temporal degreesof
freedom of the input signal needed to ensure identification of a
parametric ULSH. The connection to sub-Nyquist sampling
can be understood by noting that the sub-Nyquist sampling
results of [10] enable recovery of the delays associated with
H using a small-bandwidth input signal. Further, the “train-
of-pulses” nature of the input signal combined with resultson
recovery of frequencies from a sum of complex exponentials
[14] allow recovery of the Doppler-shifts and attenuation
factors using an input signal of small temporal support.

Several works in the past have considered identification
of specialized versions of parametric ULSs. Specifically, [9],
[15]–[18] treat parametric ULSs whose delays and Doppler-
shifts lie on a quantized grid in the delay–Doppler space. On
the other hand, [19] considers the case in which there are
no more than two Doppler-shifts associated with the same
delay. The proposed recovery procedures in [19] also have
exponential complexity, since they require exhaustive searches
in a K-dimensional space, and stable initializations of these
procedures stipulate that the system output be observed by an
M -element antenna array withM ' K.

While the insights of [9], [15]–[18] can be extended to arbi-
trary parametric ULSs by taking infinitesimally-fine quantiza-
tion of the delay–Doppler space, this will require input signals
with infinite bandwidth and temporal support. In contrast, our
ability to avoid quantization of the delay–Doppler space is
due to the fact that we treat the system-identification problem
directly in the analog domain. This follows the philosophy in
much of the recent work in analog compressed sensing, termed
Xampling, which provides a framework for incorporating and
exploiting structure in analog signals without the need for
quantization [20]–[25]. This is in particular the key enabling
factor that helps us avoid the catastrophic implications ofthe
leakage effects in the context of radar target detection.

Before concluding this discussion, we note that responses
of arbitrary ULSs can always be represented as (1) under the
limit K → ∞. Therefore, the main result of this paper can
also be construed as an alternate constructive proof of the
identifiability of sufficiently-underspread linear systems. Nev-
ertheless, just like [3]–[6], this interpretation of the presented
results again seem to suggest that identification of arbitrary
ULSs requires use of input signals with infinite bandwidth
and temporal support.

The rest of this paper is organized as follows. In Section II,
we formalize the problem of identification of parametric ULSs
along with the accompanying assumptions. In Section III, we
propose a polynomial-time recovery procedure used for the
identification of parametric ULSs, while Section IV specifies
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the conditions on the input signal needed to guarantee unique
identification using the proposed procedure. We compare the
results of this paper to some of the related literature on
identification of parametric ULSs in Section V and discuss an
application of our results to super-resolution target detection
using radar in Section VI. Finally, we present results of some
numerical experiments in Section VII.

We make use of the following notational convention
throughout this paper. Vectors and matrices are denoted by
bold-faced lowercase and bold-faced uppercase letters, re-
spectively. Thenth element of a vectora is written as
an, and the(i, j)th element of a matrixA is denoted by
Aij . Superscripts(·)∗, (·)T and (·)H represent conjugation,
transposition, and conjugate transposition, respectively. In
addition, the Fourier transform of a continuous-time signal
x (t) ∈ L2(C) is defined byX (ω) =

∫∞

−∞
x (t) e−jωtdt, while

〈x (t) , y (t)〉 =
∫∞

−∞
x (t) y∗(t)dt denotes the inner product

between two continuous-time signals inL2(C). Similarly, the
discrete-time Fourier transform of a sequencea [n] ∈ `2(C) is
defined byA

(
ejωT

)
=

∑
n∈Z

a [n] e−jωnT and is periodic in
ω with period2π/T . Finally, we useA† to write the Moore–
Penrose pseudoinverse of a matrixA.

II. PROBLEM FORMULATION AND MAIN RESULTS

In this section, we formalize the problem of identification
of a parametric ULSH whose response is described by a total
of K arbitrary delay–Doppler-shifts of the input signal. The
task of identification ofH essentially requires specifying two
distinct but highly intertwined steps. First, we need to specify
the conditions on the bandwidth and temporal support of the
input signalx(t) that ensure identification ofH from a single
observation. Second, we need to provide a polynomial-time
recovery procedure that takes as inputH(x(t)) and provides an
estimateĤ of the system response by exploiting the properties
of x(t) specified in the first step. We begin by detailing our
system model and the accompanying assumptions.

In (1), some of the delays,τk, might be repeated. Expressing
H in terms ofKτ ≤ K distinct delays in this case leads to

H(x(t)) =

Kτ∑

i=1

Kν,i∑

j=1

αijx(t− τi)e
j2πνij t (2)

where νij denotes thejth Doppler-shift associated with the
ith distinct delayτi, αij ∈ C denotes the attenuation factor
associated with the delay–Doppler pair(τi, νij), and K =∑Kτ

i=1Kν,i. We choose to expressH(x(t)) as in (2) so as
to facilitate the forthcoming analysis. Throughout the rest of
the paper, we useτ = {τi, i = 1, . . . ,Kτ} to denote the
set ofKτ distinct delays associated withH. The first main
assumption that we make concerns the footprint ofH in the
delay–Doppler space:
[A1] The responseH(δ(t)) of H lies within a rectangular

region of the delay–Doppler space; in other words,
(τi, νij) ∈ [0, τmax] × [−νmax/2, νmax/2]. This is
indeed the case in many engineering applications (see,
e.g., [1], [2]). The parametersτmax andνmax are termed
in the parlance of linear systems as thedelay spreadand
the Doppler spreadof the system, respectively.

Next, we useT andW to denote the temporal support and
the two-sided bandwidth of the known input signalx(t) used
to probeH, respectively. We propose using input signals that
correspond to a finite train of pulses:

x(t) =

N−1∑

n=0

xng(t− nT ), 0 ≤ t ≤ T (3)

where g(t) is a prototype pulse of bandwidthW that is
(essentially) temporally supported on[0, T ] and is assumed
to have unit energy(

∫
|g(t)|2dt = 1), and{xn ∈ C} is anN -

length probing sequence. The parameterN is proportional to
the time–bandwidth product ofx(t), which roughly defines
the number of temporal degrees of freedom available for
estimating H [8]: N = T /T ∝ T W .2 The final two
assumptions that we make concern the relationship between
the delay spreadτmax and the Doppler spreadνmax of H,
and the temporal supportT and bandwidthW of g(t):

[A2] The delay spread ofH is strictly smaller than the
temporal support ofg(t): τmax < T , and

[A3] The Doppler spread ofH is much smaller than the
bandwidth ofg(t): νmax � W .

Note that, sinceW ∝ 1/T , [A3] equivalently imposes that
νmaxT � 1. This assumption states that the temporal scale
of variations inH is large relative to the temporal scale of
variations inx(t). It is worth pointing out that linear systems
that are sufficiently underspread in the sense thatτmaxνmax �
1 can always be made to satisfy[A2] and [A3] for any given
budget of the time–bandwidth product.

