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Cloud K-SVD: A Collaborative Dictionary Learning
Algorithm for Big, Distributed Data
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Abstract—This paper studies the problem of data-adaptive
representations for big, distributed data. It is assumed that a
number of geographically-distributed, interconnected sites have
massive local data and they are interested in collaboratively
learning a low-dimensional geometric structure underlying these
data. In contrast to previous works on subspace-based data
representations, this paper focuses on the geometric structure of a
union of subspaces (UoS). In this regard, it proposes a distributed
algorithm—termed cloud K-SVD—for collaborative learning of
a UoS structure underlying distributed data of interest. The goal
of cloud K-SVD is to learn a common overcomplete dictionary
at each individual site such that every sample in the distributed
data can be represented through a small number of atoms of the
learned dictionary. Cloud K-SVD accomplishes this goal without
requiring exchange of individual samples between sites. This
makes it suitable for applications where sharing of raw data
is discouraged due to either privacy concerns or large volumes
of data. This paper also provides an analysis of cloud K-SVD
that gives insights into its properties as well as deviations of the
dictionaries learned at individual sites from a centralized solution
in terms of different measures of local/global data and topology
of interconnections. Finally, the paper numerically illustrates the
efficacy of cloud K-SVD on real and synthetic distributed data.

Index Terms—Consensus averaging, dictionary learning, dis-
tributed data, K-SVD, power method, sparse coding.

I. INTRODUCTION

Modern information processing is based on the axiom that
while real-world data may live in high-dimensional ambient
spaces, relevant information within them almost always lies
near low-dimensional geometric structures. Knowledge of
these (low-dimensional) geometric structures underlying data
of interest is central to the success of a multitude of infor-
mation processing tasks. But this knowledge is unavailable to
us in an overwhelmingly large number of applications and
a great deal of work has been done in the past to learn
geometric structure of data from the data themselves. Much
of that work, often studied under rubrics such as principal
component analysis (PCA) [3], generalized PCA [4], hybrid
linear modeling [5], and dictionary learning [6]–[8], has been
focused on centralized settings in which the entire data are
assumed available at a single location. In recent years, there
has been some effort to extend these works to distributed
settings; see, e.g., [9]–[20]. The setup considered in some of
these works is that each distributed entity is responsible for
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either some dimensions of the data [9]–[11] or some part of
the learned geometric structure [10], [11], [16]. Other works in
this direction also focus on learning under the assumption of
data lying near (linear) subspaces [9]–[13], require extensive
communications among the distributed entities [14], and ig-
nore some of the technical details associated with processing
among distributed entities having interconnections described
by graphs of arbitrary, unknown topologies [12]–[15].

In this paper, we are interested in a setting in which a
number of geographically-distributed sites have massive local
data and these sites are interested in collaboratively learning
a geometric structure underlying their data by communicat-
ing among themselves over public/private networks. The key
constraints in this problem that distinguish it from some of
the prior works are: (i) sites cannot communicate “raw” data
among themselves; (ii) interconnections among sites are not
described by a complete graph; and (iii) sites do not have
knowledge of the global network topology. All these con-
straints are reflective of the future of big, distributed data in the
world. In particular, the first constraint is justified because of
the size of local data compilations as well as privacy concerns
in the modern age. Similarly, the latter two constraints are
justified because linking geographically-distributed sites into
a complete graph can be cost prohibitive and since enterprises
tend to be protective of their internal network topologies.

A. Our Contributions

The first main contribution of this paper is formulation of
a distributed method, which we term as cloud K-SVD, that
enables data-adaptive representations in distributed settings.
In contrast to works that assume a linear geometric structure
for data [9]–[13], cloud K-SVD is based on the premise
that data lie near a union of low-dimensional subspaces. The
union-of-subspaces (UoS) model is a nonlinear generalization
of the subspace model [21] and has received widespread
acceptance in the community lately. The task of learning
the UoS underlying data of interest from data themselves is
often termed dictionary learning [6]–[8], which involves data-
driven learning of an overcomplete dictionary such that every
data sample can be approximated through a small number of
atoms of the dictionary. Dictionary learning—when compared
to linear data-adaptive representations such as the PCA and the
linear discriminant analysis [22]—has been shown to be highly
effective for tasks such as compression [6], denoising [23],
object recognition [24], and inpainting [25]. Cloud K-SVD,
as the name implies, is a distributed variant of the popular
dictionary learning algorithm K-SVD [7] and leverages a
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classical iterative eigenvector estimation algorithm, termed the
power method [26, Ch. 8], and consensus averaging [27] for
collaborative dictionary learning.

The second main contribution of this paper is a rigorous
analysis of cloud K-SVD that gives insights into its properties
as well as deviations of the dictionaries learned at individ-
ual sites from the centralized K-SVD solution in terms of
different measures of local/global data and topology of the
interconnections. Using tools from linear algebra, convex op-
timization, matrix perturbation theory, etc., our analysis shows
that—under identical initializations—the dictionaries learned
by cloud K-SVD come arbitrarily close to the one learned
by (centralized) K-SVD as long as appropriate number of
power method and consensus iterations are performed in each
iteration of cloud K-SVD. Finally, the third main contribution
of this paper involves numerical experiments on synthetic and
real data that demonstrate both the efficacy of cloud K-SVD
and the usefulness of collaborative dictionary learning over
local dictionary learning.

B. Relationship to Previous Work

Some of the earliest works in distributed processing date
back nearly three decades [28], [29]. Since then a number
of distributed methods have been proposed for myriad tasks.
Some recent examples of this that do not involve a centralized
fusion center include distributed methods for classification
[30]–[32], localization [33], [34], linear regression [35], and
(multitask) estimation [19], [20], [36]. But relatively little at-
tention has been paid to the problem of data-driven distributed
learning of the geometric structure of data. Notable exceptions
to this include [11]–[18]. While our work as well as [11]–
[15] rely on consensus averaging for computing the underlying
geometric structure, we are explicit in our formulation that
perfect consensus under arbitrary, unknown topologies cannot
be achieved. In contrast, developments in [11]–[15] are car-
ried out under the assumption of infinite-precision consensus
averaging. Further, [11]–[13] assume a subspace data model,
while [14] advocates the use of consensus averaging for com-
puting sample covariance—an approach that requires extensive
communications among the distributed entities.

Our work is most closely related to that in [16]–[18],
which also study dictionary learning in distributed settings.
But [16] focuses only on learning parts of the dictionary at
each site as opposed to the setup of this paper in which
we are interested in learning a complete dictionary at each
site. While this paper and [17], [18] share the same setup,
our work as well as [18] are fundamentally different from
[17]. The method proposed in [17] involves learning local
dictionaries at different sites and then diffusing these local
dictionaries to obtain a global dictionary. In contrast, our work
and [18] are based on the centralized K-SVD algorithm, which
is known to be superior to other dictionary learning methods
[7], and involve updating each atom of the local dictionaries
in a collaborative fashion. The difference between this work
and [18] lies in the fact that cloud K-SVD uses a distributed
variant of the power method to update each atom, whereas
[18] relies on distributed optimization for this purpose. This

helps us rigorously analyze the performance of cloud K-SVD,
whereas no such analysis is provided in [18]. Note that while
we analyzed the distributed power method component of cloud
K-SVD in our earlier work [1], this paper extends that work
to provide a comprehensive analysis of the entire algorithm.

We conclude by noting that the distributed power method
component of cloud K-SVD has similarities with the work
in [12], [37]. However, unlike [12], [37], we do not assume
perfect consensus during iterations of the power method,
which leaves open the question of convergence of the dis-
tributed variant of the power method. While analyzing cloud
K-SVD, we in fact end up addressing this question also. That
part of our analysis is reminiscent of the one carried out in
[38] in the context of convergence behavior of distributed
eigenanalysis of a network using a power method-like iterative
algorithm. However, there are fundamental differences in the
analysis of [38] and our work because of the exact place where
consensus averaging is carried out in the two works, which is
dictated by the distinct nature of the two applications.

