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Abstract—The problem of model selection arises in a number of
contexts, such as subset selection in linear regressiontiegtion
of structures in graphical models, and signal denoising. Tis
paper studies non-asymptotic model selection for the genaf
case of arbitrary (random or deterministic) design matrices
and arbitrary nonzero entries of the signal. In this regard, it
generalizes the notion ofincoherence in the existing literature
on model selection and introduces two fundamental measuresf
coherence—termed as the worst-case coherence and the avgega
coherence—among the columns of a design matrix. It utilizes
these two measures of coherence to provide an in-depth analg
of a simple, model-order agnostic one-step thresholding (8T)
algorithm for model selection and proves that OST is feasild
for exact as well as partial model selection as long as the dga
matrix obeys an easily verifiable property, which is termed a the
coherence property. One of the key insights offered by the ensuing
analysis in this regard is that OST can successfully carry ou
model selection even when methods based on convex optimimat
such as the lasso fail due to the rank deficiency of the submates
of the design matrix. In addition, the paper establishes thaif
the design matrix has reasonably small worst-case and aveye
coherence then OST performs near-optimally when either (ixhe
energy of any nonzero entry of the signal is close to the avege
signal energy per nonzero entry or (ii) the signal-to-noiseatio in
the measurement system is not too high. Finally, two other ke
contributions of the paper are that (i) it provides bounds onthe
average coherence of Gaussian matrices and Gabor frames, &n
(ii) it extends the results on model selection using OST to Vo
complexity, model-order agnostic recovery of sparse sigi&with
arbitrary nonzero entries. In particular, this part of the a nalysis
in the paper implies that an Alltop Gabor frame together with
OST can successfully carry out model selection and recovergf
sparse signals irrespective of the phases of the nonzero ées
even if the number of nonzero entries scales almost linearlwith
the number of rows of the Alltop Gabor frame.

Index Terms—Basis pursuit, coherence property, compressed
sensing, Gabor frames, hard thresholding, incoherence caiition,
irrepresentable condition, lasso, marginal regression, m@tching
pursuit, model selection, sparse signals, sparsity pattarrecovery,
statistical orthogonality condition, variable selection

I. INTRODUCTION
A. Background

is exemplified by the important special case in which a data
vector 3 € CP satisfies|| 3]0 = Y27, 15,01 < k < p
and is observed according to the linear measurement model
y Xp + n. Here, X is ann x p (real- or complex-
valued) matrix called theneasuremertr design matrixwhile
n € C" represents noise in the measurement system. In
this problem, the assumption that the data vegiois “k-
sparse” allows one to operate in the so-called “compressed”
setting, kK < n < p, thereby enabling tasks that might be
deemed prohibitive otherwise because of either techncdbgi
or computational constraints.
Fundamentally, given a measurement vegter X 5+ 7 in
the compressed setting, there are three complementary—but
nonetheless distinct—questions that one needs to answer:
[Estimation] Under what conditions can we obtain a reli-
able estimate of &-sparses from y?
[Regression] Under what conditions can we reliably ap-
proximate X 8 corresponding to &-sparses from y?
[Model Selection] Under what conditions can we reliably
recover the locations of the nonzero entries éfsparse
B (in other words, the modef = {i € {1,...,p} :
|B:] > 0}) from y?
A number of researchers have attempted to address the estima
tion and the regression question over the past several.yiears
many application areas, however, the model-selectiontigmes
is equally—if not more—important than the other two ques-
tions. In particular, the problem of model selection (sames
also known awyariable selectioror sparsity pattern recovejy
arises indirectly in a number of contexts, such as subset
selection in linear regression [1], estimation of struetun
graphical models [2], and signal denoising [3]. In addition
solving the model-selection problem in some (but not aesa
also enables one to solve the estimation and/or the regressi
problem.

B. Main Contributions

Model Selection: One of the primary objectives of this
paper is to study the problem gfolynomial time, model-

In many information processing and statistics problemgqer agnostic model selection in a compressed setting for

involving high-dimensional data, the “curse of dimensidga

the general case of arbitrary (random or deterministic) de-

can often be broken by exploiting the fact that real-worltadagjgn matrices and arbitrary nonzero entries of the sigrial
tend to live in low-dimensional manifolds. This phenomenog,qer to accomplish this task, we introduce in the paper two
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fundamental measures of coherence among the (normalized)
columns{x; € C"} of then x p design matrixX, namely!

IHere, and throughout the rest of this paper, we assume witbsa of
generality thatX has unit{2-norm columns. This is because deviations to
this assumption can always be accounted for by appropriaehling the
entries of the data vectg? instead.



Algorithm 1 The One-Step Thresholding (OST) Algorithm for Model Setatt
Input: An n x p matrix X, a vectory € C", and a threshold > 0
Output: An estimateS C {1,...,p} of the true modelS

[ XMy {Form signal proxy

S« {ie{l,....p}:|fil >} {Select model via OSFT

+ Worst-Case Coherenc@(X) = max |(xi,%;)], and generated from the Alltop sequence have worst-case cateren
LI 1 = —= for any primen > 5 [8], this result implies that an

« Average Coherence/(X) = -1y max| > (x;,%;)
PR

. Alltop Gabor frame together with OST successfully recovers

Rouahl Ki h hich mostk-sparse signalsrespectiveof the values of the nonzero
oughly speaking, worst-case coherence—which Seems q{Qjqog of 3 as long ask < n/logn and and the energy of

hgvg peen introduced in the related literature in [4]—is ﬁ'ny nonzero entry of is not too far away fromj|3||2/k.
similarity measure between the columns of a design matrix:

the smaller the worst-case coherence, the less similar the ) ) )
columns. On the other hand, average coherence—which WasRelationship to Previous Work
first introduced in a conference version of this paper [5]—is The problems of model selection and sparse-signal recov-
a measure of the spread of the columns of a design mateisy in general and the use of OST (also knownsaaple
within the n-dimensional unit ball: the smaller the averagéhresholding[9] and marginal regressior{10]) to solve these
coherence, the more spread out the column vectors. problems in particular have a rich history in the literature
Our main contribution in the area of model selection is théit the context of model selection in the compressed setting,
we make use of these two measures of coherence to proplsdlow’s C, selection procedure [11] and tiAaike informa-
and analyze a model-order agnostic threshold foroie-step tion criterion (AIC) [12]—both of which essentially attempt
thresholding (OST) algorithm (see Algorithm 1) for modelto solve a complexity-regularized version of the leastesgs
selection. Specifically, we characterize in Section |l bisth criterion—are considered to be seminal works, and are known
exact and the partial model-selection performance of OST tim perform well empirically as well as theoretically; seeg.e
a non-asymptoticsetting in terms ofy and v. In particular, [13] and the references therein. These two procedures have
we establish in Section Il that ji(X) < n~'/? andv(X) X been modified by numerous researchers over the years in
n~! then OST—despite being computationally primitive—canrder to improve their performance—the most notable vésian
perform near-optimally for the case when either (i) the gper being theBayesian information criterior{BIC) [14] and the
of any nonzero entry af is not too far away from the averagerisk inflation criterion (RIC) [15]. Solving model-selection
signal energy per nonzero entfy3||3/k or (ii) the signal- proceduressuch &s,, AIC, BIC, and RIC, however, is known
to-noise ratio §NR) in the measurement system is not toto be an NP-hard problem [16] even if the true model order
high? Equally importantly, in contrast to some of the existing: is made available to these procedures.
literature on model selection, this analysis in the papdd$o In order to overcome the computational intractability of
for arbitrary values of the nonzero entriesfind it does not these model-selection procedures, several methods based o
require then x k submatrices of the design matrik to have convex optimization have been proposed by various re-
full column rank. searchers in recent years. Among these proposed metheds, th
Sparse-Signal Recovery:The second main objective oflasso [17] has arguably become the standard tool for model
this paper is to study the problem tfw-complexity, model- selection, which can be partly attributed to the theorétjoar-
order agnostic recovery ok-sparse signals with arbitrary antees provided for the lasso in [2], [18]-[20]. In partauthe
nonzero entries in the noiseless cade this regard, our results reported in [2], [18] establish that the lasso aggitnp
main contribution in the area of sparse-signal recoveras t ically identifies the correct model under certain condisiam
we make use of a recent result by Tropp [6] in Section Ithe design matriXX’ and the sparse vectg@r Later, Wainwright
to extend our results on model selection to recoverykof in [19] strengthens the results of [2], [18] and makes eiplic
sparse signals using OST (see Algorithm 2). In particuldhe dependence of exact model selection using the lasseon th
we establish in Section IV that Gabor frames—which argmallest (in magnitude) nonzero entry 8f However, apart
collections of time- and frequency-shifts of a nonzero sedéwm the fact that the results reported in [2], [18], [19] éve
vector (sequence) i6”—can potentially be used together withexact model selection and are only asymptotic in nature, the
OST to exactly recovemost k-sparse signals with arbitrarymain limitation of these works is that explicit verificatiaf
nonzero entries as long @s= 1 ~2/logn and the energy of the conditions (such as thaepresentable conditiorof [18]
any nonzero entry of is not too far away from|3||3/k. This and theincoherence conditionf [19]) that a generic design
result then applies immediately to Gabor frames generatamhtrix X needs to satisfy is computationally intractable for
from the Alltop sequence [7]. Specifically, since Gabor fesm k = p~!. The most general (and non-asymptotic) model-
selection results using the lasso for arbitrary design ioesr
_ ZRecall 'Big-O' notation: f(n) = O(g(n)) (altematively, f(n) < 9(n)) have been reported in [20]. Specifically, Candés and Plan
if 3co > 0,n0: V0 > no, f(n) < cog(n), f(n) =Q(g(n)) (alternatively, . . . .
F(n) = g(n) if gtn) = O(f(n)), and f(n) = O(g(n)) (altematively, have established in [20] that the lasso correctly identifiest
f(n) < g(n)) if g(n) 3 f(n) 3 g(n). models with probabilityl — O(p~!) under certain conditions



Algorithm 2 The One-Step Thresholding (OST) Algorithm for Sparse-8ligRecovery
Input: An n x p matrix X, a vectory € C", and a threshold > 0
Output: An estimates € CP of the true sparse signal