Remark1. In order to elaborate on the validity of[A2] and
[A3] , note that there exist many communication applications
where underlying linear systems tend to be highly underspread
[1, § 14.2]. Similarly, [A2] and [A3] in the context of radar
target detection simply mean that the targets are not too far
away from the radar and that their velocities are not too high.
Consider, for example, anL-band radar (operating frequency
of 1.3 GHz) that transmits a pulseg(t) of bandwidthW = 10
MHz after everyT = 50 µs. Then both[A2] and [A3] are
satisfied when the distance between the radar and any target
is at most7.5 km (τmax ≈ 50 µs) and the radial velocity of
any target is at most185 km/h (νmax ≈ 445 Hz) [2].

The following theorem summarizes our key result concern-
ing identification of parametric ULSs.

Theorem 1 (Identification of Parametric Underspread Lin-
ear Systems). Suppose thatH is a parametric ULS that
is completely described by a total ofK =

∑Kτ

i=1Kν,i

triplets (τi, νij , αij). Then, irrespective of the distribution of
{(τi, νij)} within the delay–Doppler space,H can be iden-
tified in polynomial-time from a single observationH(x(t))
as long as it satisfies[A1]–[A3], the probing sequence{xn}
remains bounded away from zero in the sense that|xn| > 0
for everyn = 0, . . . , N − 1, and the time–bandwidth product
of the known input signalx(t) satisfies the condition

T W ≥ 8πKτKν,max (4)

2Recall that the temporal support and the bandwidth of an arbitrary pulse
g(t) are related to each other asW ∝ 1/T .
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where Kν,max = maxiKν,i is the maximum number of
Doppler-shifts associated with any one of the distinct delays.
In addition, the time–bandwidth product ofx(t) is guaranteed
to satisfy(4) as long asT W ≥ 2π(K + 1)2.

The rest of this paper is devoted to providing a proof of
Theorem 1. In terms of a general roadmap for the proof,
we first exploit the sub-Nyquist sampling results of [10]
to argue thatx(t) with small bandwidth suffices to recover
the delays associated withH. We then exploit the “train-
of-pulses” structure ofx(t) and classical results on recovery
of frequencies from a sum of complex exponentials [14] to
argue thatx(t) with small temporal support suffices to recover
the Doppler-shifts and attenuation factors associated with H.
The statement of Theorem 1 will then follow by a simple
combination of the two claims concerning the bandwidth and
temporal support ofx(t). We will make use of (2) and (3) in
the following to describe:

[1] The polynomial-time recovery procedure used for the
identification ofH (cf. Section III), and

[2] The accompanying conditions onx(t) needed to guar-
antee identification ofH (cf. Section IV).

III. POLYNOMIAL -TIME IDENTIFICATION OF ULSS

In this section, we characterize the polynomial-time recov-
ery procedure used for identification of ULSs of the form (2).
In order to facilitate understanding of the proposed algorithm,
shown in Fig. 2, we conceptually partition the method into
two stages: sampling and recovery. The rest of this section
is devoted to describing these two steps in detail. Before
proceeding further, however, it is instructive to first makeuse
of (2) and (3) and rewrite the output ofH as

H(x(t)) =

Kτ∑

i=1

Kν,i∑

j=1

N−1∑

n=0

αijxne
j2πνij tg(t− τi − nT )

(a)
≈

Kτ∑

i=1

Kν,i∑

j=1

N−1∑

n=0

αijxne
j2πνijnT g(t− τi − nT )

=

Kτ∑

i=1

N−1∑

n=0

ai[n]g(t− τi − nT ) (5)

where (a) follows from the assumptionνmaxT � 1, which
implies thatej2πνij t ≈ ej2πνijnT for all t ∈ [(n − 1)T, nT ),
and the sequences{ai[n]}, i = 1, . . . ,Kτ , are defined as

ai[n] =

Kν,i∑

j=1

αijxne
j2πνijnT , n = 0, . . . , N − 1. (6)

A. The Sampling Stage

We leverage the ideas of [10] on time-delay estimation
from sub-Nyquist samples to describe the sampling stage of
our recovery procedure. While the primary objective in [10]
is time-delay estimation from low-rate samples, the develop-
ment here is carried out with an eye towards identification
of parametric ULSs regardless of the distribution of system
parameters within the delay–Doppler space—the so-called
super-resolution identification. In [10], a general multi-channel

sub-Nyquist sampling scheme was introduced for the purpose
of recovering a set of unknown delays from signals of the
form (5). Here, we focus on one special case of that scheme,
which consists of a low-pass filter (LPF) followed by a
uniform sampler. This architecture may be preferable from an
implementation viewpoint since it requires only one sampling
channel, thereby simplifying analog front-end of the sampling
hardware. The LPF, besides being required by the sampling
stage, also serves as the front-end of the system-identification
hardware and rejects noise and interference outside the work-
ing spectral band.

Our sampling stage first passes the system outputy(t) =
H(x(t)) through a LPF whose impulse response is given by
s∗(−t) and then uniformly samples the LPF output at times{
t = nT/p

}
. We assume that the frequency response,S∗(ω),

of the LPF is contained in the spectral bandF , defined as

F =
[
− π

T
p,
π

T
p
]
, (7)

and is zero for frequenciesω /∈ F . Here, the parameterp is
assumed to be even and satisfies the conditionp ≥ 2Kτ ; exact
requirements onp to ensure identification ofH will be given
in Section IV. In order to relate the sampled output of the
LPF with the multi-channel sampling formulation of [10], we
definep sampling (sub)sequences

{
c`[n]

}
as

c`[n] = 〈y(t), s(t− nT − (`− 1)T/p)〉 , ` = 1, . . . , p. (8)

These sequences correspond to periodically splitting the sam-
ples at the output of the LPF, which is generated at a rate
of p/T , into p slower sequences at a rate of1/T each
using a serial-to-parallel converter; see Fig. 2 for a schematic
representation of this splitting.