C. Notation and Paper Organization

We use lower-case letters to represent scalars and vectors,
while we use upper-case letters to represent matrices. The
operator sgn : R → {+1,−1} is defined as sgn(x) = x/|x|,
while supp(v) returns indices of the nonzero entries in vector
v. Superscript (·)T denotes the transpose operation, ‖·‖0 counts
the number of nonzero entries in a vector, ‖v‖p denotes the
usual `p norm of vector v, and 〈u, v〉 denotes the inner product
between vectors u and v. Given a set I, v|I and A|I denote
a subvector and a submatrix obtained by retaining entries
of vector v and columns of matrix A corresponding to the
indices in I, respectively, while ‖A‖2, ‖A‖F , and ‖A‖max

denote the operator norm, Frobenius norm, and max norm (i.e.,
maximum absolute value) of matrix A, respectively. Given
matrices {Ai ∈ Rni×mi}Ni=1, diag{A1, . . . , AN} denotes a
block-diagonal matrix A ∈ R

∑
ni×

∑
mi that has Ai’s on its

diagonal. Finally, given a matrix A, aj and aj,T denote the
jth column and the jth row of A, respectively.

The rest of this paper is organized as follows. In Sec. II,
we formulate the problem of collaborative dictionary learning
from big, distributed data. In Sec. III, we describe the cloud K-
SVD algorithm. In Sec. IV, we provide an analysis of cloud K-
SVD algorithm. We provide some numerical results in Sec. V
and concluding remarks in Sec. VI. Finally, proofs of main
theorems stated in Sec. IV are given in appendices.

II. PROBLEM FORMULATION

In this paper, we consider a collection of N geographically-
distributed sites that are interconnected to each other according
to a fixed topology. Here, we use “site” in the broadest
possible sense of the term, with a site corresponding to a single
computational system (e.g., sensor, drone, smartphone, tablet,
server, database), a collection of co-located computational
systems (e.g., data center, computer cluster, robot swarm),
etc. Mathematically, we represent this collection and their
interconnections through an undirected graph G = (N , E),
where N = {1, 2, · · · , N} denotes the sites and E denotes
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edges in G with (i, i) ∈ E , while (i, j) ∈ E whenever there is
a connection between sites i and j. The only assumption we
make about the topology of G is that it is a connected graph.

Next, we assume each site i has a collection of local data,
expressed as a matrix Yi ∈ Rn×Si with Si representing the
number of data samples at the ith site. We can express all this
distributed data into a single matrix Y =

[
Y1 . . . YN

]
∈

Rn×S , where S =
∑N
i=1 Si denotes the total number of

data samples distributed across the N sites; see Fig. 1 for
a schematic representation of this. In this setting, the fun-
damental objective is for each site to collaboratively learn a
low-dimensional geometric structure that underlies the global
(distributed) data Y . The basic premises behind collaborative
structure learning of global data, as opposed to local structure
learning of local data, are manifold. First, since the number
of global samples is much larger than the number of local
samples, we expect that collaborative learning will outperform
local learning for data representations. Second, local learning
will be strictly suboptimal for some sites in cases where
sampling density, noise level, fraction of outliers, etc., are not
uniform across all sites. Collaborative learning, on the other
hand, will even out such nonuniformities within local data.

Our main assumption is that the low-dimensional geometric
structure underlying the global data corresponds to a union of
T0-dimensional subspaces in Rn, where T0 � n. One possible
means of learning such a structure is studied under the moniker
dictionary learning, which learns an overcomplete dictionary
D such that each data sample is well approximated by no
more than T0 columns (i.e., atoms) of D [6]–[8]. Assuming
the global data Y is available at a centralized location, this
problem of dictionary learning can be expressed as(

D,X
)

= arg min
D,X
‖Y −DX‖2F s.t. ∀s, ‖xs‖0 ≤ T0, (1)

where D ∈ Rn×K with K > n is an overcomplete dictionary
having unit `2-norm columns, X ∈ RK×S corresponds to
representation coefficients of the data having no more than
T0 � n nonzero coefficients per sample, and xs denotes the
sth column in X . Note that (1) is non-convex in

(
D,X

)
,

although it is convex in D alone. One of the most popular
approaches to solving (1) involves alternate minimization in
which one alternates between solving (1) for D using a fixed
X and then solving (1) for X using a fixed D [7], [39].

Unlike classical dictionary learning, however, we do not
have the global data Y available at a centralized location. Data
aggregation either at a centralized location or at any one of
the individual sites is also impractical due to communications
and storage costs of big data. Furthermore, privacy issues may
also preclude aggregation of data. Instead, our goal is to have
individual sites collaboratively learn dictionaries {D̂i}i∈N
from global data Y such that these collaborative dictionaries
are close to a dictionary D that could have been learned
from Y in a centralized fashion. In the following section, we
present a distributed variant of a popular dictionary learning
algorithm that accomplishes this goal without exchanging raw
data between sites. This is followed by a rigorous analysis
of the proposed algorithm in Sec. IV, which establishes
that the collaborative dictionaries learned using our proposed

Fig. 1. A schematic representing global data Y distributed across N sites.
Here, n denotes the dimension of each data sample, while Si denotes the
total number of data samples available at the ith site.

algorithm can indeed be made to come arbitrarily close to a
centralized dictionary.

III. CLOUD K-SVD

In this paper, we focus on the K-SVD algorithm [7] as the
basis for collaborative dictionary learning. We have chosen
to work with K-SVD because of its iterative nature and its
reliance on the singular value decomposition (SVD), both of
which enable its exploitation for distributed purposes. In the
following, we first provide a brief overview of K-SVD, which
is followed by presentation of our proposed algorithm—termed
cloud K-SVD—for collaborative dictionary learning.

A. Dictionary Learning Using K-SVD

The K-SVD algorithm initializes with a (often randomized)
dictionary D(0) and solves (1) by iterating between two stages:
a sparse coding stage and a dictionary update stage [7].
Specifically, for a fixed estimate of the dictionary D(t−1) at
the start of iteration t ≥ 1, the sparse coding stage in K-SVD
involves solving (1) for X(t) as follows:

∀s, x(t)
s = arg min

x∈RK
‖ys −D(t−1)x‖22 s.t. ‖x‖0 ≤ T0, (2)

where ys denotes the sth column of Y . While (2) in its stated
form has combinatorial complexity, it can be solved by either
convexifying (2) [40] or using greedy algorithms [41].