B+ 0 {Initialize}

f+— XHy {Form signal proxy

I {ied{l,....p}:|fil > A} {Select indices via OST

Br + (X1)Ty {Recover signal via least-squafes
on the smallest nonzero entry gf provided: (i) the spectral design matrices whereas the most influential results
norm (the largest singular value) and the worst-case cabere reported in [10], [22], [24] assume that the values of

of X are not too large, and (ii) the values of the nonzero entries  the nonzero entries gf are independent and statistically
of 5 are independent and statistically symmetric around zero. symmetric around zero.
Despite these recent theoretical triumphs of the lasscs it i 3) Verifiable Sufficient Condition#n contrast to [10], [22]—

still desirable to study alternative solutions to the pewblof [24], we relate the model-selection performance of OST
polynomial time, model-order agnostic model selection in a  to two global parameters of, namely,. andv, which
compressed setting. This is becadse: are trivially computable in polynomial timexz(X) =

1) Lasso requires the minimum singular values of the XX = Illmax andv(X) = ;5 [|(X"X — 1)1 .
submatrices ofY corresponding to the true models to 4) Non-Asymptotic Theongimilar to [10], [23], [24], the
be bounded away from zero [2], [18]—[20]. While this is analysis in this paper can be used to establish that OST
a plausible condition for the case when one is interested ~ achieves (asymptotically) consistent model selection un-

in estimating3, it is arguable whether this condition is dgr certain conditions. However, the re.sullts reported. in
necessary for the case of model selection. this paper are completely non-asymptotic in nature (with

2) The current literature on model selection using the lasso ~ explicit constants) and thereby shed light on the rate at
lacks guarantees beyond = p~! for the case of which OST achieves consistent model selection.
generic design matrices and arbitrary nonzero entries. In®) Partial Model Selectionin addition to the exact model-
particular, given an arbitrary design mati, [2], [18]- selection performance of OST, we also characterize in
[20] do not provide any guarantees beyong /n for the paper its partial model-selection performance. In
even the simple case ¢f € R”.. this regard, we establish that theniversal threshold

3) The computational complexity of the lasso for generic ~ Proposed in Section Il for OST guarante§s C S
design matrices tends to b@(p* + np?) [10]. This with high .probaplhty and we quantify the cardinality
makes the lasso computationally demanding for large-  Of the estimateS. On the other hand, both [22] and
scale model-selection problems. [23] study only exact model selection, whereas [10], [24]

study approximate (though not partial) model selection

Recently, a few researchers have raised somewhat similar . . . )
only for Gaussian design matrices [10] and assuming

concerns about the lasso and revisited the much older (and . g ! :
: Gaussian (resp. statistical) priors on the nonzero entries
oft-forgotten) method of thresholding for model selectjd@], £ 3124 10
[22]-[24], which has computational complexity @ (np) of 3 [24] (resp. [10]).
only and which is known to be nearly optimal fgrx p  We conclude this discussion of model selection by making
orthonormal design matrices [25]. Algorithmically, thisskes three important remarks. First, to the best of our knowledge
our approach to model selection similar to that of [10], 22]Donoho in [9, Theorem 7.2] reported some of the earliest
[24]. Nevertheless, the OST algorithm presented in thisspagknown results for thresholding in the compressed settiray-N
differs from [10], [22]-[24] in five key aspects: ertheless, the conclusion drawn in [9] was that threshgldin
1) Model-Order Agnostic Model Selectionlike [10], is feasible for model selection as long &ss p ', the so-
[22]-[24], the OST algorithm presented in this papegalled “square root bottleneck.” Second, the structure 8TO
is completely agnostic to both the true model order and the model-order agnostic threshold of this paper enable
and any estimate of. us to carry outocalized model selectiorSpecifically, if one
2) Generic Design Matrices and Arbitrary Nonzero Enis provided at the time of recovery with a sgt such that
tries: The results reported in this paper hold for arbitrarf O S then the threshold proposed in this paper enables one
(random or deterministic) design matrices and do n&® carry out model selection using the submatkix instead
assume any statistical prior on the values of the nonze?6 X, thereby reducing the complexity of OST frai(np) to
entries of 3 even whenk scales linearly withn. In  O(n|T). Third, the results reported in this paper hold for any
contrast, [23] only studies the problem of Gaussiam < p and, in particular, the universal threshold proposed here
for model selection reduces to the universal thresholdgseg
3During the course of revising this paper we also became amhf21], by Donoho and Johnstone [25] fprx p orthonormal design
which proposes a thresholded variantbafsis pursuif3] for sparsity pattern - matrices. In this sense, some of the results reported ind@5)
recovery using Gaussian design matrices. However, thdtsesported in L
[21] are limited because of similar issues and because afetipgirement that also be thotht of as speC|aI instances of the results IEEI]bOI’t
the magnitude of the smallest nonzero entry3die known to the algorithm. in this paper.



3o = Set of k-sparse signals in 3; for I'p = Set of signals in 31 — X5 that are
which & 3 /n supported on “bad” subsets

%1 = Space of all k-sparse unimodal signals in R”} such that k < n/logn

Fig. 1. A Venn digram used to illustrate the major differetegween the BP-based recovery guarantees and the OST+leasedry guarantees férsparse
unimodal signals inRE. measured using Alltop Gabor frames. The OST algorithm iganiaed to recove € X1 — I'g. But BP, unlike OST, is only
guaranteed to recoveg € Y9 in this case.

Finally, in the context of sparse-signal recovery in thany guarantees beyond =~ ./n for even the simple case
compressed setting, there exists now a large body of litexatof 5 € R”.. This difference between the BP-based recovery
that studies this problem under the rubric cdmpressed guarantees presented in [37], [38] (which are essentialbetd
sensing[26]. However, convex optimization procedures sucan [39]) and the OST-based recovery guarantees provided in
as basis pursuit (BP) [3], Dantzig selector [27], and lassothis paper is also illustrated using a Venn diagram in Fig. 1
although known for their ability to recover sparse signalder for unimodal signalddefined asjj;| ~ ¢ for some arbitrary
a variety of conditions—are ill-suited for large-scalelpiems ¢ > 0 and for alli € S).
because of their computational complexity. On the othedhan _
low-complexity iterative algorithms such as matching pitrs D- Notation
[28], subspace pursuit [29], CoSaMP [30], and iterativedhar The following notation is used throughout the rest of this
thresholding [31], and combinatorial algorithms based qgraper. We use lowercase letters to denote scalars and sector
group testing such as HHS pursuit [32] and Fourier samplesdile we use uppercase letters to denote matrices. We also
[33], [34] have been shown to perform well either only fouse 0, 1, and I to denote the all-zeros vector, the all-ones
some special classes of design matrices [32]-[34] or fagdesvector, and the identity matrix, respectively. In additiave
matrices that satisfy theestricted isometry propert§RIP) use|v||, to denote the usual,-norm of a vectorv, while
[35]. Nevertheless, explicitly verifying that satisfies the RIP we useAT, || Al|2, and || A||max to denote the Moore—Penrose
of orderk - u~! is computationally intractable; in particular,pseudoinverse, the spectral norm, and the maximum magnitud
since we have from the Welch bound [36] that! < /n for of any entry of a matrixA, respectively. Further, we use
p > 1, the guarantees provided in [29]-[31] for the case d¢f)T and ()" to denote the operations of transposition and
generic design matrices at best hold only £esparse signals conjugate transposition, respectively, while we uyse) to
with & < y/n. denote inner product that is conjugate linear in the first

In contrast, and motivated by the need to have verifiabfggument. Finally, given a seéf, we usevz to denote the
sufficient conditions for low-complexity algorithms andoar part of a vectow corresponding to the indices ihand Az to
trary values of the nonzero entries 6feven whenk > \/n, denote the submatrix obtained by collecting tfi¢ columns
we extend in Section Il our results on model selection usirgf a matrix A corresponding to the indices in
OST and characterize the performance of Algorithm 2 in terms o
of three global parameters of the design mathix p (), E- Organization
v(X), and||X||2. In particular, a highlight of this part of the The rest of this paper is organized as follows. In Section II,
paper is that we partially strengthen the results of Pfandae propose a model-order agnostic threshold for the OST al-
et al. [37] and Herman and Strohmer [38] by establishingprithm and characterize both the exact and the partial inode
that Gabor frames generated from the Alltop sequence cgglection performance of OST. In Section I, we extend our
be used along with OST to recover madsisparse signals results on model selection and characterize the sparsaisig
belonging to certain classes even wherr, \/n. It is worth recovery performance of OST. In Section IV, we specialize
pointing out here that both [37], [38] also establish thdtoll the model-selection and the sparse-signal recovery seeiilt
Gabor frames can recover mdssparse signals—albeit usingthe previous sections to Gabor frames. Finally, we provide
BP—even wherk = \/n. Nevertheless, the basic differenceproofs of the main results of this paper in Section V and
between [37], [38] and the work presented here is that [3Tpnclude with a discussion of the limitations and extersion
[38] require the phases of the nonzero entriesofo be of our results in Section VI.
statistically independent and uniformly distributed op timit
torus whereas we do not assume any statistical prior on t .
values of the nonzero entries ¢f Note in particular that, A- ASsumptions
just like the lasso result in [20], the results reported i@][3  Before proceeding with presenting our results on model
[38] for Alltop Gabor frames consequently do not providselection using OST, we need to be mathematically precise

H'e M ODEL SELECTION USING ONE-STEP THRESHOLDING



about our problem formulation. To this end, we begin by. Likewise,SNR,,;, is the ratio of the energy in the smallest
reconsidering the measurement moglet X 5+n and assume nonzero entry ofy and the averagroiseenergy per nonzero
that X is ann x p real- or complex-valued design matrixentry, whilesNR simply denotes the usual signal-to-noise ratio
having unit /5-norm columns,3 € CP? is a k-sparse signal in the system. Itis also worth pointing out here the relagfop
(181l < k), andk < n < p. Here, we allowX to be either a betweensnRr,,;, andSNR and MAR; specifically, it is easy to
random or a deterministic design matrix, while we takéo see thatSNR,,;;, = SNR - MAR. We are now ready to state the
be a complex additive white Gaussian noise vector. It isworfirst main result of this paper that concerns the performance
mentioning here though that Gaussianitynois just a simpli- of OST in terms of exact model selection.

fied assumption for the sake of this exposition; in partit:ulaTheorem 1(Exact Model Selection Using OSTSuppose that

the results presented in this section are readily genabihz_the design matrixX satisfies the coherence property and let

to other noise distributions as well as perturbations tvin 2 5
bounded’s-norms. Finally, the main assumption that we maké be distributed asC/(0,0°1). Next, choose the threshold

here is that the true model = {i € {1,....p} : |8i| >0} = max{%lol‘vn'SNRv ﬁ\/i}v 20%logp for any t &

is a uniformly randonk-subset of(1, ..., p}. In other words, (0,1). Then, if we writeu(X) as u = c¢;n~'/7 for some

we have a uniform prior on thsupportof the data vectop. ¢ > 0 (which may depend op) andy € {0} U [2,00), the
OST algorithm (Algorithm 1) satisfieBr(S # S) < 6p~—!