Next, we define the vectorc
(
ejωT

)
as thep-length vector

whose`th element isC`

(
ejωT

)
, which denotes thediscrete-

time Fourier transform(DTFT) of c`[n]. In a similar fashion,
we definea

(
ejωT

)
as theKτ -length vector whoseith element

is given byAi

(
ejωT

)
, the DTFT of ai[n]. It can be shown

following the developments carried out in [10] that these two
vectors are related to each other by

c
(
ejωT

)
= W

(
ejωT

)
N (τ )D

(
ejωT , τ

)
a
(
ejωT

)
. (9)

Here,W
(
ejωT

)
is a p× p matrix with (`,m)th element

W`m

(
ejωT

)
= ejω(`−1)T/p 1

T
S∗

(
ω +

2π

T
m′

)
G

(
ω +

2π

T
m′

)
ej

2π
p
(`−1)

(10)

wherem′ = m − p/2− 1, N (τ ) is a p ×Kτ Vandermonde
matrix with (m, i)th element

Nmi (τ ) = e−j 2π
T

m′τi , (11)

and D
(
ejωT , τ

)
is a Kτ × Kτ diagonal matrix whose

ith diagonal element is given bye−jωτi . Assuming for
the time being thatW

(
ejωT

)
is a stably-invertible matrix,

we define themodified measurement vectord
(
ejωT

)
=

W
−1

(
ejωT

)
c
(
ejωT

)
. Denoting

b
(
ejωT

)
= D

(
ejωT , τ

)
a
(
ejωT

)
, (12)
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Fig. 2. Schematic representation of the polynomial-time recovery procedure for identification of parametric underspread linear systems from single observations.

we see from (10) that

d
(
ejωT

)
= N (τ )b

(
ejωT

)
. (13)

SinceN (τ ) is not a function ofω, (13) can be expressed in
the discrete-time domain using the linearity of the DTFT as

d[n] = N (τ )b[n], n ∈ Z. (14)

Here, the elements of the vectorsd[n] andb[n] are discrete-
time sequences that are given by the inverse DTFT of the
elements ofd

(
ejωT

)
andb

(
ejωT

)
, respectively.

The key insight to be drawn here is that (13), and its
time-domain equivalent (14), can be viewed as an infinite
ensemble of modified measurement vectors in which each
element corresponds to a distinct matrixN (τ ) that, in turn,
depends on the set of (distinct) delaysτ . Linear measurement
models of the form (14)—in which the measurement matrix
is completely determined by a set of (unknown) parameters—
have been studied extensively in a number of research areas
such as system identification [26] and direction-of-arrival and
spectrum estimation [14], [27]. One specific class of methods
that has proven to be quite useful in these areas in efficiently
recovering the parameters that describe the measurement ma-
trix are the so-calledsubspace methods[27]. Consequently,
our approach in the recovery stage will be to first use subspace
methods in order to recover the setτ from d[n]. Afterwards,
since N

† (τ )N (τ ) = I because of the assumption that
p ≥ 2Kτ , we will recovera

(
ejωT

)
from d[n] using linear

filtering operations as follows [cf. (12), (13)]

a
(
ejωT

)
= D

−1
(
ejωT , τ

)
N

† (τ )d
(
ejωT

)
. (15)

Finally, the Doppler-shifts and attenuation factors associated
with H are determined from the vectora

(
ejωT

)
by an

additional use of the subspace methods.
Before proceeding to the recovery stage, we justify the

assumption thatW
(
ejωT

)
can be stably inverted. To this end,

observe from (10) thatW
(
ejωT

)
can be decomposed as

W
(
ejωT

)
= Φ

(
ejωT

)
F

H
Ψ

(
ejωT

)
, (16)

whereΦ
(
ejωT

)
is a p× p diagonal matrix with̀ th diagonal

element

Φ``

(
ejωT

)
=

√
p(−1)`−1ejω(`−1)T/p, (17)

F is a p-point discrete Fourier transform (DFT) matrix with
(`,m)th element equal to

F`m =
1√
p
e−j 2π

p
(`−1)(m−1), (18)

andΨ
(
ejωT

)
is ap× p diagonal matrix whosemth diagonal

element is given by

Ψmm

(
ejωT

)
=

1

T
S∗

(
ω +

2π

T
(m− p/2− 1)

)
G

(
ω +

2π

T
(m− p/2− 1)

(19)

It can now be easily seen from the decomposition in (16)
that, in order forW

(
ejωT

)
to be stably invertible, each

of the above three matrices has to be stably invertible. By
construction, bothΦ

(
ejωT

)
and F

H are stably invertible.
The invertibility requirement on the diagonal matrixΨ

(
ejωT

)

leads to the following conditions on the pulseg(t) and the
kernels∗(−t) of the LPF.

Condition 1. In order for Ψ
(
ejωT

)
to be stably invertible,

the continuous-time Fourier transform ofg (t) has to satisfy

a ≤ |G (ω)| ≤ b a.e.ω ∈ F (20)

for some positive constantsa > 0 and b <∞.

Condition 2. In order for Ψ
(
ejωT

)
to be stably invertible,

the continuous-time Fourier transform of the LPFs∗ (−t) has
to satisfy

c ≤ |S (ω)| ≤ d a.e.ω ∈ F (21)

for some positive constantsc > 0 and d <∞.

Condition 1 requires that the bandwidthW of the prototype
pulseg(t) has to satisfy

W ≥ 2π

T
p. (22)

In Section IV, we will derive additional conditions on the
parameterp and combine them with (22) to obtain equivalent
requirements on the time–bandwidth product of the input sig-
nal x(t) that will ensure invertibility of the matrixW

(
ejωT

)
.

We conclude discussion of the sampling stage by point-
ing out that the decomposition in (16) also provides an
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TABLE I
DELAY RECOVERY ALGORITHM

(i) Construct the matrix

Rdd =
1

M

M
∑

m=1

∑

n∈Z

dm[n]dH
m[n],

wheredm is theM = p/2 length subvector which is given by

dm [n] =
[

dm [n] dm+1 [n] . . . dm+M [n]
]

T
.

(ii) RecoverKτ as the rank ofRdd.
(iii) Perform asingular value decomposition(SVD) of Rdd and construct

the matrixEs consisting of theKτ singular vectors corresponding to
the Kτ nonzero singular values ofRdd as its columns.

(iv) Compute the matrixΦ = E
†
s↓
E

s↑, whereEs↑ and Es↓ denote the
submatrices extracted fromEs by removing its first row and its last
row, respectively.

(v) Compute the eigenvalues ofΦ, λi, i = 1, 2, . . . , Kτ .
(vi) Recover the unknown delays as follows:τi = − T

2π
arg(λi).

efficient way to implement the digital-correction filter bank
W

−1
(
ejωT

)
. This is because (16) implies that

W
−1

(
ejωT

)
= Ψ

−1
(
ejωT

)
FΦ

−1
(
ejωT

)
. (23)

Therefore the implementation ofW−1
(
ejωT

)
can be done in

three stages, where each stage corresponds to one of the three
matrices in (23). Specifically, define the set of digital filters
{φ`[n]} and{ψ`[n]} as

φ`[n] = IDTFT
{
Φ

−1
``

(
ejωT

)}
[n], 1 ≤ ` ≤ p (24)

and

ψ`[n] = IDTFT
{
Ψ

−1
``

(
ejωT

)}
[n], 1 ≤ ` ≤ p, (25)

where IDTFT denotes the inverse DTFT operation. The first
correction stage involves filtering the sequences{c`[n]} using
the set of filters{φ`[n]}. Next, multiplication with the DFT
matrix F can be efficiently implemented by applying the fast
Fourier transform (FFT) to the outputs of the filters in the first
stage. Finally, the third correction stage involves filtering the
resulting sequences using the set of filters{ψ`[n]} to get the
desired sequences{d`[n]}. This last correction stage can be
interpreted as an equalization step that compensates for the
non-flatness of the frequency responses of the prototype pulse
and the kernel of the LPF. A detailed schematic representation
of the sampling stage, which is based on the preceding
interpretation ofW−1

(
ejωT

)
, is provided in Fig. 2.