After the sparse coding stage, K-SVD fixes X(t) and moves
to the dictionary update stage. The main novelty in K-SVD
lies in the manner in which it carries out dictionary update,
which involves iterating through the K atoms of D(t−1) and
individually updating the kth atom, k ∈ 1, . . . ,K, as follows:

d
(t)
k = arg min

d∈Rn

∥∥∥∥∥(Y −
k−1∑
j=1

d
(t)
j x

(t)
j,T −

K∑
j=k+1

d
(t−1)
j x

(t)
j,T

)

− d x(t)
k,T

∥∥∥∥∥
2

F

= arg min
d∈Rn

∥∥∥E(t)
k − d x

(t)
k,T

∥∥∥2

F
. (3)

Here, E(t)
k is the representation error for Y using first k − 1

atoms of D(t) and last k+1, . . . ,K atoms of D(t−1). In order
to simplify computations, K-SVD in [7] further defines an
ordered set ω(t)

k = {s : 1 ≤ s ≤ S, x
(t)
k,T (s) 6= 0}, where

x
(t)
k,T (s) denotes the sth element of x(t)

k,T , and an S × |ω(t)
k |

binary matrix Ω
(t)
k that has ones in (ω

(t)
k (s), s) locations

and zeros everywhere else. Then, defining E
(t)
k,R = E

(t)
k Ω

(t)
k

and x
(t)
k,R = x

(t)
k,TΩ

(t)
k , it is easy to see from (3) that
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d
(t)
k = arg mind∈Rn

∥∥∥E(t)
k,R − d x

(t)
k,R

∥∥∥2

F
. Therefore, solving

(3) is equivalent to finding the best rank-one approximation
of E(t)

k,R, which is given by the Eckart–Young theorem as
d

(t)
k x

(t)
k,R = σ1u1v

T
1 , where u1 and v1 denote the largest

left- and right-singular vectors of E(t)
k,R, respectively, while

σ1 denotes the largest singular value of E(t)
k,R. The kth atom

of D(t) can now simply be updated as d
(t)
k = u1. It is

further advocated in [7] that the kth row of the “reduced”
coefficient matrix, x(t)

k,R, should be simultaneously updated to
x

(t)
k,R = σ1v

T
1 . The dictionary update stage in K-SVD involves

K such applications of the Eckart–Young theorem to update
the K atoms of D(t−1) and the K “reduced” rows of X(t).
The algorithm then moves to the sparse coding stage and
continues alternating between the two stages till a stopping
criterion (e.g., a prescribed representation error) is reached.

B. Collaborative Dictionary Learning Using Cloud K-SVD

We now present our collaborative dictionary learning al-
gorithm based on K-SVD. The key to distributing K-SVD is
understanding ways in which both the sparse coding and the
dictionary update stages can be distributed. To this end, we
assume collaborative dictionary learning is in iteration t ≥ 1

and each site i in this iteration has a local estimate D̂(t−1)
i of

the desired dictionary from the previous iteration. In order for
the sparse coding stage to proceed, we propose that each site
computes representation coefficients of its local data without
collaborating with other sites by locally solving Step 3 of
Algorithm 1, i.e.,

∀s, x̃(t)
i,s = arg min

x∈RK
‖yi,s − D̂(t−1)

i x‖22 s.t. ‖x‖0 ≤ T0, (4)

where yi,s and x̃(t)
i,s denote the sth sample and its coefficient

vector at site i, respectively. This “local” sparse coding for
collaborative dictionary learning simplifies the sparse coding
stage and is justified as long as the local dictionary estimates
D̂

(t−1)
i remain close to each other (established in Sec. IV).
The next challenge in collaborative dictionary learning

based on K-SVD arises during the dictionary update stage.
Recall that the dictionary update stage in K-SVD involves
computing the largest left- and right-singular vectors of the
“reduced” error matrix E

(t)
k,R = E

(t)
k Ω

(t)
k , k ∈ {1, . . . ,K}.

However, unless the local dictionary estimates D̂(t−1)
i happen

to be identical, we end up with N such (reduced) error
matrices in a distributed setting due to N different local
dictionary estimates. To resolve this, we propose to use
the following definition of the reduced error matrix in a
distributed setting: Ê(t)

k,R =
[
Ê

(t)
1,k,R . . . Ê

(t)
N,k,R

]
, where

Ê
(t)
i,k,R = YiΩ̃

(t)
i,k−

(∑k−1
j=1 d̂

(t)
i,j x̂

(t)
i,j,T +

∑K
j=k+1 d̂

(t−1)
i,j x̃

(t)
i,j,T

)
Ω̃

(t)
i,k.

Here, x̃(t)
i,j,T denotes the jth row of coefficient matrix X̃

(t)
i

computed at site i during the sparse coding step performed on
Yi using D̂(t−1)

i at the start of iteration t, while x̂(t)
i,j,T denotes

the jth row of the updated coefficient matrix X̂(t)
i available at

site i due to the update in coefficient matrix performed during
the dictionary update step. Furthermore, Ω̃

(t)
i,k is similar to Ω

(t)
k

defined for K-SVD except that it is now defined for only local
coefficient matrix X̃(t)

i at site i.
Next, in keeping with the K-SVD derivation in [7], we

propose that each of the N sites updates the kth atom
of its respective local dictionary and the kth row of its
respective “reduced” coefficient matrix, x̂(t)

i,k,R = x̂
(t)
i,k,T Ω̃

(t)
i,k,

by collaboratively computing the dominant left- and right-
singular vectors of the distributed error matrix Ê(t)

k,R, denoted
by u1 and v1, respectively.1 In fact, since uT

1Ê
(t)
k,R = σ1v1

with σ1 being the largest singular value of Ê(t)
k,R, it follows

that if a site has access to the dominant left-singular vector,
u1, of Ê(t)

k,R then it can simply update the kth row of its
respective “reduced” coefficient matrix by setting d̂

(t)
i,k = u1

and setting x̂
(t)
i,k,R = d̂

(t)T

i,k Ê
(t)
i,k,R. Therefore, we need only

worry about collaborative computation of u1 in this setting.
To this end, we define M̂ (t) = Ê

(t)
k,RÊ

(t)T

k,R and note that
u1 corresponds to the dominant eigenvector of M̂ (t). Now
express M̂ (t) as M̂ (t) =

∑N
i=1 M̂

(t)
i and notice that each

M̂
(t)
i = Ê

(t)
i,k,RÊ

(t)T

i,k,R is a matrix that is readily computable
at each local site. Our goal now is computing the dominant
eigenvector of M̂ (t) =

∑N
i=1 M̂

(t)
i in a collaborative manner

at each site. In order for this, we will make use of distributed
power method, which has been invoked previously in [12],
[13], [38] and which corresponds to a distributed variant of
the classical power method for eigenanalysis [26].

Distributed Power Method: Power method is an iterative
procedure for computing eigenvectors of a matrix. It is simple
to implement and, assuming that the largest eigenvalue λ1 of
a matrix is strictly greater than its second-largest eigenvalue
λ2, it converges to the subspace spanned by the dominant
eigenvector at an exponential rate. We are interested in a dis-
tributed variant of the power method to compute the dominant
eigenvector of M̂ (t) =

∑N
i=1 M̂

(t)
i , where the M̂

(t)
i ’s are

distributed across N sites. To this end, we proceed as follows.
First, all sites initialize to the same (unit-norm) estimate

of the eigenvector q̂(0)
i = qinit.2 Next, assuming that the

sites are carrying out iteration tp of the distributed power
method, each site computes M̂ (t)

i q̂
(tp−1)
i locally, where q̂(tp−1)

i

denotes an estimate of the dominant eigenvector of M̂ (t) at
the ith site after tp − 1 power method iterations. In the next
step, the sites collaboratively compute an approximation v̂(tp)

i

of
∑
i M̂

(t)
i q̂

(tp−1)
i at each site. In the final step of the tthp

iteration of the distributed power method, each site normalizes
its estimate of the dominant eigenvector of M̂ (t) locally:
q̂

(tp)
i = v̂

(tp)
i /‖v̂(tp)

i ‖2.
It is clear from the preceding discussion that the key in

distributed power method is the ability of the sites to collabora-
tively compute an approximation of

∑
i M̂

(t)
i q̂

(tp−1)
i in each it-

1An alternative is to compute an estimate of Ê(t)
k,R at each site using

consensus averaging, after which individual sites can compute SVD of Ê(t)
k,R

locally. Despite its apparent simplicity, this approach will have significantly
greater communication overhead compared to our proposed method.