B. Main Results providedp > 128 and the number of measurements satisfies

Intuitively speaking, successful model selection recgihe coklogp (csklogp /2
columns of the design matrix to hiacoherent In the case '~ Max | 2klogp, SNRum < MAR >
of the lasso, this notion of incoherence has been quantified 72
in [18] and [19] in terms of the “irrepresentable condition”  _ max{2k log p coklogp (C3k10gp> } )
and the “incoherence condition,” respectively (see al€)[2 " SNR - MAR’ MAR
In contrast to earlier work on model selection, however, we

L . B Y
formulate this idea of incoherence in terms of therence Here: the quan2t|t|e282, ¢z > 0 are defined as, = 16(1 1)
property. and c3 = 800cyt~~, while the probability of failure is with

respect to the true modd and the noise vectoy.
Definition 1 (The Coherence PropertyAn n x p design
matrix X having unit/s-norm columns is said to obey the
coherence property if the following two conditions hold:

0.1

The proof of this theorem is provided in Section V. Note
that the parametert” in Theorem 1 can always be fixed a
priori (say t = 1/2) without affecting the scaling relation

wX) < ——, and (CP-1) in (1). In practice, however{ should be chosen so as to
v2logp reduce the total number of measurements needed to ensure
v(X) < L, (CP-2) successful model selection; the optimal choicetah this
v regard ist,,, = argmin, max{%,(%)wi} .
In words, (CP-1) roughly states that the columnsXofare Notice also that Theorem 1 is best suited for applications

not too similar, while (CP-2) roughly states that the colsmh \yhere one is interested in quantifying the minimum number
X are somewhat distributed within tlhedimensional unit ball. of measurements needed to guarantee exact model selection
Note that the coherence property is superior to other measuior a given class of signals. Alternatively, it might be trese

of incoherence such as the irrepresentable condition in typ some other applications that the problem dimensions are
key aspects. First, it does not require the singular valdesffxed and one is instead interested in specifying the class of
the submatrices o' to be bounded away from zero. Secondsignals that leads to successful model selection. Thewolp

it can be easily verified in polynomial time since it simplyariant of Theorem 1 is best suited in such situations.

requires checking thatX ™ X — 7| .y < (2001ogp)~*/2 and . L
I(XEX = D)1l < (p — Dn~ V2| XTX — Ilimax. Theorem 2. Suppose that the design matik satisfies the

Below, we describe the implications of the coherenc‘é)here”ge property and let the noise veajdre distributed as
property for both the exact and the partial model-selectiédV (0o 1). Next, letp > 128 and choose the threshold—
performance of OST. Before proceeding further, howevenax %10Mvn'SNR7ﬁ\/§}\/ 202 logp for anyt € (0,1).

it is instructive to first define some fundamental quantitiephen the OST algorithm (Algorithm 1) Saﬂsf@s(g# S) <
pertaining to the problem of model selection as follows: 6,1 as long as we have that < n/(2logp) and

o . B /
min = min |5;|, MAR = —&8_ coklogp csklogp
b nin |4 18112/k MAR > max{ ; e 3”2 : )
SNR,.i — B?nin SNR = ”BH%
E[Inl3) kS TE[n)3]” Here,c, > 0 is as defined in Theorem &; > 0 is defined as

s -2 i ; s wi
In words, Bmin IS the magnitude of the smallest nonzero entry 800¢™7, and the probal_alhty of failure is with respect to
e true modelS and the noise vecton.

of 3, while MAR—which is termed asninimum-to-average
ratio [23]—is the ratio of theenergy in the smallest nonzero Note that the proof of Theorem 2 follows directly from
entry of 8 and theaverage signal energy per nonzero entfy the proof of Theorem 1. There are a few important remarks



Algorithm 3 The Sorted One-Step Thresholding (SOST) Algorithm for Mdgkelection
Input: An n x p matrix X, a vectory € C", and model ordek
Output: An estimateS C {1,...,p} of the true modelS

[ Xy {Form signal proxy
(Z, fs) « SORT(({L o, p} f)) {Sort the signal proxy
S 1I[1: k] {Select model via OSFI

that need to be made at this point concerning the threshaldorithm of choice for model-selection problems wheresit i
proposed in Theorem 1 and Theorem 2 for the OST algorithdifficult to obtain a reliable estimate of the true model arde
First, it is easy to see that the proposed threshold is cdgiple We conclude this discussion by rephrasing Theorem 3 for
agnostic to the model ordérand only requires knowledge of SOST along the lines of Theorem 2 for OST.

the SNR and the noise variance. Second, some of the bounds

. . . : eorem 4. Suppose that the design matrk satisfies the
in the proof of Theorem 1 and extensive simulations Sugg(%:st')therence roperty. Next, lpt> 128 and let the noise vector
that the absolute constant) in the proposed threshold is property. P

o 2 )
somewhat conservative and can be reduced through the fiee distributed aA(0,5°7). Then the SOST algorithm

e . i ofi < -1

of more sophisticated analytical tools (also see Section VEAZg:;?tzm 3)2 15 at'SﬂZ%r(S # §) < 6p7" as long as we
Finally, while estimating the true model ordér tends to vek < n/(2logp)

be harder than estimating th&R and the noise variance {Cleogp cgklogp}

(4)

o? in majority of the situations, it might be the case that MAR > min

te(0,1) | m-SNR = p2

estimatingk is easier in some applications. It is better in such

situations to work with a slight variant of the OST algorithnHere, the quantities,, ¢; > 0 are as defined in Theorem 2,

(see Algorithm 3) that relies on knowledge of the model ordgyhile the probability of failure is with respect to the truede!
k instead and returns an estimagecorresponding to thé S and the noise vector.

largest (in magnitude) entries of . We characterize the , o )
performance of this algorithm—which we term sarted one- The final result that we present in this section concerns the

step thresholdingSOST) algorithm—in terms of the following Partial model-selection performance of OST. Specificalgte
theorem. that our focus in this section has so far been on specifying

conditions for either the number of measurements omhr

Theorem 3 (Exact Model Selection Using SOSTBUppose of the signal that ensure exact model selection. In many real
that the design matrix(’ satisfies the coherence property angyorld applications, however, the parameters of the problem
let the noise vector be distributed asCA/(0,0%1). Next, are fixed and it is not always possible to ensure that eitrer th
write ;(X) as p = ¢yn~ /7 for somec; > 0 (which may number of measurements or ther of the signal satisfy the
depend orp) and~y € {0} U[2, 00). Then the SOST algorithm aforementioned conditions. A natural question to ask tisen i
(Algorithm 3) satisfie®r(S # S) < 6p~' aslong agp > 128 whether the OST algorithm completely fails in such circum-
and the number of measurements satisfies stances or whether any guarantees can still be providedsfor i
>7/2} performance. We address this aspect of the OST algorithm in

coklogp <03k log p

, the following and show that, even if thear of 3 is very
SNRmin MAR

small, OST has the ability to identify the locations of the
ok logp (C3k10gp)7/2} @) nonzero entries of whose energies are greater than both the

> mi 2%k log p,
n tg(lclgll) max{ ng

noise power and the average signal energy per nonzero entry.
In order to make this notion mathematically precise, we first
Here, the quantitiess, c3 > 0 are as defined in Theorem 1,define them-th largest-to-average ratigLAR,,,) of 3 as the
while the probability of failure is with respect to the truedel ratio of theenergy in them-th largest (in magnitude) nonzero

"SNR - MAR’ MAR

= mi 2k1
tg(%g)max{ ogp

S and the noise vectoy. entry of 5 and the average signal energy per nonzero entry of
The proof of this theorem is just a slight variant of thé’ that is, 1Bom 2

proof of Theorem 1 and is therefore omitted here. A few LAR,, = (L;

remarks are in order now concerning OST and SOST. First, the 18113/ %

computational complexity of SOST is comparable with that G}'f/hereﬁ(m) denotes then-th largest nonzero entry ¢f (note
OST since efficient sorting algorithms (such as heap sart) tethat MAR = LAR;). We are now ready to specify the partial
to have computational complexity 61(plogp) only. Second, model-selection performance of the OST algorithm.

(1) and (3) suggest that knowledge of the true model okder.

allows SOST to perform better than OST in situations Whe;@eorem o (Partial Model Sgle_ction Using OST)uppose
the threshold parameteris fixed a priori (cf. Theorem 1). that the design matrixX satisfies the coherence property.

iatri 2

In this sense, SOST should be preferred over OST for exé\l;"?Xt’ Iet_p > 128 and 5 be distributed asCA(0,0°1).
model selectiorprovidedone has accurate knowledge of thé:'na"y' fix f‘ parameter € 1(0’ 1) and choose the threshold
true model orderk. On the other hand, OST should be the = maX{;louvn - SNR, m\@} /202 log p. Then, under



the assumption that < n/(2logp), the OST algorithm as long asn = (logp)?. Theorem 1 (resp. Theorem 3)

(Algorithm 1) guarantAee_s with probability exceedihg 6p—*  therefore implieNs that OST (resp. SOST) correctly iderttifie
thatS ¢ S and |S — S| < (k — M), whereM is the largest the exact model with probability exceeding— O(p~') as

integer for which the following inequality holds: long asn 7z max {1, o=t 1;;% klog p. In particular, this
coklogp chklogp suggests that if eithemArR(8) = ©(1) or sNR = O(1)
LARp; > max nSNR 2 . (5) then OST leads to successful model selection with high

N / _ . probability providedn Z max {1, m}klogp.“ On the
Here, the quantitieg;, 5 > 0 are as defined in Theorem 2,,ihar hand, one of the best known results for model selec-

while the prob_ability of failure is with respect to the tru@del ;5 using the maximum likelihood algorithm requires that
S and the noise vectay. n 5 max ii’“ L2 klog (p/k) | [40] (also see [23], [41)).