B. The Recovery Stage

We conclude this section by describing in detail the recovery
stage, which—as noted earlier—consists of two steps. In the
first step, we rely on subspace methods to recover the delays
τ from d[n] [cf. (14)]. In the second step, we make use of the
recovered delays to obtain the Doppler-shifts and attenuation
factors associated with each of the delays.

1) Recovery of the Delays:In order to recoverτ from
d[n], we rely on the approach advocated in [10] and make
use of the well-known ESPRIT algorithm [28] together with
an additional smoothing stage [29]. The exact algorithm is
given in Table I; we refer the reader to [10], [28] for details.

2) Recovery of the Doppler-Shifts and Attenuation Factors:
Once the unknown delays are found, we can recover the
vectorsa[n] through the frequency relation (15). Next, define
for each delayτi, the set of corresponding Doppler-shifts

νi = {νij , j = 1, . . . ,Kν,i} (26)

and recall that theith element ofa[n] is given by (6). We can
therefore write theN -length sequence{ai[n]} for each index
i in the following matrix–vector form

ai = XR(νi)αi, (27)

whereai is a length-N vector whosenth element isai[n], X
is anN ×N diagonal matrix whosenth diagonal element is
given byxn, R(νi) is anN ×Kν,i Vandermonde matrix with
(n, j)th elementej2πνijnT , andαi is length-Kν,i vector with
jth elementαij . The matrixX in (27) can be inverted under
the assumption that the sequence{xn} satisfies|xn| > 0 for
everyn = 0, . . . , N − 1, resulting in

ãi = R(νi)αi, (28)

whereãi = X
−1

ai. From a simple inspection, we can express
the elements of̃ai as

ãi[n] =

Kν,i∑

j=1

αije
j2πνijnT , 0 ≤ n ≤ N − 1. (29)

It is now easy to see from this representation that recovery of
the Doppler-shifts from the sequences{ãi[n]} is equivalent
to the problem of recovering distinct frequencies from a
(weighted) sum of complex exponentials. In the context of
our problem, for each fixed indexi, the frequency of thejth
exponential isωij = 2πνijnT and its amplitude isαij .

Fortunately, the problem of recovering frequencies from a
sum of complex exponentials has been studied extensively
in the literature and various strategies exist for solving this
problem (see [14] for a review). One of these techniques
that has gained interest recently, especially in the literature
on finite rate of innovation [30]–[33], is theannihilating-filter
method. The annihilating-filter approach, in contrast to some
of the other techniques, allows the recovery of the frequencies
associated with theith index even at the critical value of
N = 2Kν,i. On the other hand, subspace methods such as
ESPRIT [12], matrix-pencil algorithm [13], and the Tufts
and Kumaresan approach [11] are generally more robust to
noise but also require more samples than2Kν,i. Once the
Doppler-shifts for each indexi have been recovered then, since
R

†(νi)R(νi) = I because of the requirement thatN ≥ 2Kν,i,
the attenuation factors{αij} are determined as

αi = R
†(νi)ãi, i = 1, . . . ,Kτ . (30)

IV. SUFFICIENT CONDITIONS FORIDENTIFICATION

Our focus in Section III was on developing a recovery
algorithm for the identification of ULSs. We now turn to
specify conditions that guarantee that the proposed procedure
recovers the set of triplets

{
(τi, νij , αij)

}
that describe the

parametric ULSH. We present these requirements in terms
of equivalent conditions on the time–bandwidth productT W
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of the input signalx(t). This is a natural way to describe
the performance of system identification schemes sinceT W
roughly defines the number of temporal degrees of freedom
available for estimatingH [8].

To begin with, recall that the recovery stage involves first
determining the unknown delaysτ from the set of equations
given by (14) (cf. Section III-B). Therefore, to ensure thatour
algorithm successfully returns the parameters ofH, we first
need to provide conditions that guarantee a unique solution
to (14). To facilitate the forthcoming analysis, we letd [Λ] =
{d [n] , n ∈ Z} andb [Λ] = {b [n] , n ∈ Z} denote the set of
all vectorsd [n] andb [n], respectively. Using this notation,
we can rewrite (14) as

d [Λ] = N (τ )b [Λ] . (31)

We now leverage the analysis carried out in [10] to provide
sufficient conditions for a unique solution to (31); see [10]for
a formal proof.

Proposition 1. If
(
τ̄ , b̄ [Λ] 6= 0

)
solves(31) and if

p > 2Kτ − dim
(
span

(
b̄ [Λ]

))
(32)

then
(
τ̄ , b̄ [Λ]

)
is the unique solution of (31). Here,

span
(
b̄ [Λ]

)
is used to denote the subspace of minimal di-

mensions that contains̄b [Λ].

Proposition 1 suggests that a unique solution to (31)—
and, by extension, unique recovery of the set of delaysτ—
is guaranteed through a proper selection of the parameterp.
In particular, since dim

(
span

(
b̄ [Λ]

))
is a positive number

in general, we have from Proposition 1 thatp ≥ 2Kτ is a
sufficient condition for unique recovery ofτ andb [Λ]. From
Condition 1 in Section III, we have seen that the parameter
p effectively determines the minimum bandwidthW of the
prototype pulse [cf. (22)]. Combining the conditionp ≥ 2Kτ

and the one obtained earlier in (22) leads to the following
sufficient condition on the bandwidth of the input signal for
unique recovery ofτ andb [Λ]:

W ≥ 4πKτ

T
. (33)

The second step in the recovery stage involves recovering
the Doppler-shifts and attenuation factors (cf. Section III-B).
We now investigate the conditions required for unique recovery
of the Doppler-shifts. Recall that the vectorsb[n] anda[n] are
related to each other by the invertible frequency relation (12).
Therefore, since the diagonal matrixD

(
ejωT , τ

)
is invertible

and completely specified byτ , the condition given in (33)
also guarantees unique recovery of the vectorsa[n] from b[n].
Further, it can be easily verified that the matrixR(νi) in
(28) has the same parametric structure as that required by
Proposition 1. We can therefore once again appeal to the
results of Proposition 1 in providing conditions for unique
recovery of the Doppler-shifts{νi} from the vectors{ãi}
[cf. (28)]. To that end, we interchangep with N andKτ with
Kν,i in Proposition 1 and use the fact that dim(span(ai)) = 1
(since it is a nonzero vector). Therefore, by making use of
Proposition 1, we conclude that a sufficient condition for

unique recovery ofνi from (28) is

N ≥ 2Kν,i. (34)

Condition (34) is intuitive in the sense that there are2Kν,i

unknowns in (28) (Kν,i unknown Doppler-shifts andKν,i

unknown attenuation factors) and therefore at least2Kν,i

equations are required to solve for these unknown parameters.
Finally, since we need to ensure unique recovery of the
Doppler-shifts and attenuation factors for each distinct delay
τi, we have the condition

N ≥ 2max
i
Kν,i (35)

which trivially ensures that (34) holds for everyi = 1, . . . ,Kτ .
We summarize these results in the following theorem.