2This can be accomplished, for example, through the use of (local) random
number generators initialized with the same seed. Also, note that a key
requirement in power method is that 〈u1, qinit〉 6= 0, which is ensured with
very high probability in the case of a random initialization.
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eration. In order for this, we make use of the popular consensus
averaging method [42]. To perform consensus averaging, we
first design a doubly-stochastic weight matrix W that adheres
to the topology of the underlying graph G. In particular,
we have that wi,j = 0 whenever (i, j) 6∈ E . We refer the
reader to [42]–[44] for designing appropriate weight matrices
in a distributed manner without relying on knowledge of the
global network topology. In order to compute

∑
i M̂

(t)
i q̂

(tp−1)
i

using consensus averaging, each site is initialized with z(0)
i =

M̂
(t)
i q̂

(tp−1)
i . Next, let Ni = {j : (i, j) ∈ E} be the

neighborhood of site i, define Z(0) =
[
z

(0)
1 . . . z

(0)
N

]T
, and

assume we are in tthc iteration of consensus averaging. Then
consensus works by having each site carry out the following
updates in each consensus iteration through communications
with its neighbors: z(tc)

i =
∑
j∈Ni

wi,jz
(tc−1)
j . The dynamics

of the overall system in this case evolve as Z(tc) = W tcZ(0).

It then follows that Z(tc)
i,T

tc−→ 1TZ(0)/N [42], where Z
(tc)
i,T

denotes the ith row of Z(tc) and 1 ∈ RN denotes a (column)
vector of all ones. This in particular implies that each site
achieves perfect consensus averaging as tc →∞ and obtains

Z
(∞)
i,T

T
= 1

N

∑N
j=1 z

(0)
j = 1

N

∑N
j=1 M̂

(t)
j q̂

(tp−1)
j .

But one can not perform infinite consensus iterations in
practice within each iteration of the distributed power method.
Instead, we assume a finite number of consensus iterations,
denoted by Tc, in each power method iteration and make use
of the modification of standard consensus averaging proposed

in [38] to obtain v̂
(tp)
i = Z

(Tc)
i,T

T
/[WTc

1 ]i, where WTc
1 is

the first column of WTc and [·]i denotes the ith entry of a
vector. Note that this leads to an error ε(tp)

i,c within v̂
(tp)
i at

each site for any finite Tc, i.e., v̂(tp)
i = Z

(Tc)
i,T

T
/[WTc

1 ]i =∑N
j=1 M̂j q̂

(tp−1)
j + ε

(tp)
i,c . After finishing consensus iterations,

each site i in iteration tp of power method normalizes this
vector v̂(tp)

i to get an estimate of the dominant eigenvector of
M̂ (t). Finally, we carry out enough iterations of the distributed
power method at each site that the error between successive
estimates of the eigenvector falls below a prescribed threshold.

We have now motivated and described the key components
of our proposed algorithm and the full collaborative dictionary
learning algorithm, termed cloud K-SVD, is detailed in Algo-
rithm 1. Notice the initialization of cloud K-SVD differs from
K-SVD in the sense that each site also generates a common
(random) reference vector dref ∈ Rn and stores it locally. The
purpose of dref is to ensure that the eigenvectors computed by
different sites using the distributed power method all point in
the same quadrant, rather than in antipodal quadrants (Step 18
in Algorithm 1). While this plays a role in analysis, it does not
have an effect on the workings of cloud K-SVD. Notice also
that we have not defined any stopping rules in Algorithm 1.
One set of rules could be to run the algorithm for fixed
dictionary learning iterations Td, power method iterations Tp,
and consensus iterations Tc. It is worth noting here that
algorithms such as cloud K-SVD are often referred to as
two time-scale algorithms in the literature. Nonetheless, cloud
K-SVD with the stopping rules of finite (Td, Tp, Tc) can be
considered a quasi one time-scale algorithm. Accordingly, our

Algorithm 1: Cloud K-SVD for dictionary learning
Input: Local data Y1, Y2, . . . , YN , problem parameters K
and T0, and doubly-stochastic matrix W .
Initialize: Generate dref ∈ Rn and Dinit ∈ Rn×K
randomly, set t← 0 and D̂(t)

i ← Dinit, i = 1, . . . , N .
1: while stopping rule do
2: t← t+ 1
3: (Sparse Coding) The ith site solves

∀s, x̃(t)
i,s ← arg min

x∈RK
‖yi,s − D̂(t−1)

i x‖22 s.t. ‖x‖0 ≤ T0

4: for k = 1 to K (Dictionary Update) do
5: Ê

(t)
i,k,R ← YiΩ̃

(t)
i,k −

∑k−1
j=1 d̂

(t)
i,j x̂

(t)
i,j,T Ω̃

(t)
i,k

−
∑K
j=k+1 d̂

(t−1)
i,j x̃

(t)
i,j,T Ω̃

(t)
i,k

6: M̂i ← Ê
(t)
i,k,RÊ

(t)T

i,k,R

7: (Initialize Distributed Power Method) Generate
qinit randomly, set tp ← 0 and q̂(tp)

i ← qinit

8: while stopping rule do
9: tp ← tp + 1

10: (Initialize Consensus Averaging) Set tc ← 0 and
z

(tc)
i ← M̂iq̂

(tp−1)
i

11: while stopping rule do
12: tc ← tc + 1
13: z

(tc)
i ←

∑
j∈Ni

wi,jz
(tc−1)
i

14: end while
15: v̂

(tp)
i ← z

(tc)
i /[W tc

1 ]i
16: q̂

(tp)
i ← v̂

(tp)
i /‖v̂(tp)

i ‖2
17: end while
18: d̂

(t)
i,k ← sgn

(
〈dref , q̂(tp)

i 〉
)
q̂

(tp)
i

19: x̂
(t)
i,k,R ← d̂

(t)T

i,k Ê
(t)
i,k,R

20: end for
21: end while
Return: D̂(t)

i , i = 1, 2, . . . , N .

analysis of cloud K-SVD assumes these stopping rules.
Remark 1. A careful reading of Algorithm 1 reveals that
normalization by [W tc

1 ]i in Step 15 is redundant due to the
normalization in Step 16. We retain the current form of Step 15
however to facilitate the forthcoming analysis.

IV. ANALYSIS OF CLOUD K-SVD

Since power method and consensus averaging in Algo-
rithm 1 cannot be performed for an infinite number of it-
erations, in practice this results in residual errors in each
iteration of the algorithm. It is therefore important to un-
derstand whether the dictionaries {D̂i} returned by cloud K-
SVD approach the dictionary that could have been obtained
by centralized K-SVD [7]. In order to address this question,
we need to understand the behavior of major components of
cloud K-SVD, which include sparse coding, dictionary update,
and distributed power method within dictionary update. In
addition, one also expects that the closeness of D̂i’s to the
centralized solution will be a function of certain properties of
local/global data. We begin our analysis of cloud K-SVD by
first stating some of these properties in terms of the centralized
K-SVD solution.
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A. Preliminaries

The first thing needed to quantify deviations of the cloud
K-SVD dictionaries from the centralized K-SVD dictionary is
algorithmic specification of the sparse coding steps in both
algorithms. While the sparse coding steps as stated in (2) and
(4) have combinatorial complexity, various low-complexity
computational approaches can be used to solve these steps in
practice. Our analysis in the following will be focused on the
case when sparse coding in both cloud K-SVD and centralized
K-SVD is carried out using the lasso [45]. Specifically, we
assume sparse coding is carried out by solving

xi,s = arg min
x∈RK

1
2‖yi,s −Dx‖

2
2 + τ‖x‖1 (5)

with the regularization parameter τ > 0 selected in a way that
‖xi,s‖0 ≤ T0 � n. This can be accomplished, for example,
by making use of the least angle regression algorithm [47].
Note that the lasso also has a dual, constrained form, given by

xi,s = arg min
x∈RK

1
2‖yi,s −Dx‖

2
2 s.t. ‖x‖1 ≤ η, (6)

and (5) & (6) are identical for an appropriate ητ = η(τ) [48].
Remark 2. While extension of our analysis to other sparse cod-
ing methods such as orthogonal matching pursuit (OMP) [41]
is beyond the scope of this work, such extensions would
mainly rely on perturbation analyses of different sparse coding
methods. In the case of OMP, for instance, such perturbation
analysis is given in [46], which can then be leveraged to extend
our lasso-based cloud K-SVD result to OMP-based result.