SNR-MAR ’
The proof of this theorem, which relies to a great extent orhis establishes that OST (and its variants) performs near-
the proof of Theorem 1, is provided in Section V. We concludsptimally for Gaussian design matrices provided (i) R
this section by pointing out that no counterpart of Theoremih the measurement system is not too high or (ii) the energy
exists for the SOST algorithm since we can never i&ive S of any nonzero entry af is not too far away from the average

in that case because of the nature of the algorithm. energy||3|3/k and k scales sublinearly with.

) ) Remark2. It is worth pointing out here that similar results can

C. Discussion also be obtained for sub-Gaussian design matrices (i.¢ri-ma

The results reported earlier can be best put into persgectdes with entries given by i.i.d. bounded random variabl&s) e
by considering some specific model-selection problems thating standard concentration inequalities. Note also tiat
are commonly studied in the literature and juxtaposing opreceding discussion regarding Gaussian matrices strengt
results with the ones reported in previous works. The rest thfe results of Fletcher et al. [23] concerning asymptotiay&
this section is devoted to such comparison purposes. sian) model selection using thresholding (cf. [23, Theo2§m

1) Gaussian Design MatricesMatrices with independent 5y | 5550 versus OSTHistorically, OST (and its variants)
and identically distributed (i.i.d.}/(0,1/n) entries (i.e., Gaus- ig preferred over the lasso because of its low computational
sian matrices) are perhaps the most widely assumed desigipiexity. The results reported in this paper, howevengor
matrices in the model-gelectlor? Ilteratur_e. In ordert_a:&pjtie forth another important aspect of OST (also see [10BT can
our results to Gaussian design matrices, we first need £ to successful model selection even when the lasso fails
specify the worst-case coherencand the average coherencespecifically, note that the lasso solution is not even guaeh
v of ii.d. Gaussian matrices. The first lemma that we hayg pe ynique if the minimum singular value of the submatrix of
in this regard follows immediately from Proposition 5 iny ¢orresponding to the true model is not bounded away from
Appendix A through a simple union bound argument. zero (see, e.g., [18], [19]). On the other hand, OST does not

Lemma 1 (Worst-Case Coherence of Gaussian Matricest require the aforementioned condition for model selectitote
X be ann x p design matrix with i.i.d A(0,1/n) entries. that this is in part due to the fact that model selection utieg
Then we have that(X) < /(15logp)/n with probability lasso is in fact a byproduct of signal reconstruction, whsre
exceedingl — 2p~—! as long asn > 60 logp. the OST results do not guarantee signal reconstructiorowith

imposing additional constraints o¥. In other words, we have

Remarkl. A cautious reader might argue here that Lemmadgiapiished in the paper thatodel selection is inherently an
only provides an upperbound on the worst-case coherence,gkiq, problem than signal reconstruction

Gaussian matrices. Nevertheless, the results (and thatidefin
of the coherence property) presented earlier remain Viadide
replacesu(X) with an upperboundi(X) on u(X).

Finally, it is worth comparing the model-selection perfor-
mance of OST with that of the lasso for the cases when the
lasso does succeed. In this regard, the most general result
Lemma 2 (Average Coherence of Gaussian Matricdsdt X  for model selection using the lasso states thaXifis close
be ann x p desigh matrix with i.i.dA(0,1/n) entries. Then to being a tight frame in the sense thak|l» ~ \/p/n
we have that/(X) < /15logp/n with probability exceeding then the lasso identifies the correct model with probability
1 —2p~2 as long asp > n > 601logp. exceedingl — O(p~1) as long as (i) the nonzero entries ®f

) . are independent and statistically symmetric around zéijo, (
Proof: The proof of this lemma is also a consequence o n/logp, and (iii) MAR = K192 [20, Theorem 1.3]. On

of Proposition 5 in Appendix A. Specifically, fix an indexy & jiher hand, assume r%v&lhfﬁgt the design maXrbhas

i€ {L...,p}hand. dgfingﬁ; idzjé/\f# X /P = 1aTh§n_ itdis (X) = n=1/2 and w(X) < n-1; there indeed exist design
easy to see that; Is distribute a (0’.I/n) an .'t IS NG~ matrices that satisfy these conditions (e.g., Gaussiarniaaat
pendent ofx_i. Theref_ore Proposition 5 in Append|xA~|mpI|esaS proved earlier, and Alltop Gabor frames, as proved in
througih a Slmpleﬁmolbg.ﬁ{nd argun;_entt f2|<xi’lxi>| < Section IV). We then have from Theorem 2 (resp. Theorem 4)
Sgocigp)/?}r\r/]vg pforgf r?oxt%/oﬁg\?vesefr?g t_h2ep fac?tsh;);tnf 8S that OST (resp. SOST) identifies the correct model with
i """ probability exceedingl — O(p~!) as long ask =< n/1
andv(X) = max; [(x;,%;)|/v/p — 1. P Yy a (r—) g = n/logp
Le_mma 1- and Lemma 2 establish tha_t Ggusman de.5|gnHere, we use the shorthand notatiffn)  g(n) (resp.f(n) 3 g(n)) to
matrices satisfy the coherence property with high prolitgbil indicate thatf(n) = g(n) (resp.f(n) = g(n)) modulo a logarithmic factor.



and MAR 7~ max {ﬁ, 1}%. This suggests that, even forsignals. In doing so, we also strengthen the results of Sshna
the cases in which the lasso succeeds, OST can be guaran@gdVandergheynst [22] for signal recovery using threshgld

to perform as well as the lasso in situations where either tite at least three key aspects. First, we specify polynomial-
energy of any nonzero entry ¢f is not too far away from time verifiable sufficient conditions under which recovefy o
the average energyAR = ©(1)) or the SNR is not too high k-sparse signals using OST succeeds. Second, the threshold
(SNR = O(1)). Equally importantly, and in contrast to thethat we specify for the OST algorithm (Algorithm 2) does not
lasso results reported in [20], OST is guaranteed to athasn trequire knowledge of the model ordér Third, we do not
performancerrespectiveof the values of the nonzero entriegmpose a statistical prior on the nonzero entries of the data
of the data vectof. vector. Note that, just like [22], we limit ourselves in this ex-

3) Near-Optimality of OSTWe have concluded up to thisposition to recovery ok-sparse signals in a noiseless setting;
point that—under certain conditions amArR and SNR—the extensions of these results to noisy settings would be tegor
OST algorithm can perform as well as the lasso and it perforisa sequel to this paper. In other words, the measurement
near-optimally for Gaussian design matrices. We conclhide t model that we study in this section is= X3 and the goal
discussion by arguing that the OST algorithm in fact perfornis to recover thek-sparses using OST under the assumption
near-optimally forany design matrix that satisfieg(X) < that the true modeS = {i € {1,...,p} : || > 0} is a
n~Y? andy(X) = n~' as long asvAR = ©(1) or SNR = uniformly randomk-subset of{1, ..., p}.

O(1).% In order to accomplish this goal, we first recall the
thresholding results obtained by Donoho and Johnstonef25JA. Main Result

which form the basis of ideas such as the wavelet de”OiSing_lntuitiver speaking (and as noted in the discussion in
for the case of x p orthonormal design matrices. Specificallygection 11), the problem of sparse-signal recovery is ishdy
it was established in [25] that X is an orthonormal basis then,ore difficult than the problem of model selection. We captur

hard thresholding the entries &y atA = /o logp results - hart of this intuitive notion in the following in terms of the
in oracle-like performance in the sense that one recoveth (Wstrong coherence property

high probability) the locations of all the nonzero entriésso

that are above the noise floor. Definition 2 (The Strong Coherence Propertyj\n n x p
Now the first thing to note regarding the results present&@Sign matrixX' having unit/,-norm columns is said to obey

earlier is the intuitively pleasing nature of the thresholthe strong coherence property if the following hold:

proposed for the OST algorithm. Specifically, assume fat 1

is an orthonormal design and notice that, sipg¢&’) = 0 in wX) < 60elogp’ and (SCP-1)
this case, the thresholl < max { uv/n - SNR, 1 /02 logp v(X) < 2 (SCP-2)
proposed earlier reduces to the threshold proposed in [25] Vvn

and Theorem 5 guarantees that thresholding recovers (within order to better illustrate the difference between the co-
high probability) the locations of all the nonzero entrieherence property and the strong coherence property, nate th
of 3 that are above the noise floorar,, = X82 = e have from Lemma 1 and Lemma 2 that Gaussian design
m € 8. Now consider instead design matrices that are notatrices satisfy the coherence property with high prolitgbil
necessarily orthonormal but which satisf(X) = n~'/2 as long asn = (logp)?. On the other hand, Lemma 1 and
and v(X) =X n~!. Then we have from Theorem 5 that.emma 2 suggest that Gaussian design matrices satisfy the
OST identifies (with high probability) the locations of thestrong coherence property with high probability as long as
nonzero entries of whose energies are greater than both the - (logp)*. In other words, there are scaling regimes in
noise power and the average signal energy per nonzero enwhich Gaussian matrices satisfy the coherence property but
LAR,, = max4 - 1LlElgr ) S particular, are not guaranteed to satisfy the strong coherence property

~ SNR’ n . . .
under the assumption that eitheraR = ©(1) (and since We are now ready to state the main result of this section that

MAR < LAR,,) OF SNR = O(1), this suggests that the osTmakes use of the notation developed earlier in Section 1.

in sgch_situations performs in a near—c_;ptim_al (oracle)!ikerheorem 6 (Sparse-Signal Recovery Using OSTSuppose
fashion in the sense that it recovers (with high probabilitthat the design matrix satisfies the strong coherence prop-

the locations of all the nonzero entries gfthat are above erty and choose the threshold = 10p]|y]|» [_2logp_ for

. . .. . . 1—e—1/2
the noise floown_houtrequmng the design matriX to be an anyp > 128. Then the OST algorithm (Algorithm 2) satisfies
orthonormal basis.