Theorem 2 (Sufficient Conditions for System Identification).
Suppose thatH is a parametric ULS that is completely
described by a total ofK =

∑Kτ

i=1Kν,i triplets (τi, νij , αij).
Then, irrespective of the distribution of{(τi, νij)} within
the delay–Doppler space, the recovery procedure specified in
Section III with samples taken at{t = 2nπ/W} uniquely
identifiesH from a single observationH(x(t)) as long as the
system satisfies[A1]–[A3], the probing sequence{xn} remains
bounded away from zero in the sense that|xn| > 0 for every
n = 0, . . . , N − 1, and the time–bandwidth product of the
(known) input signalx(t) satisfies the condition

T W ≥ 8πKτKν,max (36)

where Kν,max = maxiKν,i is the maximum number of
Doppler-shifts associated with any one of the distinct delays.

Proof: Recall from the previous discussion that the de-
lays, Doppler-shifts, and attenuation factors associatedwith
H can be uniquely recovered as long asN ≥ 2Kν,max,
W ≥ 4πKτ

T , andp ≥ 2Kτ . Now takeN = T W
4πKτ

and note that
under the assumptionT W ≥ 8πKτKν,max, we trivially have
N ≥ 2Kν,max. Further, sinceT = NT and since sampling
rate of 2π/W implies p = 2π/(WT ), we also have that
W = 4πKτ

T ⇒ p = 2Kτ , completing the proof.
Theorem 2 implicitly assumes thatKτ (or an upper bound

onKτ ) andKν,max (or an upper bound onKν,max) are known
at the transmitter side. We explore this point in further detail
in Section V and numerically study the effects of “model-
order mismatch” on the robustness of the proposed recovery
procedure. It is also instructive (especially for comparison
purposes with related work such as [9], [17]) to present a
weaker version of Theorem 2 that only requires knowledge of
the total number of delay–Doppler pairsK.

Corollary 1 (Weaker Sufficient Conditions for System Identi-
fication). Suppose that the assumptions of Theorem 2 hold.
Then the recovery procedure specified in Section III with
samples taken at{t = 2nπ/W} uniquely identifiesH from
a single observationH(x(t)) as long as the time–bandwidth
product of the known input signalx(t) satisfies the condition
T W ≥ 2π(K + 1)2.

Proof: This corollary is a simple consequence of Theo-
rem 2 and the fact thatKτKν,max ≤ (K+1)2

4 . To prove the
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latter fact, note that for any fixedK andKτ , we always have
Kν,max ≤ K− (Kτ −1). Indeed, ifKν,max were greater than
K − (Kτ − 1) then either

∑Kτ

i=1Kν,i > K or there exists
an i such thatKν,i = 0, both of which are contradictions.
Consequently, for any fixedK, we have that

KτKν,max ≤ −K2
τ + (K + 1)Kτ (37)

and since the maximum of−K2
τ +(K+1)Kτ occurs atKτ =

K+1
2 , we getKτKν,max ≤ (K+1)2

4 .

V. D ISCUSSION

In Sections III and IV, we proposed and analyzed a
polynomial-time recovery procedure that ensures identification
of parametric ULSs under certain conditions. In particular, one
of the key contributions of the preceding analysis is that it
parlays a key sub-Nyquist sampling result of [10] into condi-
tions on the time–bandwidth product,T W , of the input signal
x(t) that guarantee identification of arbitrary linear systems as
long as they are sufficiently underspread. Specifically, in the
parlance of system identification, Corollary 1 states that the
recovery procedure of Section III achievesinfinitesimally-fine
resolutionin the delay–Doppler space as long as the temporal
degrees of freedom available to excite a ULS are on the
order ofΩ(K2). In addition, we carry out extensive numerical
experiments in Section VII, which confirm that—as long as
the conditionT W ≥ 2π(K + 1)2 is satisfied—the ability
of the proposed procedure to distinguish between (resolve)
closely spaced delay–Doppler pairs is primarily a functionof
the signal-to-noise ratio (SNR) and its performance degrades
gracefully in the presence of noise. In order to best put the
significance of our results into perspective, it is instructive to
compare them with corresponding results in recent literature.
We then discuss an application of these results to super-
resolution target detection using radar in Section VI.

There exists a large body of existing work—especially in the
communications and radar literature—treating identification of
parametric ULSs; see, e.g., [2], [9], [15]–[19]. One of the
approaches that is commonly taken in many of these works,
such as in [9], [15]–[18], is to quantize the delay–Doppler
space(τ, ν) by assuming that bothτi and νij lie on a grid.
The following theorem is representative of some of the known
results in this case.3

Theorem 3 ([9], [17]). Suppose thatH is a parametric ULS
that is completely described by a total ofK =

∑Kτ

i=1Kν,i

triplets (τi, νij , αij). Further, let the delays and the Doppler-
shifts of the system be such thatτi = riW−1 and νij =
`ijT −1 for ri ∈ Z+ and `ij ∈ Z. ThenH can be identified in
polynomial-time from a single observationH(x(t)) as long as
the system satisfies[A1]–[A3] and the time–bandwidth product
of the input signalx(t) satisfiesT W = Ω(K2/ logT W).

There are two conclusions that can be immediately drawn
from Theorem 3. First, both [9], [17] require about the same
scaling of the temporal degrees of freedom as that required
by Corollary 1:T W ≈ Ω(K2). Second, the resolution of the

3It is worth mentioning here that a somewhat similar result was also
obtained independently in [34] in an abstract setting.

recovery procedures proposed in [9], [17] is limited toW−1

in the delay space andT −1 in the Doppler space because
of the assumption thatτi = riW−1 and νij = `ijT −1.4

Similarly, in another related recent paper [18], two recovery
procedures are proposed that have been numerically shown to
uniquely identifyH as long asT W � 1 and each(τi, νij)
corresponds to one of the points in the quantized delay–
Doppler space with resolution proportional toW−1 andT −1

in the delay space and the Doppler space, respectively. Note
that the assumption of a quantized delay–Doppler space can
have unintended consequences in certain applications and we
carry out a detailed discussion of this issue in the next section
in the context of radar target detection.