Our analysis in the following is also based on the assump-
tion that cloud K-SVD and centralized K-SVD are identically
initialized, i.e., D̂(0)

i = D(0), i = 1, . . . , N , where D(t), t ≥ 0,
in the following denotes the centralized K-SVD dictionary
estimate in the tth iteration. While both cloud K-SVD and
centralized K-SVD start from the same initial estimates, the
cloud K-SVD dictionaries get perturbed in each iteration
due to imperfect power method and consensus averaging. In
order to ensure these perturbations do not cause the cloud
K-SVD dictionaries to diverge from the centralized solution
after Td iterations, we need the dictionary estimates returned
by centralized K-SVD in each iteration to satisfy certain
properties. Below, we present and motivate these properties.
[P1] Let x(t)

i,s denote the solution of the lasso (i.e., (5)) for
D = D(t−1) and τ = τ (t), t = 1, . . . , Td. Then there
exists some C1 > 0 such that the following holds:

min
t,i,s,j 6∈supp(x

(t)
i,s)

τ (t) −
∣∣〈d(t)

j , yi,s −D(t−1)x
(t)
i,s〉
∣∣ > C1.

In our analysis in the following, we will also make
use of the smallest regularization parameter among the
collection

{
τ (t)
}Td

t=1
, defined as τmin = min

t
τ (t), and

the largest dual parameter among the (dual) collection{
η

(t)
τ = η(τ (t))

}Td

t=1
, defined as ητ,max = max

t
η

(t)
τ .

[P2] Define ΣT0
=
{
I ⊂ {1, . . . ,K} : |I| = T0

}
. Then there

exists some C ′2 >
C4

1τ
2
min

1936 such that the following holds:

min
t=1,...,Td,I∈ΣT0

σT0

(
D

(t−1)
|I

)
≥
√
C ′2,

where σT0
(·) denotes the T th0 (ordered) singular value of

a matrix. In our analysis, we will be using the parameter

C2 =
(√

C ′2 −
C2

1τmin

44

)2

.

[P3] Let λ(t)
1,k > λ

(t)
2,k ≥ . . . λ

(t)
n,k ≥ 0 denote the eigenval-

ues of the centralized “reduced” matrix E
(t)
k,RE

(t)T

k,R , k ∈
{1, . . . ,K}, in the tth iteration, t ∈ {1, . . . , Td}. Then
there exists some C ′3 < 1 such that the following holds:

max
t,k

λ
(t)
2,k

λ
(t)
1,k

≤ C ′3.

Now define C3 = max
{

1, 1

mint,k λ
(t)
1,k(1−C′3)

}
, which we

will use in our forthcoming analysis.
We now comment on the rationale behind these three prop-

erties. Properties P1 and P2 correspond to sufficient conditions
for x(t)

i,s to be a unique solution of (5) [49] and guarantee that
the centralized K-SVD generates a unique collection of sparse
codes in each dictionary learning iteration. Property P3, on the
other hand, ensures that algorithms such as the power method
can be used to compute the dominant eigenvector of E(t)

k,RE
(t)T

k,R

in each dictionary learning iteration [26]. In particular, P3 is
a statement about the worst-case spectral gap of E(t)

k,RE
(t)T

k,R .
In addition to these properties, our final analytical result for
cloud K-SVD will also be a function of a certain parameter
of the centralized error matrices

{
E

(t)
k

}K
k=1

generated by the
centralized K-SVD in each iteration. We define this parameter
in the following for later use. Let E(t)

i,k , i = 1, . . . , N , denote
part of the centralized error matrix E

(t)
k associated with

the data of the ith site in the tth iteration, i.e., E(t)
k =[

E
(t)
1,k · · · E

(t)
N,k

]
, k = 1, . . . ,K, t = 1, . . . , Td. Then

C4 = max
{

1,max
t,i,k
‖E(t)

i,k‖2
}
. (7)

B. Main Result

We are now ready to state the main result of this paper. This
result is given in terms of the ‖·‖2 norm mixing time, Tmix, of
the Markov chain associated with the doubly-stochastic weight
matrix W , defined as

Tmix = max
i=1,...,N

inf
t∈N

{
t : ‖eT

iW
t − 1

N 1T‖2 ≤
1

2

}
. (8)

Here, ei ∈ RN denotes the ith column of the identity matrix
IN . Note that the mixing time Tmix can be upper bounded in
terms of inverse of the absolute spectral gap of W , defined
as 1 − |λ2(W )| with λ2(W ) denoting the second largest (in
modulus) eigenvalue of W [50]. As a general rule, better-
connected networks can be made to have smaller mixing times
compared to sparsely connected networks. We refer the reader
to [51] and [50, Chap. 15] for further details on the relationship
between Tmix and the underlying network topology.

Theorem 1 (Stability of Cloud K-SVD Dictionaries).
Suppose cloud K-SVD (Algorithm 1) and (centralized)
K-SVD are identically initialized and both of them carry
out Td dictionary learning iterations. In addition, assume
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cloud K-SVD carries out Tp power method iterations
during the update of each atom and Tc consensus
iterations during each power method iteration. Finally,
assume the K-SVD algorithm satisfies properties P1–
P3. Next, define α = maxt,k

∑N
i=1 ‖Ê

(t)
i,k,RÊ

(t)T

i,k,R‖2,
β = maxt,tp,k

1∥∥∥Ê(t)
k,RÊ

(t)T
k,R q

(tp)

c,t,k

∥∥∥
2

, γ =

maxt,k

√∑N
i=1 ‖Ê

(t)
i,k,RÊ

(t)T

i,k,R‖2F , ν = maxt,k
λ̂
(t)
2,k

λ̂
(t)
1,k

,

θ̂
(t)
k ∈ [0, π/2] as θ̂

(t)
k = arccos

( ∣∣∣〈u(t)
1,k,q

init
〉∣∣∣

‖u(t)
1,k‖2‖qinit‖2

)
,

µ = max
{

1,maxk,t tan(θ̂
(t)
k )
}

, and ζ =

K
√

2Smax

(
6
√
KT0

τminC2
+ ητ,max

)
, where Smax = maxi Si, u

(t)
1,k

is the dominant eigenvector of Ê(t)
k,RÊ

(t)T

k,R , λ̂(t)
1,k and λ̂

(t)
2,k are

first and second largest eigenvalues of Ê(t)
k,RÊ

(t)T

k,R respectively,

and q(tp)
c,t,k denotes the iterates of a centralized power method

initialized with qinit for estimation of the dominant eigenvector
of Ê(t)

k,RÊ
(t)T

k,R . Then, assuming mint,k
∣∣〈u(t)

1,k, q
init〉

∣∣ > 0, and

fixing any ε ∈
(

0,min
{

(10α2β2)−1/3Tp , ( 1−ν
4 )1/3

})
and

δd ∈
(

0,min
{

1√
2
,
C2

1τmin

44
√

2K

})
, we have

max
i=1,...,N
k=1,...,K

∥∥∥d̂(Td)
i,k d̂

(Td)T

i,k − d(Td)
k d

(Td)T

k

∥∥∥
2
≤ δd (9)

as long as the number of power method iterations Tp ≥
2(TdK−2) log(8C3C

2
4N+5)+(Td−1) log(1+ζ)+log(8C3C4µN

√
nδ−1

d )

log[(ν+4ε3)−1]
and the number of consensus iterations Tc =
Ω
(
TpTmix log (2αβε−1) + Tmix log (α−1γ

√
N)
)
.