Pr(3 # B) <6p~! as long as

6
THRESHOLDING 2| X|2logp’ logp ©)

[1l. RECOVERY OFSPARSESIGNALS USING ONE-STEP . D u2MAR
k < min .
In this section, we extend our results on model selecti

MWere, the probability of failure i i
using OST to model-order agnostic recovery kfsparse re, the probability of failure is only with respect to tirae

modelS (locations of the nonzero entries 8§, while ¢4, c5 >

5Note that it trivially follows from the Welch bound [36] th#ltere exists 0 are numerical constants given b/y = 3Te andcs = 43.

no design matrix withp > n >> 1 that satisfieg:(X) < n =17 with v < 2. . . . . .
On the other hand, there does exist a large body of literatieseoted to The proof of this theorem is prowded in Section V. The

constructing matrices wit(X) =< n~1/2 [42]. significance of Theorem 6 can be best put into perspective



by considering the case of the design matfx being an unit-norm seed vector and defifféto be ann x n time-shift
approximately tight frame in the sense that'||» ~ \/p/n; matrix that is generated from as follows

indeed, we have that Gaussian design matrices satisfydhis ¢
dition with high probability [43] and that Gabor frames gen- _
erated from any (unit-norm) nonzero vector sati§fyf ||» = T(g) = g g1 - : )
Vp/n (= y/n) [44]. It then follows from Theorem 6 that if g : :

X satisfies the strong coherence property then OST exactly ' ' ' gn

recovers anyk-sparse vectofs with high probability as long gn  Gn—1 g1

ask 3 p~2MAR; in particular, if we assume thataArR = ©(1) where we writeT' = T'(g) to emphasize thal" is a matrix-
then this condition reduces to 3 1 ~2. On the other hand, valued function onC". Next, denote the collection of.
low-complexity sparse-recovery algorithms such as sutsspgamples of a discrete sinusoid with frequery™ m €
pursuit [29], CoSaMP [30], and iterative hard thresholdingo,_._,n — 1} as w,, = [eﬂﬂ%o eﬂﬂ%(n*l)f_
[31] all rely on the restricted isometry property (RIP) [35]Finally, define the correspondingx n diagonalmodulation
Therefore, the guarantees provided in [29]-[31] for theecagatricesasWV,, = diagw,,). Then the Gabor frame generated
of generic design matrices are limited kesparse signals thatfrom ¢ is ann x n? block matrix of the form

satisfy k < =1, which is much weaker than the 3 p—2
scaling claimed her® We conclude this section by pointing X=[WoT WiT ... WoaT]. (8)

out that if one does have knowledge of the true model ordgr words, columns of the Gabor fram& are given by
then it can be shown through a slight variation of the progfownward circular shifts and modulations (frequency shift
of Theorem 6 that SOST (the sorted variant of the OST) cam the seed vectoy. We are now ready to state the first
also recover sparse signals with high probability—the oniain result concerning the geometry of Gabor frames, which
difference in that case being that the constgnih Theorem 6 follows directly from [44].

gets replaced with a smaller constaft= /800.

g1 9n 92

Proposition 1 (Spectral Norm of Gabor Frames [44]pabor
frames generated from nonzero (unit-norm) seed vectors are
tight frames; in other words, we have thaK||» = /n.

Our focus in Section Il and Section Ill has been on Recall from Theorem 6 and the subsequent discussion that

establishing Fhat OST leads to succegsful mp_del Select'(ffgsign matrices with small spectral norms are particularly
and sparse-signal recovery under certain conditions mth(/vell-suited for recovery ofi-sparse signals. In this regard,

gl)(;bal Kararr;e;ers (I)'f the de5|gp mlatriil: “(Xf)'dy()_Q' an(ttl_ Proposition 1 implies that Gabor frames are the best that one
X ]2- S Noted eartier, one particuiar class ot design matricgs hope for in terms of the spectral norm. The next resutt tha
that satisfies these conditions is the class of random s

i . N . ~We prove concerns the average coherence of Gabor frames.
Gaussian matrices. In contrast, our focus in this sectiamis

establishing that Gabor frames—which are collectionsmoéti Theorem 7 (Average Coherence of Gabor Frameisgt X be
and frequency-shifts of a nonzero seed vectorCih—also a Gabor frame generated from a unit-norm seed vegter
tend to satisfy the aforementioned conditions on the matdX'. Then, using the notatiopm.x = max; |g;| and gmin =
geometry. Note that Gabor frames constitute an importamin; |g;|, the average coherence of can be bounded from
class of design matrices because of the facts that (i) Galtoe above as follows:

frames are completely specified by a total of numbers o 2

that describe the seed vector, (i) multiplications withbGa v(X) < 1 gonax (V1 n%min)l—F L= " imin, 9)
frames (and their adjoints) can be efficiently carried oungs
algorithms such as théast Fourier transform (iii) Gabor
frames arise naturally in many important application are
such as communications, radar, and signal/image procgssi
and (iv) there exist deterministic constructions of Galanfes i <(Z. modn) — 1, V 1D _ (10)

IV. WHY GABOR FRAMES?

Proof: In order to facilitate the proof of this theorem, we
igst map the indices of the columns of from {1,...,n?%}
Rci {0,...,n—1} x {0,...,n — 1} as follows

that (as shown next) are nearly-optimal in terms of the 1&tpui

conditions ony(X), »(X), and | X|2. In words, (i) = (¢,m) signifies that the-th column of X

corresponds to thé/ + 1)-th column of W,,,T. Next, fix an
A. Geometry of Gabor Frames and Its Implications index ¢ (resp.x(i) = (¢,m)) and make use of the above

A (finite) frame forC" is defined as any collection of> n reindexing to write

vectors that span the-dimensional Hilbert spac&€” [49]. n’
Gabor frames foC™ constitute an important class of frames, Z<Xn(i)7xn(j)> = Z (Xe,ms Xermr)
having applications in areas such as communications [5@] an j=1 (,m’yec
radar [38], that are constructed from time- and frequeridftss 7" (£m/)#(&;m)
of a nonzero seed vector ifi”. Specifically, letg € C™* be a nolonol nol
= Xtams Xom) + Y Xeans Xeme). (1)
SNote that thek = p—! claim is an easy consequence of tBersgorin 4 m/=0 771//:0
m m

=0
circle theorem[45]; see, for example, [39], [46]-[48]. oL
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Finally, note that we can explicitly write the columns &f
y p y Sn max |gT|Z|gs|+1_ngm1n

using (8) for any(¢, m) € C as follows re{l,...n —
S#T
Xem = [90-0,€7" 70 . gnop, e E T 1)} 12) (@)
< ngmax(\/— gmln) + 1- ng?nin- (15)

where we use the notatiap,), as a shorthand fog, modn-

The rest of the proof now follows from simple algebrai
manipulations. Specifically, it is easy to see from (12) that
first term in (11) can be simplified as

é—Iere ¢) mainly follows from the triangle inequality and a
simple reindexing argument, whilgl) mainly follows from
the Cauchy-Schwarz inequality sm@s;él lgs| = llgllh —

lgr-| < /T — gmin- The proof of the theorem now follows by

. i (Xeoms Xt dividing the above expression by — 1. |
= ’ In words, Theorem 7 states that the average coherence of
ﬁ; e Gabor frames cannot be too large. In particular, it implres t
n n—1 Gabor frames generated from unimodal (unit-norm) seed vec-
- Z Z 9ig0)nI(a—t) Z 2t (m'=m) tors (i.e., seed vectors characterizedjby, =< gmax = n~/?)
g=1¢'— m/'=0 satisfyv(X) = n~!. On the other hand, recall that the Welch
v bound [36] dictates that(X) > (n+1)~'/2 for Gabor frames.
nond . ! 27 0= (m/ —m) It is therefore easy to conclude from these two facts that
= 22 Z 9(g—0)n9a€)n Z 7w + Gabor frames generated from unimodal seed vectors are auto-
q=2¢'=0 m’=0

¢ 70 matically guaranteed to satisfy the coherence propersp(re
1 strong coherence property) as long @sX) = (logp)~/?
+n Z To—0), 90— (@ ngh_o, Z ga-r), (13) (resp.u(X) 2 (logp)~1). In the context of model selection
o " and sparse-signal recovery, Theorem 7 therefore sugdests t
O'F#e f # Gabor frames generated from unimodal seed vectors are the
where(a) in the above expression is a consequence of thef st that one can hope for in terms of the average coherence.
inally, recall from the discussions in Section Il and

n—1 gQTr—(m —m) _
thatzm’zoe N 0 for any flxedq_e {2,....m} Section lll that—among the class of matrices that satisfy
Likewise, we can simplify the second term in (11) as fO||OWﬁ_|
e (strong) coherence property—design matrices with Ismal

- worst-case coherence are particularly well-suited for ehod
Z (Xe,ms Xe,m/) selection and sparse-signal recovery. In the context ofoGab
m'=0 frames, the goal then is to design unimodal seed vectors
e that yield Gabor frames with the smallest-possible woastec

1 . . . .
_ zn: x nz 27 L (m —m) coherence. This, however, is an active area of mathematical
- LTl On9(a=0)n research and a number of researchers have looked at this
- ,’,’f/;% problem in recent years; see, e.g., [8]. As such, we can gimpl
n n—1 n—1 leverage some of the existing research in this area in order
. —1 ’ . .. . .
=y l900-0.° 3 eimimom) 90| > 1 to provide explicit constructions of Gabor frames thatsfti
q=2 m/=0 m'=0 the (strong) coherence property with nearly-optimal woesgte
mFEm m'#m  coherence.
(b) 2 2 Specifically, letn > 5 be a prime number and construct a
- ZQ |90 + (0 = Dlga-e.] unimodal seed vectay € C" as follows
q:
-1 2 14 jer® 1 gontd 1 _jorn=n® T 16
=—-1+ n|g(l—€)n ( ) g = |:fe %e n S ﬁe n :| . ( )
]277 —L(m’—m) _ n—1
where(b) follows from the fact thap _ .., The sequence[ L2t } is termed as thelltop se-
—1 for any fixedq € {2,...,n}. vn