Finally, the work in [19] leverages some of the results in
DOA estimation to propose a scheme for the identification
of linear systems of the form (2) without requiring that
τi = riW−1 and νij = `ijT −1. Nevertheless, our results
differ from those in [19] in three important respects. First, we
explicitly state the relationship between the time–bandwidth
productT W of the input signalx(t) and the number of delay–
Doppler pairsK =

∑Kτ

i=1Kν,i that guarantees recovery of
the system response by studying the sampling and recovery
stages of our proposed recovery procedure. On the other
hand, the method proposed in [19] assumes the sampling
stage to be given and, as such, fails to make explicit the
connection between the time–bandwidth product ofx(t) and
the number of delay-Doppler pairs. Second, the algorithms
proposed in [19] have exponential complexity, since they
require exhaustive searches in aK-dimensional space, which
can be computationally prohibitive for large-enough values of
K. Last, but not the least, recovery methods proposed in [19]
are guaranteed to work as long as there are no more than two
delay–Doppler pairs having the same delay,maxiKν,i ≤ 2,
and the system output is observed by anM -element antenna
array withM ' K. In contrast, our recovery algorithm does
not impose any restrictions on the distribution of{(τi, νij)}
within the delay-Doppler space and is guaranteed to work with
a single observation of the system output.

VI. A PPLICATION: SUPER-RESOLUTION RADAR

We have established in Section IV that the polynomial-time
recovery procedure of Section III achieves infinitesimally-fine
resolution in the delay–Doppler space under mild assumptions
on the temporal degrees of freedom of the input signal. This
makes the proposed algorithm extremely useful for application
areas in which the system performance depends critically on
the ability to resolve closely spaced delay–Doppler pairs.In
particular, our method can be used for super-resolution target
detection using radar. This is because the noiseless, clutter-
free received signal in the case of monostatic radars is exactly
of the form (1) with each triplet(τk, νk, αk) corresponding
to an echo of the radar waveformx(t) from a distinct target

4Note that there is also a Bayesian variant of Theorem 3 in [9] that requires
T W ≈ Ω(K) under the assumption thatH has a uniform statistical prior
over the quantized delay–Doppler space. A somewhat similarBayesian variant
of Corollary 1 can also be obtained by trivially extending the results of this
paper to the case whenH is assumed to have a uniform statistical prior over
the non-quantizeddelay–Doppler space.



9

Delay (x τ
max

)

D
op

pl
er

 (
x 

ν m
ax

)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 3. Quantized representation of nine targets (represented by ∗) in
the delay–Doppler space withτmax = 10 µs and νmax = 10 kHz.
The quantized delay–Doppler approximation of the targets corresponds to
W = 1.2 MHz andT = 0.48 ms.

[2].5 The fact that our recovery procedure allows to identify
arbitrary parametric ULSs, therefore, enables us to distinguish
between multiple targets even if their radial positions arequite
close to each other and/or their radial velocities are similar—
the so-called super-resolution detection of targets.

On the other hand, note that apart from the fact that
none of the methods based on the assumption of a quantized
delay–Doppler space can ever carry out super-resolution target
detection, a major drawback of the radar target detection
approach in works such as [9], [18] is that targets in the real-
world do not in fact correspond to points in the quantized
delay–Doppler space, which causesleakageof their energies
in the quantized space. In order to elaborate further on this
point, defineL = dWτmaxe and M = dTνmax/2e and
note that (canonical) quantization corresponds to transforming
the C = [0, τmax] × [−νmax/2, νmax/2] continuous delay–
Doppler space into aQ = {0, . . . , L} × {−M/2, . . . ,M/2}
two-dimensional quantized grid, which in turn transforms the
received signalH(x(t)) at the radar into [35], [36, Chapter 4]

H̃(x(t)) ≈
L∑

`=0

M∑

m=−M

α̃`mx(t− τ̃`)e
j2πν̃mt (38)

where α̃`m =
∑Kτ

i=1

∑Kν,i

j=1 αije
jπ(m−T νij)sinc(m −

T νij)sinc(`− TWτi) and the quantized delay–Doppler pairs
(τ̃`, ν̃m) ∈ Q. It is now easy to conclude from (38) that,
unless the original targets (delay–Doppler pairs) happen to lie
in Q, most of the attenuation factors{α̃`m} will be nonzero
because of the sinc kernels—the so-called “leakage effect.”
This has catastrophic implications for target detection using
radar since leakage makes it impossible to reliably identify
the original set of delays and Doppler-shifts. This limitation
of target-detection methods that are based on the assumption
of a quantized delay–Doppler space is also depicted in
Fig. 3 for the case of nine hypothetical targets. The figure
illustrates that each of the nine non-quantized targets notonly

5In the radar literature, the term “monostatic” refers to thecommon scenario
of the radar transmitter and the radar receiver being collocated.
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Fig. 4. Comparison between the target-detection performance of matched-
filtering and our proposed recovery procedure for the case ofnine targets
(represented by∗) in the delay–Doppler space withτmax = 10 µs, νmax =
10 kHz, W = 1.2 MHz, andT = 0.48 ms. The sequence{xn} corresponds
to a random binary(±1) sequence withN = 48, the pulseg(t) is designed
to have a nearly-flat frequency response in the working spectral bandF , and
the pulse repetition interval is taken to beT = 10 µs. (a) Target detection
by matched-filtering the received signalH(x(t)) with the input signalx(t).
(b) Target detection using the proposed recovery procedurewith p = 12.

contributes energy to its own(τ̃`, ν̃m) in Q but also leaks its
energy to the nearby points in the quantized space.