The proof of this theorem is given in Appendix C. We now
comment on the major implications of Theorem 1. First, the
theorem establishes that the distributed dictionaries {D̂(Td)

i }
can indeed remain arbitrarily close to the centralized dictionary
D(Td) after Td dictionary learning iterations (cf. 9). Second,
the theorem shows that this can happen as long as the number
of distributed power method iterations Tp scale in a certain
manner. In particular, Theorem 1 calls for this scaling to
be at least linear in TdK (modulo the logN multiplication
factor), which is the total number of SVDs that K-SVD
needs to perform in Td dictionary learning iterations. On the
other hand, Tp need only scale logarithmically with Smax,
which is significant in the context of big data problems. Other
main problem parameters that affect the scaling of Tp include
T0, n, and δ−1

d , all of which enter the scaling relation in
a logarithmic fashion. Finally, Theorem 1 dictates that the
number of consensus iterations Tc should also scale at least
linearly with TpTmix (modulo some log factors) for the main
result to hold. Notice that the effect of network topology on
the number of consensus iterations is captured through the
dependence of Tc on the mixing time Tmix. In summary,
Theorem 1 guarantees that the distributed dictionaries learned
by cloud K-SVD can remain close to the centralized dictionary
without requiring excessive numbers of power method and
consensus averaging iterations.

We now provide a brief heuristic understanding of the
roadmap needed to prove Theorem 1. In the first dictionary

learning iteration (t = 1), we have {D̂(t−1)
i ≡ D(t−1)} due

to identical initializations. While this means both K-SVD and
cloud K-SVD result in identical sparse codes for t = 1, the
distributed dictionaries begin to deviate from the centralized
dictionary after this step. The perturbations in {d̂(1)

i,k} happen
due to the finite numbers of power method and consensus
averaging iterations for k = 1, whereas they happen for k > 1
due to this reason as well as due to the earlier perturbations
in {d̂(1)

i,j , x̂
(1)
i,j,T }, j < k. In subsequent dictionary learning

iterations (t > 1), therefore, cloud K-SVD starts with already
perturbed distributed dictionaries {D̂(t−1)

i }. This in turn also
results in deviations of the sparse codes computed by K-
SVD and cloud K-SVD, which then adds another source of
perturbations in {d̂(t)

i,k} during the dictionary update steps. To
summarize, imperfect power method and consensus averaging
in cloud K-SVD introduce errors in the top eigenvector es-
timates of (centralized) E(1)

1,RE
(1)T

1,R at individual sites, which
then accumulate for (k, t) 6= (1, 1) to also cause errors
in estimate Ê

(t)
k,RÊ

(t)T

k,R of the matrix E
(t)
k,RE

(t)T

k,R available to
cloud K-SVD. Collectively, these two sources of errors cause
deviations of the distributed dictionaries from the centralized
dictionary and the proof of Theorem 1 mainly relies on our
ability to control these two sources of errors.

C. Roadmap to Theorem 1
The first main result needed for the proof of Theorem 1

looks at the errors in the estimates of the dominant eigen-
vector u1 of an arbitrary symmetric matrix M =

∑N
i=1Mi

obtained at individual sites using imperfect power method and
consensus averaging when the Mi’s are distributed across the
N sites (cf. Sec. III-B). The following result effectively helps
us control the errors in cloud K-SVD dictionaries due to Steps
7–17 in Algorithm 1.

Theorem 2 (Stability of Distributed Power Method). Con-
sider any symmetric matrix M =

∑N
i=1Mi with dominant

eigenvector u1 and eigenvalues |λ1| > |λ2| ≥ · · · ≥ |λn|.
Suppose each Mi, i = 1, . . . , N , is only available at the
ith site in our network and let q̂i denote an estimate of
u1 obtained at site i after Tp iterations of the distributed
power method (Steps 7–17 in Algorithm 1). Next, define
αp =

∑N
i=1 ‖Mi‖2, βp = maxtp=1,...,Tp

1

‖Mq
(tp)
c ‖2

, and

γp =
√∑N

i=1 ‖Mi‖2F , where q(tp)
c denotes the iterates of a

centralized power method initialized with qinit. Then, fixing
any ε ∈

(
0, (10α2

pβ
2
p)−1/3Tp

)
, we have

max
i=1,...,N

∥∥∥u1u
T
1 − q̂iq̂T

i

∥∥∥
2
≤ tan (θ)

∣∣∣∣λ2

λ1

∣∣∣∣Tp

+ 4ε3Tp , (10)

as long as |〈u1, q
init〉| > 0 and the number of con-

sensus iterations within each iteration of the distributed
power method (Steps 10–14 in Algorithm 1) satisfies Tc =
Ω
(
TpTmix log (2αpβpε

−1) + Tmix log (α−1
p γp

√
N)
)
. Here, θ

denotes the angle between u1 and qinit, defined as θ =
arccos(|〈u1, q

init〉|/(‖u1‖2‖qinit‖2)).

The proof of this theorem is given in Appendix A. Theo-
rem 2 states that q̂i

Tp−→ ±u1 geometrically at each site as long
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as enough consensus iterations are performed in each iteration
of the distributed power method. In the case of a finite number
of distributed power method iterations, (10) in Theorem 2
tells us that the maximum error in estimates of the dominant
eigenvector is bounded by the sum of two terms, with the first
term due to finite number of power method iterations and the
second term due to finite number of consensus iterations.

The second main result needed to prove Theorem 1 looks at
the errors between individual blocks of the reduced distributed
error matrix Ê

(t)
k,R =

[
Ê

(t)
1,k,R, · · · , Ê

(t)
N,k,R

]
and the reduced

centralized error matrix E
(t)
k,R =

[
E

(t)
1,k,R, · · · , E

(t)
N,k,R

]
for

k ∈ {1, · · · ,K} and t ∈ {1, · · · , Td}. This result helps us
control the error in step 5 of Algorithm 1 and, together with
Theorem 2, characterizes the major sources of errors in cloud
K-SVD in relation to centralized K-SVD. The following
theorem provides a bound on error in E(t)

i,k,R

Theorem 3 (Perturbation in the matrix Ê
(t)
i,k,R). Recall the

definitions of Ω
(t)
k and Ω̃

(t)
i,k from Sec. III-A and Sec. III-B,

respectively. Next, express Ω
(t)
k = diag{Ω(t)

1,k, · · · ,Ω
(t)
N,k},

where Ω
(t)
i,k corresponds to the data samples associated with

the ith site, and define B(t)
i,k,R = Ê

(t)
i,k,R−E

(t)
i,k,R. Finally, let ζ,

µ, ν, ε, and δd be as in Theorem 1, define ε = µνTp + 4ε3Tp ,
and assume ε ≤ δd

8N
√
nC3(1+ζ)Td−1C2

4 (8C3NC2
4+5)2(TdK−2) .

Then, if we perform Tp power method iterations and Tc =
Ω
(
TpTmix log (2αβε−1) + Tmix log (α−1γ

√
N)
)

consensus
iterations in cloud K-SVD and assume P1–P3 hold, we have
for i ∈ {1, . . . , N}, t ∈ {1, · · · , Td}, and k ∈ {1, · · · ,K}

‖B(t)
i,k,R‖2 ≤

{
0, for t = 1, k = 1,

ε(1 + ζ)t−1C4(8C3NC
2
4 + 5)(t−1)K+k−2, o.w.

Proof of Theorem 3 along with the proofs of supporting
lemmas is given in Appendix B. Theorem 3 tells us that the
error in matrix E(t)

i,k,R can be made arbitrarily small through a
suitable choice of Tp and ε as long as all of the assumptions
of Theorem 1 are satisfied. The proof of Theorem 1, given in
Appendix C, relies on these two aforementioned theorems. In
particular, the proof of Theorem 1 shows that the assumption
on ε in Theorem 3 is satisfied as long as we are performing
power method iterations and consensus iterations as required
by Theorem 1.