To conclude the theorem note from (11), (13), and (14) thgeence[7] in the literature. Th|s sequence has the property
we can write that its autocorrelation decays very fast and, therefare, i

is particularly well-suited for generating Gabor frameghwi

" small worst-case coherence. In particular, it was estaddis
16{?____,12} / {xi, xj) recently in [8] that Gabor frames generated from the Alltop
J;; seed vectoy given in (16) satisfy
n—1 1
* 2 =
=max|ngf_g, Y ga-e), — L+nlga-p,| ’ pX) = mac [(x%5)] < Nk (47)
=0
'#e In addition, since we have that,i, = gmax = n~ /2 for
() - 5 the Alltop seed vector, it is easy to check using Theorem 7
aS el Xy |9 > 0|+ A L+ 7nlgr| ‘ that the average coherence of Alltop Gabor frames satisfies
s =7 refl,

v v(X) < (n+1)"! < pu(X)/y/n. An immediate consequence
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of this discussion is that all the results reported in Sectlo defineIl = (m,...,7) andII® = (mpy1,...,mp) for any
and Section Il in the context of model selection and sparsk-<€ [p]. Then then x p (normalized) design matrixX is
signal recovery using OST apply directly to the case of Alltosaid to satisfy thek, ¢, ¢)-statistical orthogonality condition
Gabor frames. In particular, it follows from Theorem 6 thaif there existe, 6 € [0,1) such that the inequalities

Alltop Gabor frames together with OST are guaranteed to
recover mostk-sparse signals—regardless of the statistical
dependence across the nonzero entriesgefas long as
k Z n andMAR = O(1). In contrast, the only other results
available in the sparse-signal recovery literature fortojll
Gabor frames are based on the higher-complexity basis ipuré
[3] and require the nonzero entries Bfto be independent Remark3. Note that the StOC derives its name from the
and statistically symmetric around zero for the case whesct that if X is ap x p orthonormal matrix then it trivially

(X1 Xn = Dzl < €[22
X T X2lloo < ellz]]2

(StOC-1)
(StOC-2)

hold for everyfixed z € C* with probability exceedind — §
With respect to the random permutatidh).

Vi 2k < n [37], [38].

V. PROOFS OFMAIN RESULTS

In this section, we provide detailed proofs of the mai
results reported in Section Il and Section Ill. Before pro

satisfies the StOC for everk € [p] with e = § = 0. In
addition, although we will not use this fact explicitly ineth
paper, it can be checked thatXf satisfies(k, ¢, §)-StoC then
i approximatelypreserves the/s-norms of k-sparse signals
with probability exceeding — 6 as long ask < ¢ 2.

ceeding further, however, it is advantageous to developesom Having defined StOC, our goal in the next two lemmas is

notation that will facilitate our forthcoming analysis. this
regard, recall that the true mod8lis taken to be a uniformly
randomk-subset of[p] = {1,...,p}. We can therefore write

the data vectors under this assumption as concatenation 9

a random permutation matrix and a deterministisparse
vector. Specifically, letz € CP be adeterministick-sparse
vector that we write (without loss of generality) as

Ei(zl,...,zk, o,...,o)T (18)

= 2€Ck (p—k) times

and let P, be ap x p random permutation matrix; in other

words,

T

er,] (19)

where e denotes thej-th column of the canonical basis

andIl = (ry,...,m,) is a random permutation df]. Then

the assumption that the modglis a random subset dp] is

equivalent to stating that the data vectbican be written as
8 = P,z. In other words, the measurement vectocan be
expressed as

P = [er, e,

y=XB+n=XPz+n=Xpnz+n (20)

whereIl = (7y,...,7) denotes the first elements of the
random permutatiorll, X;; denotes then x k submatrix

obtained by collecting the columns &f corresponding to the
indices inII, and the vector € C* represents thé nonzero

entries off.

1) Proof of Theorem 1The general road map for the proofD
of Theorem 1 is as follows. Below, we first introduce the no-

tion of (k, ¢, §)-statistical orthogonality conditioStOC). We

next establish the relationship between the StOC parameter Mo = E

and the worst-case and average coherenc& af Lemma 3

and Lemma 4. We then provide a proof of Theorem 1 by first

showing that ifX satisfies the StOC then OST recovérwith

high probability and then relating the results of Lemma 3 and

Lemma 4 to the coherence property.

to relate the StOC parametérs:, andé to the worst-case and
average coherence of the design mafXix

emma 3. LetIl = (y, ..., m,) denote the first elements of
random permutation dfp] and choose a parameter> 1.
Then, for anye € [0,1), k¥ < min {¢?v~2, (1 4+ a)"'p}, and
fixedz € C*, we have

Pr ({X does not satisfy (StOC-})

2
_ M) (21)
16(2 4+ a=1)2pu?

Proof: The proof of this lemma relies heavily on the so-
called method of bounded differenc@¢lOBD) [51]. Specif-
ically, we begin by noting that|[(Xf{Xn — I)z|| =
max; | Y, % (Xx,, %x;)|. Therefore for a fixed index, and
conditioned on the event;, = {m; = '}, we have the
following equality from basic probability theory

X)

k
=Pr (‘ sz<xi/,xﬁj>‘ > €llz]|2
j=1
i
Next, in order to apply the MOBD to obtain an upper
bound for (22), we first define a randorti — 1)-tuple

I (m1,...,mi—1,Tit+1,...,7) and then construct a
oob martingalg My, My, ..., Mj_1) as follows:

k
[ZZJ<Xi/’XFj>
j=1
J#
k .
Mg :E[sz<xi’7xﬂj>lﬂfi>g,Ai’]7 = 1,...,I€— 1

j=1
G

< 4kexp (

k
o (‘ Dz {xm )| > el
j=1

j#i

Ai/>. (22)

Ai/], and

Definition 3 ((k,¢,d)-Statistical Orthogonality Condition) Wherewf_ﬂé denotes the first elements ofl~*. The first thing

LetII = (my,...,m,) be a random permutation ¢p], and

to note here is that we have from the linearity of (conditipna



Mg(?") — MZ(S) =

3z <1E[<xi/,x,,j>

i

<Z]27\

JF

|: Xy Xﬂ—J

ﬂ-l_—l)Z—lvTrf_Z =T, Al’:| - E{<Xi"xﬂ'j>

,i=rA

—i
Ty 5p—15 T

12

—i —i _
T1—e—1>T¢ —SvAl' )|

»,} —E{(Xi/,){m)

S

—i
T o1 T —5“41’ ‘

=dyg,;

= Y ylldes|+ D0 Jz]ldes]. (25)

J< 41 3> 041
J#i J7#i

expectation

[Mo| = | 3 5B (i, ) | Av ]|

J#i
<Z’27’ (Xir, X, ) | Ai }

JFi
< Z’ZJ‘ Z le,xq)

J#i q= 1P

q#i’

(b)
< vzl < Vv |z (23)

where (a) follows from the fact that, conditioned oml;,
7; has a uniform distribution ovefp] — {i'}, while (b) is

We have now established théd/y, M,...,M;_1) is a
(real- or complex-valued) bounded-difference martingsde
quence with|M, — My;—1| < 2udy for ¢ = 1,...k — 1.
Therefore, under the assumption that< ¢2v~—2 and since
it has been established in (23) thatly| < VEkv|z|., it is
easy to see that

k
Pr (’ sz<xi/,ij)’ > €||z]|2 Ai/)
j=1
JFi

< Pr (|Mk1 — M0| > E”ZHQ — \/—

x)

© (e = VEv)*|2|
mainly a consequence of the definition of average coherence. < dexp <— TQ (28)

In addition, if we user,’ to denote the/-th element ofl T~
and define
k
My(r) = E{Z 2 (Xt X )
j=1
J#i
for ¢ = 1,...,k — 1 then, since(My, My,...,My_1) is a
Doob martingale, it can be easily verified thHatf, — M,_1|
is upper bounded byup,. , [M;(r) — My(s)] (see, e.g., [52]).
Now in order to upper boundhip,. , [M,(r)—M;(s)], notice
that we can bountV/,(r)— M,(s)| as in (25). In addition, we
have that for every > ¢(+1, j # 4, the random variable; has
a uniform distribution oveﬂp]] {ﬂ-l_—i)Z—l’ r,i'} when condi-
tioned on{r; "%, ,,m,* = r,i'}, whereasr; has a uniform
distribution over[p] — {Wl__i)g_l,s,i’} when conditioned on
{mi%, |,m; " =s,i'}. Therefore, we ge¥ j > (+1,j # 1,

T = Al (24)

2p
/ ;! <7
Xiry Xr) — (Xir, Xs) | (26)

Similarly, it can be shown thazj< e+1 |24][dej| < |zer|20

|de,j| =

=il

wheni < 0, i< |z|dej| < ‘26‘21‘ wheni = ¢ + 1,
j#i
and Zg<é+1 |25 |des| < (2] + ‘Z”ll )2p wheni > £+ 1.
Consequently, regardless of the |n|t|al choiceipfve obtain
sup [Me(r) — Mq(s)]
<onlad + e+ o—gmg 2 fil)- @)

g> /41

1642 3 dj
=1

where (¢) follows from the complex Azuma inequality for
bounded-difference martingale sequences (see Lemma 5 in
Appendix A). Further, it can be established through routine
calculations from (27) tha} .}~ d2 < (2 +a~1)2| 2|2 since

k <p/(1+ a). Combining all these facts together, we finally
obtain that

Pr (H(X&XH -1zl > e||z|2>

(d) "
Lk pr (13 20| > el

Jj=1
J#i

k
=k ZPr <’ZZJ X, X,,J

i'=1 =
75
(_

1/>Pr< )

VEkv)?
) 2> (29)

(e)
< 4k —_—
= Arexp ( 16(2+a=1)2p

where (d) follows from the union bound and the fact that
ther;’s are identically (though not independently) distribyted
while (e) follows from (28) and the fact that; has a uniform
distribution over[p]. [ |

Lemma 4. LetIl = (my,...,m) andII¢ = (mpyq1,...,7p)
denote the firsk and the last(p — k) elements of a random
permutation of[p], respectively, and choose a paramate?
1. Then, for anye € [0,1), k¥ < min {e?v~2,(1 + a)"'p},
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Mg(’l’) — Mg(s)

PIE (E[<Xi,,xﬁj>

T1—0—1,T¢ = SvA’L":|) |

T1—¢—1,T¢ =T, AZ/:| - ]E|:<Xi/7x7'rj>

(xir, %) — (%07, Xs) e |7
< e[ 0r) = o )| + ’ e Ve 2wl + 57T ) @D
—_— —
=dy
and fixedz € C*, we have from the complex Azuma inequality that
Pr ({X does not satisfy (StOC—}Z) Pr <| sz ity %, )| > |22 Ai’)
j=1

(e = VEv)?