Owing to the fact that leakage can cause missed detections
and false alarms, conventional radar literature in fact tends
to focus only on recovery procedures that do no impose any
structure on the distribution of{(τi, νij)} within the delay–
Doppler space. The most commonly used approach in the radar
signal processing literature corresponds to matched-filtering
(MF) the received signal with the input signalx(t) in the
delay–Doppler space [2]. The MF outputχ(τ, ν) takes the
form

χ(τ, ν) =

∫

R

H(x(t))x∗(t− τ) exp(−j2πνt)dt =
Kτ∑

i=1

Kν,i∑

j=1

αijA(τ − τi, ν

(39)

whereA(τ, ν) =
∫
R
x(t)x∗(t − τ) exp(−j2πνt)dt is termed

the Woodward’sambiguity functionof x(t). It can be eas-
ily deduced from (39) that the resolution of the MF-based
recovery procedure is tied to thesupport of the ambiguity
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Fig. 5. Delay–Doppler representation of a parametric ULSH corresponding
to K = 6 delay–Doppler pairs withτmax = 10 µs andνmax = 10 kHz.

function in the delay–Doppler space. Ideally, one would like
to haveA(τ, ν) = δ(τ)δ(ν) for super-resolution detection of
targets but two fundamental properties of ambiguity functions,
namely, |A(0, 0)|2 =

∫
|x(t)|2dt and

∫∫
|A(τ, ν)|2dτdν =∫

|x(t)|2dt, dictate that no real-world signalx(t) can yield
infinitesimally-fine resolution in this case either [2]. In fact,
the resolution of MF-based recovery techniques also tends to
be on the order ofW−1 and T −1 in the delay space and
the Doppler space, respectively, which severely limits their
ability to distinguish between two closely-spaced targetsin
the delay–Doppler space. This inability of MF-based methods
to resolve closely-spaced delay–Doppler pairs is depictedin
Fig. 4. This figure compares the target-detection performance
of MF and the recovery procedure proposed in this paper for
the case of nine closely-spaced targets. It is easy to see from
Fig. 4(a) that matched-filtering the received signalH(x(t))
with the input signalx(t) gives rise to peaks that are not
centered at the true targets for a majority of the targets. On
the other hand, Fig. 4(b) illustrates that our recovery procedure
correctly identifies the locations of all nine of the targetsin
the delay–Doppler space.

VII. N UMERICAL EXPERIMENTS

In this section, we explore various issues using numerical
experiments that were not treated theoretically earlier inthe
paper. These include robustness of our method in the presence
of noise and the effects of truncated digital filters, use of finite
number of samples, choice of probing sequence{xn}, and
model-order mismatch on the recovery performance. Through-
out this section, the numerical experiments correspond to a
parametric ULSH that is described by a total ofK = 6
delay–Doppler pairs withKτ = 2 andKν,1 = Kν,2 = 3. The
locations of these pairs in the delay–Doppler space are given
by Fig. 5, while the attenuation factors associated with each of
the six delay–Doppler pairs are taken to have unit amplitudes
and random phases.

In order to identifyH, we design the prototype pulseg(t) to
have a constant frequency response over the working spectral
band F =

[
− π

T p,
π
T p

]
with p = 4 and T = 10 µs, that

is, G(ω) ≈ 1 whenω ∈ F andG(ω) ≈ 0 whenω /∈ F . In
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Fig. 6. Mean-squared error of the estimated delays and Doppler-shifts as a
function of the signal-to-noise ratio.

other words, the input signalx(t) is chosen to have bandwidth
W = 8π

T . In addition, unless otherwise noted, we use a
probing sequence{xn} corresponding to a random binary
(±1) sequence withN = 30, which leads to a time–bandwidth
product ofT W ≈ 240π. Note that the chosen time–bandwidth
product here is more than the lower bound of Theorem 2
by a factor of5 so as to increase the robustness to noise.
Also, unless otherwise stated, all experiments in the following
use an ideal (flat) LPF as the sampling filter (cf. Fig. 2).
We use the ESPRIT method described in Section III for
recovery of the delays and the matrix-pencil method [13]
for recovery of the corresponding Doppler-shifts. Given the
rich history of these two subspace methods, there exist many
standard techniques in the literature (see, e.g., [37], [38]) for
providing them with reliable estimates of the model orders in
the presence of noise. As such, we assume in the following
that both these methods have access to correct values ofKτ

andKν,i’s. Finally, the performance metrics that we use in
this section are the (normalized) mean-squared error (MSE)
of the estimated delays and Doppler-shifts (averaged over100
noise realizations), defined as

e2delay =
1

2

2∑

i=1

[
(τ̂i − τi)/τmax

]2
, (40)

and

e2Doppler =
1

6

2∑

i=1

3∑

j=1

[
(ν̂ij − νij)/νmax

]2
, (41)

where τ̂i and ν̂ij denote the estimated delays and Doppler-
shifts, respectively.

1) Robustness to Noise:We first examine the robustness
of our method when the received signalH(x(t)) is corrupted
by additive noise. The results of this experiment are shown
in Fig. 6, which plots the MSE of the estimated delays and
Doppler-shifts as a function of the SNR. It can be seen from
the figure that the ability of the proposed procedure to resolve
delay–Doppler pairs is primarily a function of the SNR and
its performance degrades gracefully in the presence of noise.
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Fig. 7. Mean-squared error of the estimated delays and Doppler-shifts as
a function of the signal-to-noise ratio for various lengthsof the impulse
responses of the filters.

2) Effects of Truncated Digital-Correction Filter Banks:
Recall from Section III that our recovery method is com-
posed of various digital-correction stages (see also Fig. 2).
The filters used in these stages, which include{φ`[n]} and
{ψ`[n]}, have infinite impulse responses in general so that their
practical implementation requires truncation of their impulse
responses. The truncated lengths of these filters also determine
the (computational) delay and the computational load of the
proposed procedure. Fig. 7 plots the MSE of the estimated
delays (Fig. 7(a)) and Doppler-shifts (Fig. 7(b)) as a function
of the SNR for various lengths of the impulse responses of the
filters. There are two important insights that can be drawn from
the results of this experiment. First, for a fixed length of the
impulse responses, there is always some SNR beyond which
the estimation error caused by the truncation of the impulse
responses becomes more dominant than the error caused by
the additive noise (as evident by the error floors in Fig. 7).
Second, and perhaps most importantly, filters with49 taps
seem to provide good estimation accuracy up to an SNR of60
dB, whereas filters with even just35 taps yield good estimates
at SNRs below50 dB.

3) Effects of Finite Number of Samples:The sampling filter
used at the front-end in Fig. 2 is bandlimited in nature and,
therefore, has infinite support in the time domain. Conse-
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Fig. 8. Mean-squared error of the estimated delays and Doppler-shifts as a
function of the signal-to-noise ratio for different numbers of samples collected
at the output of the sampling filter (corresponding to an ideal low-pass filter).

quently, our sampling method theoretically requires collecting
an infinite number of samples at the back-end of this filter. The
next numerical experiment examines the effect of collecting a
finite number of samples on the estimation performance. The
results are reported in Fig. 8, which depicts the MSE of the
estimated delays (Fig. 8(a)) and Doppler-shifts (Fig. 8(b)) as
a function of SNR for different numbers of samples collected
at the output of the sampling filter (corresponding to an ideal
LPF). As in the case of truncation of digital-correction filter
banks, there is always some SNR for every fixed number of
samples beyond which the estimation error caused by the finite
number of samples becomes more dominant than the error
due to additive noise. Equally importantly, however, note that
x(t) in these experiments corresponds to a train ofN = 30
prototype pulses. Therefore, under the assumption ofp = 4
samples per pulse periodT , it is clear that we require at least
N · p = 120 samples in total to represent just the input signal
x(t). On the other hand, Fig. 8 shows that collecting248
samples, which is roughly twice the minimum number of sam-
ples required, provides good (delay and Doppler) estimation
accuracy for SNRs up to70 dB.