V. NUMERICAL EXPERIMENTS

We present numerical results in this section for demon-
strating the usefulness of cloud K-SVD and also validating
some of our theoretical results. In the first set of experiments,
synthetic data is used to demonstrate efficacy of cloud K-SVD
for data representation. Furthermore, behavior of distributed
power method (Steps 7–17 in Algorithm 1) as a function of
the number of consensus iterations and deviations in cloud K-
SVD dictionaries from centralized dictionary as a function of
number of power method iterations are also shown with the
help of simulations. In the second set of experiments, MNIST
dataset is used to motivate an application of cloud K-SVD
that can benefit from collaboration between distributed sites.

A. Experiments Using Synthetic Data

These experiments correspond to a total of N = 100 sites,
with each site having Si = 500 local samples in R20 (i.e.,
n = 20). Interconnections between the sites are randomly gen-
erated using an Erdős–Rényi graph with parameter p = 0.5.
In order to generate synthetic data at individual sites, we first
generate a dictionary with K = 50 atoms, D ∈ R20×50,
with columns uniformly distributed on the unit sphere in
R20. Next, we randomly select a 45-column subdictionary
of D for each site and then generate samples for that site
using a linear combination of T0 = 3 randomly selected
atoms of this subdictionary, followed by addition of white
Gaussian noise with variance σ2 = 0.01. All data samples in
our experiments are also normalized to have unit `2 norms.
Sparse coding in these experiments is performed using an
implementation of OMP provided in [52]. Finally, in order
to carry out distributed consensus averaging, we generate a
doubly-stochastic weight matrix W according to the local-
degree weights method described in [42, Sec. 4.2].

In our first set of experiments we illustrate the convergence
behavior of the distributed power method component within
cloud K-SVD (Steps 7–17 in Algorithm 1) as a function
of the number of consensus iterations. The results of these
experiments, which are reported in Fig. 2(a), correspond to
five different values of the number of consensus iterations (3,
4, 5, 10, 15) within each iteration of the distributed power
method. Specifically, let q denote the principal eigenvector
of the matrix

∑N
i=1 M̂i in Algorithm 1 (Step 6) computed

using Matlab (ver. 2014a) and q̂
(tp)
i denote an estimate of q

obtained at site i after the tthp iteration of the distributed power
method. Then Fig. 2(a) plots E(tp)

eig , which is the average of

‖qqT − q̂(tp)
i q̂

(tp)T
i ‖2 over all sites i ∈ {1, . . . , N}, dictionary

update steps k ∈ {1, . . . ,K}, dictionary learning iterations
Td, and 100 Monte-Carlo trials, as a function of the number
of distributed power method iterations tp. It can be seen from
this figure that the distributed power method of Algorithm 1
hits an error floor with increasing number of distributed power
method iterations, where the floor is fundamentally determined
by the number of consensus iterations within each power
method iteration, as predicted by Theorem 2.

Using the same setup our second set of experiments demon-
strate the effectiveness of collaboratively learning a dictionary
using cloud K-SVD, as opposed to each site learning a local
dictionary from its local data using the canonical K-SVD
algorithm (referred to as local K-SVD in the following).
Moreover, these experiments also demonstrate the variations
in cloud K-SVD results when we change the number of
power method iterations (Tp) and consensus iterations (Tc).
In Fig. 2(c), we plot average representation error, defined as
1
nS

∑N
i=1

∑Si

j=1 ‖yi,j −Dxi,j‖2, as a function of the number
of dictionary learning iterations for three dictionary learning
methods, namely, centralized (canonical) K-SVD, cloud K-
SVD, and local K-SVD. It can be seen from this figure, which
corresponds to an average of 100 Monte-Carlo trials, that cloud
K-SVD and centralized K-SVD have similar performance and
both of them perform better than local K-SVD. In particular,
the local K-SVD error is ≈ 0.06 after 40 iterations, while
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Fig. 2. Performance of cloud K-SVD on synthetic data. (a) Average error in eigenvector estimates of distributed power method. (b) Average error in dictionary
atoms returned by cloud K-SVD. (c) Average representation error of cloud K-SVD. (d) Average representation error and average deviation per dictionary
atom (from centralized dictionary learned in a full-batch setting) of K-SVD in an online setting as a function of dictionary learning iterations.

it is ≈ 0.03 for cloud K-SVD and centralized K-SVD.
Notice that changes in the number of power method iterations
induce relatively minor changes in the representation error of
cloud K-SVD. Next, Fig. 2(b) highlights the average error in
dictionary atoms learned using cloud K-SVD as compared to
centralized K-SVD. For this experiment, number of consensus
iterations are either Tc = 1 or Tc = 10, and for each of
these values, the number of power method iterations used
are Tp = 2, 3, 4, 5. These experiments show the effect of
changing Tp and Tc on the error in collaborative dictionaries.
This error is averaged over all dictionary atoms and sites in
each iteration for 100 Monte-Carlo trials, defined as E(t)

average =
1
NK

∑K
k=1

∑N
i=1 ‖d

(t)
k d

(t)T

k − d̂(t)
i,kd̂

(t)T

i,k ‖2. Results in Fig. 2(b)
show that this error in dictionary atoms increases sharply at the
start, but it stabilizes after some iterations. Important point to
note here is that as we increase the number of power method
iterations and consensus iterations we get smaller average error
in dictionary atoms as predicted by our analysis.

Next, we discuss the usage of cloud K-SVD in online
settings. Since it has already been demonstrated that cloud
K-SVD achieves performance similar to that of K-SVD, we
focus here on the representation error of centralized K-SVD
in online settings. The setup corresponds to a mini-batch of
500 training samples being periodically generated at each site
and the assumption that each site has a buffer limit of 1000
samples. Thus only samples from the last two periods can be
used for dictionary learning. After arrival of each new mini-
batch of training samples, we use the dictionary learned in
the last period to warm-start (centralized) K-SVD and carry
out 60 dictionary learning iterations. Fig. 2(d) shows the
representation error of the learned dictionary in this case, along
with the deviation per dictionary atom when compared to a
dictionary learned using full-batch centralized K-SVD. These
results are plotted as a function of dictionary learning iterations
for six periods, where the ending of a period is marked by a
circle. The representation error curve in this figure shows that
K-SVD takes more time to converge, but it (and thus cloud
K-SVD) is a viable option for online settings. Similarly, the
deviation curve shows that while the dictionary error initially
increases with the arrival of more data, it stabilizes afterward.
Note that further improvements in these results can be obtained
by using methods like [53] for active sample selection.

Finally, we perform experiments to report actual values
of the parameters C1–C4. To this end, we generate samples
belonging to R17, where each sample is a linear combination

of T0 = 3 atoms of a dictionary D ∈ R17×40. We perform
sparse coding in these experiments using the lasso package
in Matlab 2014a, while we perform dictionary learning using
K-SVD. Average values obtained for parameters C1–C4 over
100 Monte-Carlo trials in this case are 0.0586, 0.1633, 4.544,
and 1.5947, respectively. Using cloud K-SVD, average values
of µ and ν are 9000 and 0.3242, respectively. Based on these
values, we get Tp ≈ 16, 000. This suggests that the constants
in our bounds are rather loose, and our analysis should mainly
be used to provide scaling guidelines.

B. Classification of MNIST Images

For evaluation of cloud K-SVD on real dataset, we perform
classification of digits {0, 3, 5, 8, 9} from MNIST dataset [54].
For each digit 6000 samples are used, where 5000 samples
are used for training purposes and remaining 1000 for testing
purposes. The data are five-times randomly split into training
and test samples. For cloud K-SVD, Erdős–Rényi graph with
parameter p = 0.5 is used to generate a network with 10
sites and data is equally distributed among them. Before
performing dictionary learning, data is down sampled from
R784 to R256. After downsampling, a separate dictionary is
learned for each digit using centralized K-SVD, cloud K-
SVD, and K-SVD using only local data. Each dictionary has
dimensions R256×400, i.e., K = 400, and sparsity level of
T0 = 10 is used. Minimum residue based rule [55, Sec.II-A]
is used for classification, more details on which are given in
the following paragraph.