<4(p—k)exp (— m) (30)

< Pr (‘Mk — M0| > €||ZH2 — \/El/ HZ||2

X)

Proof: The proof of this lemma is very similar to that of (Z) dexp | — (e = Vkv)? (33)
Lemma 3 and also relies on the MOBD. To begin with, we note - 8(1+a=1)2u?

that || Xff. Xuz|| . = maxiep_p ‘ > 2j(Xre, Xx, )|, Where

_ 15 _ where (a) follows by noting thaty"}_, d2 < (14 a~")?||z|]3
[p—#] = {1,....p — k} and 7} denotes the-th element sjncek < p/(1 + a). Combining all these facts together, we
of II°. Then for a fixed index € [p— k], and conditioned finajly obtain the claimed result as follows

on the eventd,, = {n{ = '}, we again have the following

simple equality Pr (HchanHoo > e||Z|2>

®) b
Pr (130 5 )| > elsls |40 ) < =) Pr (|2 2ytser )| > el
Jj=1 j=1
k p
] (D DRI S T V) R CH R o (13056050 > lllafds ) Pras)
=1 =1 j=1
(©) —VEv)?
Next, as in the case of Lemma 3, we construct a Dookx 4(p — k) exp <—%> (34)
martingale sequendé\y, M, ..., My) as follows: a H

where (b) follows from the union bound and the fact that

- then¢'s are identically (though not independently) distribyted
(0
Mo = E[Zl 23 %) Ai'} and while (¢) follows from (33) and the fact that¢ has a uniform
o distribution over[p]. u
M, = E[Zz-(x-/ < >’7TH5 A-/} /=1 L Note that Lemma 3 and Lemma 4 collectively prove
- 7 10y Ty ) | Tyttt

through a simple union bound argument thatrar p design
matrix X satisfies (k,¢,6)-StOC for anye € [0,1) with

. . (e=Vkv)?
wherer; ., now denotes the firstelements ofI. Then, since 0 < 4pexp (_16(€2+a*1y)2,u2) foranya > 1 as long as we

7; has a uniform distribution ovep] — {i’} when conditioned have thatk < min {€*v=2, (1 + a)"'p}. We are now ready
on A;, we once again have the bounal/;| < VEkv|z||2. to provide a proof of Theorem 1.

Therefore, the only remaining thing that we need to show in  Proof (Theorem 1): We begin by making use of the
order to be able to apply the complex Azuma inequality to theotation developed at the start of this section and writing
constructed martingale\o, M, . .., My) is that|M,—M,_1| the signal proxyf = X"y as f = X" Xz + XHy. Now,

Jj=1

is suitably bounded. let II° = (mg41,...,7m,) denote the lastp — k) elements
In this regard, we make use of the notatidd,(r) = of Il and note that we need to show thpf-[[-c < A and
E[Zlle 2 (Xit X M mie 1, me = Ai/} and note that MiNiefi,...x} [fx;| > X in order to establish thaf = S.

| My (r)— My(s)| can be bounded as in (32), which implies that In this regard, we first assume that satisfies(k, ¢, ¢)-
sup,., [Me(r) — Mq(s)] < 2udy, €=1,... k. Consequently, StOC and define\. = maX{%GHZHzaﬁ? o? 10gp} for
we have now established th@t/y, My, ..., My) is a bounded- any ¢t € (0,1). Next, it can be verified through Lemma 6
difference martingale withM, — M, 1| < 2ud,. Therefore, in Appendix A that; = Xy satisfies||7j| . < 21/02logp

sincek < 22 and | M| < vk v | 2|2, we once again have with probability exceeding — 2(/27 Tog p-p)~*. Now define



the probability event

G = {{X satisfies (StOC-1) and (Stoc-}zﬂ

N{lil < 2vomo8r} ) (39)

and notice that we haver(G) > 1 -4 — 2(y/2rlogp - p) L.
Further, conditioned on the eve@if we have

(@)
I fnelloo < X X2lloo + [1XTienl] oo

(b) (c)
< €l|lz]l2 + 2v/o%logp < A

where (a) follows from the triangle inequality(b) is mainly
a consequence of the conditioning on the ev@ntand (c¢)
follows from the definition of \.. Next, we definer =
(XH X1 —1I)z and notice that, conditioned on the evéntwe
have for anyi € [k] = {1,...,k} the following inequality:

| s

(36)

> |zi] = [I7lloc = [l7llo0

(d) (e)
2 Bmin_6|‘z||2_2\/0—21ogp Z Bmin_)\e- (37)

Here, (d) follows from the conditioning org, while (e) is

= |zi +7i + Tir,

a simple consequence of the choice Xqf It can therefore

be concluded from (36) and (37) that ¥ satisfies(k, ¢, d)-

StOC and the OST algorithm uses the thresholdhen we

havePr(§7é S) < Pr(G°) as long asimin > 2.

14

By > 2N = m € S. Now define M to be the largest
integer for which3,;) > 2A rlolds and note thaB,;, >
2\ = Bu > 2\ = m € Sforeveryi € {1,...,M},
which in turn implies|S — §] < (k — M). Finally, note that

1 k1
By > ——4/0?logp < LARy > 2R 08P
I—t n - SNR
and
1 1k lo
By > ¥20u 2no?logp- SNR <= LAR); > C3,u—2gp'

This completes the proof of the theorem since the evgnt
holds with probability exceedingy— 6p~". [

3) Proof of Theorem 6:The first key result that we will
need to prove Theorem 6 is regarding the expected spectral
norm of a random principal-submatrix ¢iX®X — 7). The
following result is mainly due to Tropp [6] and it was first
presented in the following form by Candés and Plan in [20].

Proposition 2 ([6], [20]). LetIl = (74, ..,
permutation of[p] and definell = (7, ..
[p]. Then, forg = 2log p, we have

(&[0 - 1]2]) "

[2k|| X121
§21/q(30ulogp—|—13 w) (38)
p

7p) be a random
., ) foranyk €

Finally, to complete the proof of this theorem, we let o
k < n/(2logp) and fix e = 10u/2Togp. Then the claim Pprovided thatk < p/4|X|[3. Here, the expectation is with
is that X satisfies(k;, e, §)-StOC with§ < 4p~. In order to respect to the random permutatidh

establish this claim, we only need to ensure that the choserUSing this result, it is easy to obtain a probabilistic bound

parameters satisfy the assumptions of Lemma 3 and Lemm%
In this regard, note that (i < 1 because of (CP-1), and (ii)

Vv < § because of the assumption that< n/(2logp)

and (CP-2). Therefore, since the assumpfion 128 together

with k& < n/(2logp) implies that16(2 + a~1)? < 72, we

. o 2
obtain exp —%

th respect toll) on the minimum and maximum singular
values of a random submatrix of since, by the Markov

inequality, we have thafPr (HXEXH -1, > <) <

cTE|||XHXn - I||g} The following result is simply a

< p~2. We can now combine generalization of the corresponding result presented O [2

this fact with the previously established facts to see thﬁ?oposition 3 (Extreme Singular Values of a Random Sub-

the threshold\ = max{%lOu\/n - SNR, ﬁ\/i}\/?O'Q log p
guarantees thabr(S # S) < 6p~—! as long asn > 2klogp
and Buin > 2. Finally, note that

1 k1
Bmin > ﬁ4\/02 logp <= n > QI 08D

SNRpin
and
1 csklogp /2
min > =200/ 2n02 1 “SNR <—= n> | ————— .
p g OHVEnaTios " < MAR
This completes the proof of the theorem. [ |

2) Proof of Theorem 5:We begin by making use of the

notation developed earlier in this section and conditigron
the eventg defined in (35) withe = 10p4/2logp. Then it is

matrix). Let IT = (m,...,7;) denote the firstt elements
of a random permutation ofp] and suppose that(X) <
(chlogp)~t and k < p/(cs?|| X||31og p) for numerical con-
stantsc;] = 60e and ¢4 = 37e. Then we have that

Pr(|Xfxn 1], =) <27t (39)

Note that Proposition 3 guarantees that, under certain con-
ditions onu(X) and k, every singular value omostn x k
submatrices of{ lies within (v1 —e=1/2,v/1+e-1/2). We
are now ready to provide a proof of Theorem 6 that relies on
this key result as well as on Lemma 3 and Lemma 4.

Proof (Theorem 6): The proof of this theorem follows
along somewhat similar lines as the proof of Theorem 1.
Specifically, by making use of the notation developed at the

easy to see from the proof of Theorem 1 that the estinSatestart of this section, we writf = X"y = X" X2 and

is a subset o5 because of the fact thdltfe||.c < .
Next, assume without loss of generality that= 3;) and
note from (37) that f-,| > [8;)| — A for anyi € {1,...,k}.

first argue that the set of indic&s= {i € [p] : | fi| > A} is
the same as the true modglwith high probability. Then we
make use of the union bound and argue using Proposition 3

Then, sincer; € S if and only if |f.,| > A\, we have that that 3 = 3 with high probability.
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Fig. 2. Numerical comparisons between the performanceeSBST algorithm (Algorithm 3) and the lasso [17] using artodllGabor frame. The x p
design matrixX has dimensions = 127 andp = n?, the MAR of the signals isl, the SNR in the measurement system16 dB, and the noise variance
is 02 = 10~2. The (forward and adjoint) matrix—vector multiplicatioase carried out using the fast Fourier transform, while tssd is solved using the
SpaRSA package [53] with the regularization parametercset+ 2/ 202 log p [20]. (a) Plots of thefraction of detectionsdefined asfp = |SNS|/k, and
the fraction of false alarmsdefined asfra = (|S| — |S N S|)/|S|, versus the model order (averaged 0266 independent trials) for both SOST and the
lasso. (b) Plots of the amount of time (averaged a@) independent trials) that it takes SOST and the lasso to smteemodel-selection problem versus
the model order.