Finally, it is worth noting here that making use of an ideal
LPF as the sampling filter requires collecting relatively more
samples at the filter back-end due to the slowly-decaying
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Fig. 9. Frequency response of a raised-cosine filter with roll-off factor 1.

nature of the sinc kernel. Therefore, in order to reduce the
number of samples required at the back-end of the sampling
filter for reasonable estimation accuracy, we can instead make
use of sampling filters whose (time-domain) kernels decay
faster than the sinc kernel. One such possible choice is a
raised-cosine filter with roll-off factor equal to1, whose
frequency response is given byS(ω) = p

2T

(
1 + cos(Tp ω)

)

whenω ∈ F andS(ω) = 0 whenω 6∈ F . It is a well-known
fact (and can be easily checked) that this filter decays faster in
the time domain than the sinc kernel. However, the main issue
here is that raised-cosine filter does not satisfy Condition2 in
Section III, since its frequency response is not bounded away
from zero at the ends of the spectral bandF (see, e.g., Fig. 9).

However, we now show that this problem can be overcome
by slightly increasing the sampling rate and the bandwidth
requirement stated in Section IV. Specifically, note that Propo-
sition 1 requires that the parameterp, which controls the
minimal bandwidth ofx(t) and the sampling rate of our pro-
posed procedure, satisfiesp ≥ 4 under the current simulation
setup (sinceKτ = 2). We now instead choosep = 6 and
argue that raised-cosine filter can be successfully used under
this choice ofp. To this end, recall from Section III that
the function of the digital-correction filtersψ1[n] andψ6[n]
is to invert the frequency response of the sampling kernel
corresponding to the frequency bands denoted by1 and 6
in Fig. 9, respectively (under the assumption that the pulse
g(t) has a flat frequency response). In the case of a raised-
cosine filter, however, we cannot compensate for the non-flat
nature of these two bands since they are not bounded away
from zero. Nevertheless, because of the fact that we are using
p = 6, we can simply disregard channels1 and 6 after the
first digital-correction stage and work with the rest of the four
channels (2-4) only. We make use of this insight to repeat
the last numerical experiment using a raised-cosine filter and
report the results in Fig. 10. It is easy to see from Fig. 10 that,
despite increasingp to 6, raised-cosine filter performs better
than an ideal LPF using fewer samples.

4) Effects of the Probing Sequence:Theorem 2 in Sec-
tion IV stipulates that the choice of the probing sequence
{xn} has no impact on the noiseless performance of the
proposed recovery procedure as long as|xn| > 0 for every
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Fig. 10. Mean-squared error of the estimated delays and Doppler-shifts as a
function of the signal-to-noise ratio for different numbers of samples collected
at the output of a raised-cosine sampling filter with roll-off factor 1.

n = 0, . . . , N−1. However, it is quite expected that{xn} will
have an effect on the performance in the presence of noise
and implementation issues related to truncated digital filters
and use of finite number of samples. The next experiment
examines this effect for four different choices of binary
probing sequences of lengthN = 32 that periodically alternate
between+1 and−1 everyr entries. The results are reported
in Fig. 11, which depicts the MSE of the estimated delays
(Fig. 11(a)) and Doppler-shifts (Fig. 11(b)) as a function of the
SNR for probing sequences withr = 1, 2, 4, and32. We can
draw two immediate conclusions from observing the results of
this experiment. First, faster alternating probing sequences (in
other words, sequences with higher frequency content) appear
to provide better resilience against the truncation of digital
filters and the use of finite number of samples. Second, the
effect of the choice of probing sequence is less pronounced at
low SNRs, since the error due to noise at low SNRs dominates
the errors caused by other implementation imperfections.

5) Effects of Model-Order Mismatch:Our final numeri-
cal experiment studies the situation where the conditions of
Theorem 2 do not exactly hold. To this end, we simulate
identification of a parametric ULS withKτ = 4 delays. For
the first 3 delays we takeKν,i = 2, i = 1, 2, 3, whereas
we chooseKν,4 = 8 for the last delay. Finally, we take
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Fig. 11. Mean-squared error of the estimated delays and Doppler-shifts as
a function of the signal-to-noise ratio for various probingsequences.

the prototype pulseg(t) as at the start of this section (with
bandwidthW = 8π

T ), but we use a probing sequence{xn}
corresponding to a random(±1) sequence withN = 8.
Clearly, this does not satisfy the conditions of Theorem 2
because of the large number of Doppler-shifts associated with
the last delay(Kν,4 = 8).

The results of this numerical experiment are reported in
Fig. 12. It can be easily seen from the figure that, despite the
fact thatx(t) does not satisfy the conditions of Theorem 2,
our algorithm successfully recovers the first three delays and
the corresponding Doppler-shifts. In addition, the fourthdelay
is correctly recovered but (as expected) the Doppler-shifts
associated with the last delay are not properly identified. Note
that in addition to demonstrating the robustness of our proce-
dure in the presence of model-order mismatch, this experiment
also highlights the advantage of the sequential nature of our
approach where we first recover the delays and then estimate
the Doppler-shifts and attenuation factors associated with the
recovered delays. The main advantage of this being that if
the input signal does not satisfyN ≥ 2Kν,i for somei then
recovery fails only for the Doppler-shifts associated withthe
ith delay. Moreover, recovery of theith delay itself does not
suffer from the mismodeling and it will be recovered correctly
as long as the bandwidth ofx(t) is not too small.
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Fig. 12. Effects of model-order mismatch on the performanceof the proposed
recovery procedure corresponding toH with K = 14 delay–Doppler pairs.

VIII. C ONCLUSION

In this paper, we revisited the problem of identification
of parametric underspread linear systems that are completely
described by a finite set of delays and Doppler-shifts. We
established that sufficiently-underspread parametric linear sys-
tems are identifiable as long as the time–bandwidth product
of the input signal is proportional to the square of the total
number of delay–Doppler pairs. In addition, we concretely
specified the nature of the input signal and the structure
of a corresponding polynomial-time recovery procedure that
enable identification of parametric underspread linear systems.
Extensive simulation results confirm that—as long as the time–
bandwidth product of the input signal satisfies the requisite
conditions—the proposed recovery procedure is quite robust
to noise and other implementation issues. This makes our
algorithm extremely useful for application areas in which the
system performance depends critically on the ability to resolve
closely spaced delay–Doppler pairs. In particular, our proposed
identification method can be used for super-resolution target
detection using radar.
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