In this regard, recall that it was established in the proof of VI. CONCLUSIONS
Theorem 1 using Lemma 3 and Lemma 4 thatXifobeys | the modern statistics and signal processing literathie,
the coherence property theiq it satisfigis e, §)-StOC with  |5550 has arguably become the standard tool for model selec-
€ = 10uy/2logp andd < 4p~* as long ask < n/(2logp). tion because of its computational tractability [17] and som

This fact therefore implies that, under the assumptions gicent theoretical guarantees [2], [18]-[20]. Nevertbgldt
the theorent, the following inequalities hold with probability s desirable to study alternative solutions to the lassaesin

exceedingl — 4p~1: (i) it is still computationally expensive for massively da-
scale inference problems (think ofin the millions), (i) it

I fitelloe = Xt Xni2lloo < ell2]2 (40) |acks theoretical guarantees beydnd: ! for the case of
generic design matrices and arbitrary nonzero entries(iand
and it requires the submatrices of the design matrix to have full
) - rank, which seems reasonable for signal reconstruction but
! [fril 2 Bumin = |(X X — Izl appears too restrictive for model selection.

> Buin — €| 2J2. (41) In this paper, we have revisited two variants of the oft-
- forgotten but extremely fast one-step thresholding (OST) a
Also note that, conditioned af = {||XH Xy —1|, < e~1/2}, gorithm for model selection. One of the key insights offered
we can write by the paper in this regard is that polynomial-time model
selection can be carried out even when signal reconstructio
V1I—e 12 |z]ls < || Xnzl|la < V1+e V2|z|l2. (42) (and thereby the lasso) fails. In addition, we have estabdls
— in the paper that if then x p design matrix X satisfies
w(X) = n"? andv(X) < n~! then OST can perform near-
Therefore if we condition on the evert then it trivially optimally for the case when either (i) the minimum-to-aggra
follows from the assumptions of the theorem and (40) angtio (vAR) of the signal is not too small or (i) the signal-
(41) thatZ = S with probability exceeding — 4p~' since to-noise ratio §NR) in the measurement system is not too
(i) Z C S because| fre[|c < \/% = A (cf. (40), (42)), high. It is worth pointing out here that some researcherkén t

Y

—e—1/2 =

and (i) Z S S because: < M_QIMAR/(C?; log p) implies that Past have observed that the sorted variant of the OST (SOST)
Bunin — €| 2]l2 > A = mini—e{l Ky [frs] > A (cf. (42), (42)). algorithm at times performs similar to or better than thedas
Consequently, we conclude7.f.ﬁap(z)gf — (XHxp)~lxH (see Fig. 2 for an illustration of this in the case of an Alltop
with high probability when conditioned on the probability3abor frame inC'2). One of our main contributions in this
event&, which in turn implies tha3r = (X7)t Xz = Bs regard is that we have taken the mystery out of this observati
with probability exceedingl — 4p—' when conditioned on and explicitly specifi_ed in the paper the four key parameters
£. The claim of the theorem now follows trivially from Of the model-selection problem, namejy(X),»(X), MAR,

the union bound and the fact th&tr(£¢) < 2p~! from and sNR, that determine the non-asymptotic performance of
Proposition 3 sinceX satisfies the strong coherence propert)® SOST algorithm for generic (random or deterministic)
andk < p/(2| X2 1og p). m design matrices and data vectors having generic (random or
- deterministic) nonzero entries; also, see [10] for a coiispar

"Note that the assumptions of the theorem trivially guamnbe condition of our results with corresponding results recently repbite
k < n/(2logp) since||X||3 > p/n from elementary linear algebra. the literature.
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Fig. 3. Partial model-selection performance of the OST ritlym (averaged ove200 independent trials) corresponding to an Alltop Gabor fram&297.
The MAR of the signals in this experiment is the SNR in the measurement systemdsdB, and the noise variance i€ = 10~2.

The second main contribution of this paper—which com- Finally, the third main contribution of this paper is that
pletely sets it apart from existing work on thresholding fowe have extended our results on model selection using OST
model selection—is that we have proposed and analyziedlow-complexity recovery of sparse signals. In particula
a model-order agnostic threshold for the OST algorithmuithin the area of low-complexity algorithms for sparsgrsil
The significance of this aspect of the paper can be bestovery (such as, matching pursuit [28], subspace pursuit
understood by realizing that in real-world applicationdgsit [29], CoSaMP [30], and iterative hard thresholding [31]g w
often easier to estimate th&\R and the noise variance inhave for the first time specified polynomial-time verifiable
the system than to estimate the true model order. In paufficient conditions under which recovery of sparse signal
ticular, we have established in the paper that the threshdldving generic (random or deterministic) nonzero entngs s
A = max i%mm/m, ﬁ\/i}\/m for t € (0,1) ceeds _u_sing generic (random or deterministic)_design O
enables the OST algorithm to carry out near-optimal parti] addition, we have also provided a bound in the paper on
model selection. It is worth pointing out here that this gire the average coherence of generic Gabor frames and used this
old is rather conservative in nature for small-scale pnuigle 'esult to establish that an Alltop Gabor frame@? can be
(see (5)) and we believe that there is still a lot of room fd¢sed together with the OST algorithm to successfully caaty o
improvement as far as reducing (or eliminating) some of tfgodel selection and recovery _of sparse signals irrespeofiv
constants in the threshold is concerned. In particulars it {1€ phases of the nonzero entries even if the number of nonzer
easy to see from the proof of Theorem 1 that the constditries scales almost linearly with
10 in the threshold is mainly there due to a number of loose
upperbounds; in fact, this constant wa$ in a conference APPENDIXA
version of this paper [5] and we believe that it can be reduced CONCENTRATION INEQUALITIES
even further. Some of the numerical experiments that we haven this appendix, we collect the various concentration in-
carried out in this regard also seem to lend credence to @jualities that are used throughout the paper.

belief. Specifically, Fig. 3 reports the results of one su . .

experiment concerning partial model-selection performar?f rg&%itk;ciiir':ydrs(;::e?nu dmla Ineqx/[allty [Séjl\lj)l_)elt)égéiﬁ)ngg d
H H H : e(hﬂ()v 1yeves n

of the O_ST a'goﬂﬁ?m|s'2§|terms of the metrics @@ction difference, (real-valued) martingale sequence (@n 7, P).

of deteptlops fDA: =%, and fraction of false alarms That is, E[M;] = M;_, and |M; — M,_,| < b; for every

fra 7”“‘5”5‘, averaged oveR00 independent trials. ; = 1,...,n. Then for every > 0, we have

In this experiment, thex x p design matrixX corresponds 5

to an Alltop Gabor frame inC%7, the noise variance is Pr(|M,, — M| > €) < 2exp <_ Z ) (43)

0? = 1072, the MAR and the SNR are chosen to be 23 b2

and 3 dB, respectively, and the initial threshold is set at i=1

A max{%c/u,/n TSNR, ﬁ\/ﬁ} /202 Togp with ¢ = Proposition 5 (Inner Product of Independent Gaussian Ran-

9_1)/v2 and¢’ = 2¢. It can be easilv seen from Fia. 3 thaldom Vectors [48]) Letx,y € R™ be two random vectors that
(v2-1)/v2 ande y g are independently drawn from\/(0,021) distribution. Then

OST successfully carries out partial model selecfify = 0) ; h
even when the threshold is set @6\;, which proves the or everye > 0, we have
somewhat conservative nature of the proposed threshold in p 2

€
terms of the constants. ! (‘<X7 v)| = 6) < 2exp (_m) - (44
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Since we are mainly concerned with complex-valued rathe event{|Re(z1)| > ¢/v2} U {|Im(z1)| > ¢/v2} and

dom variables in this paper, it is helpful to state a compleoting that the real and imaginary parts9% are identically
version of the Azuma inequality. The following lemma is anlistributed asA/(0, %), and (¢) mainly follows by upper

easy consequence of Proposition 4.

a probability space and letMy, M, ..., M,) be a bounded
difference, complex-valued martingale sequencé(@nr, P).
That is,E[M;] = M;_, € C and further|M; — M;_1| < b;
for everyi = 1,...,n. Then for every > 0, we have E}

2
43007
i=1

Proof: To establish this lemma, first defirte = Re(M;)
and T; = Im(M;). Further, notice that sincB[M;] = M;_,
and |[M; — M; 1| < b;, we equivalently have that: (i) [5)
E[SZ] =51 and|Si —S',1| < b;, and (ll)E[T’l] =T;_1 and
|T; — Ti—1| < b;. Therefore, we have thdtS, S1,...,S,)
and(7y, 11, ...,T,) are bounded difference, real-valued mar-g
tingale sequences qif, 7,P) and hence

Pr (|M,, — M| > ¢)

Pr(|M, — Mp| > ¢€) <4dexp| — (45)

(3]

(4

(7]

(8]
<
5
vz El

€

(a) (
S Pr |Sn—50| Z
V2

) + Pr (|Tn —T0| >

(b) €2
<dexp| — — (46)
45 b2 [10]
i=1

. . . {11]
where (a) follows from a simple union bounding argumen
and (b) follows from the Azuma inequality. B [12]

Lemma 6 (/..-Norm of the Projection of a Complex Gaussiam3]
Vector). Let X be a real- or complex-valued x p matrix
having unit /2-norm columns and lef) be ap x 1 vector
having entries independently distributed @8/(0, o%). Then
for any e > 0, we have

[14]
[15]

Pr (|| X0 > 0€) < [16]

4-]9 . eXp(_62/2) ) (47)

V2T
Proof: Assume without loss of generality that = 1,
since the general case follows from a simple rescaling ardﬁgl
ment. Letxy, ..., x, € C" be thep columns ofX and define [19]

(48)
20
Note that thez;'s are identically (but not independently)[ ]

distributed asz; ~ CA(0,1), which follows from the fact [21]

that 7, i CN(0,1) and the columns ofX have unit/s-
norms. The rest of the proof is pretty elementary and follows
from the facts that [22]

[17]

. _H .
zi=x;m, t=1,...,p.

(@)
Pr (X"l > €) < p-Pr(IRe(21)]” +

(b)
< 2p-Pr (|Re(21)| >

(c) 4p .exp(—62/2)
V2n e [25]

follows by taking a union bound over the evenfy
e}, (b) follows from taking a union bound over

Im(z1)|* > €®) g

7)

[24]

(49)

Here, (a)
>

Ui{lzi]

bounding thecomplementary cumulative distribution function
1 _ 1.2
Lemma 5 (The Complex Azuma Inequality) et (2, 7, P) be asQ(e) < V2me exp(—3€”) [55]
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