Let {Dc}5c=1 be the set of dictionaries for 5 classes and let
D =

[
D1 D2 D3 D4 D5

]
be the complete dictionary.

For any test sample ys, we perform sparse coding using
dictionary D with sparsity constraint of T0 = 10 to get coef-
ficients xs ∈ R2000. Then we partition xs into five segment
{xs,c}5c=1, where xs,c are the coefficients corresponding to
dictionary Dc of class c. Next we define residue for class c as
rc = ‖ys − Dcxs,c‖2. Finally, the detected class is given by
c∗ = arg minc rc. Performance of each method (centralized
K-SVD, cloud K-SVD, and local K-SVD) is measured in
terms of average detection rate on the test samples, which is
defined as Rc = Number of samples in class c detected correctly

Total number of samples of class c . Results
of this experiment are given in Fig. 3. We see that centralized
and cloud K-SVD have comparable performance. But in the
case of local K-SVD where we only use the local data for
learning representations, classification rate deteriorates consid-
erably. The bars in local K-SVD show the highest and lowest
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Fig. 3. Average detection rate for five classes of MNIST dataset using
centralized K-SVD, cloud K-SVD, and local K-SVD.

detection rates achieved among the 10 sites, which highlights
the variation in effectiveness of models learned across different
sites when using only the local data.

VI. CONCLUSION

In this paper, we have proposed a new dictionary learning
algorithm, termed cloud K-SVD, that facilitates collaborative
learning of a dictionary that best approximates massive data
distributed across geographical regions. Mathematical analysis
of proposed method is also provided, which under certain as-
sumptions shows that if we perform enough number of power
method and consensus iterations then the proposed algorithm
converges to the centralized K-SVD solution. Furthermore, the
efficacy of the proposed algorithm is demonstrated through
extensive simulations on synthetic and real data.

APPENDIX A
PROOF OF THEOREM 2

The proof of this theorem relies on a lemma that guarantees
that if the estimates obtained at different sites using the
distributed power method are close to the estimate obtained
using the centralized power method at the start of a power
method iteration then the distributed estimates remain close to
the centralized estimate at the end of that iteration. To prove
such a lemma, we first need a result from the literature that
characterizes the convergence behavior of vector consensus
averaging as a function of the number of consensus iterations.

Proposition 1. [38, Theorem 5] Consider the n×1 vector sum
z =

∑N
i=1 z

(0)
i and suppose each vector z(0)

i , i = 1, . . . , N ,
is only available at the ith site in our network. Let b be a
vector whose entries are the sum of absolute values of the
initial vectors z(0)

i (i.e., jth entry of b is bj =
∑N
i=1 |z

(0)
i,j |)

and z
(tc)
i be the n × 1 vector obtained at the ith site after

tc consensus iterations. Then, fixing any δ > 0, we have that∥∥∥ z
(tc)
i

[W tc
1 ]i
−z
∥∥∥

2
≤ δ‖b‖2 ∀i as long as the number of consensus

iterations satisfies tc = Ω(Tmix log δ−1).

We use Proposition 1 to state and prove the desired lemma.

Lemma 1. Suppose we are at the start of (tp + 1) ≤ Tp
power method iteration. Let qc and qi,d denote the outputs of
centralized power method and distributed power method at ith
site after tp iterations, respectively. Similarly, let q′c and q′i,d
denote the outputs of centralized power method and distributed
power method at ith site after tp + 1 iterations, respectively.
Next, fix an ε ∈ (0, 1), define δ =

αp

γp
√
N

(
ε

2αpβp

)3Tp , and

assume that ∀i, ‖qc − qi,d‖2 +
δγp
√
N

αp
≤ 1

2αpβ2
p(2αp+δγp

√
N)

.

Then, assuming Ω(Tmix log δ−1) consensus iterations, we
have that
∀i, ‖q′c − q′i,d‖2 ≤ (2αpβp)3

(
max

i=1,...,N
‖qc − qi,d‖2 +

δγp
√
N

αp

)
.

Proof: Define v = Mqc and v̂ =
∑N
i=1Miqi,d. Next, fix

any i ∈ {1, . . . , N} and let v̂i be the vector obtained at the ith

site in Step 15 of Algorithm 1 during the (tp + 1) iteration of
distributed power method. Notice that v̂i can be expressed as
v̂i = v̂ + εi,c, where εi,c denotes the error introduced in v̂ at
the ith site due to finite number of consensus iterations. Next,
define r = ‖v‖2 and r̂i = ‖v̂i‖2 and notice that q′c − q′i,d =

v(r−1 − r̂−1
i ) + (v − v̂i)r̂

−1
i . It therefore follows from the

triangle inequality that

‖q′c − q′i,d‖2 ≤ ‖v‖2|r−1 − r̂−1
i |+ ‖v − v̂i‖2r̂

−1
i . (11)

We now need to bound ‖v‖2, |r−1 − r̂−1
i |, ‖v − v̂i‖2, and

r̂−1
i . To this end, notice that v− v̂i =

[∑N
i=1Mi(qc − qi,d)

]
−

εi,c. It also follows from Proposition 1 and some manipulations
that ‖εi,c‖2 ≤ δγp

√
N . We therefore obtain

‖v − v̂i‖2 ≤
N∑
i=1

‖Mi‖2‖qc − qi,d‖2 + δγ
√
N. (12)

Next, notice |r−1 − r̂−1
i | = |r − r̂i|r−1r̂−1

i and further it can
be shown that |r − r̂i| ≤ r−1|r̂2

i − r2|. Now, |r̂2
i − r2| =

|v̂T
i v̂i − vTv| ≤ ‖v̂i − v‖2(‖v̂i‖2 + ‖v‖2). Since v̂i = v̂ + εi,c,

it can also be shown that ‖v̂i‖2 ≤ αp + δγp
√
N . In addition,

we have ‖v‖2 ≤ αp. Combining these facts with (12), we get

|r̂2i − r2|

≤ (2αp + δγp
√
N)

(
N∑
i=1

‖Mi‖2‖qc − qi,d‖2 + δγp
√
N

)
,

≤ (2αp + δγp
√
N)
(
αp max

i
‖qc − qi,d‖2 + δγp

√
N
)
. (13)

We can now use this inequality to obtain |r−1 − r̂−1
i | ≤

r̂−1
i β2

p(2αp + δγp
√
N)(αp maxi ‖qc − qi,d‖2 + δγp

√
N).

The only remaining quantity we need to bound is r̂−1
i . To

this end, notice that |r − r̂i| ≥ (r−1)−1 − (r̂−1
i )−1. Since

|r − r̂i| ≤ r−1|r̂2
i − r2|, we obtain from (13) that

(r−1)−1 − (r̂−1
i )−1 ≤αpr−1(2αp + δγp

√
N)(

max
i
‖qc − qi,d‖2 +

δγp
√
N

αp

)
.

It then follows from the lemma’s assumptions along with
some algebraic manipulations that r̂−1

i ≤ 2βp. Finally, plug-
ging the bounds on r̂−1

i , |r−1 − r̂−1
i |, ‖v‖2, and ‖v− v̂i‖2 in

(11), we obtain

‖q′c − q′i,d‖2
≤ 2αpβ

3
p

(
αp max

i
‖qc − qi,d‖2 + δγp

√
N
)

(2αp + δγp
√
N) + 2βp

(
αp max

i
‖qc − qi,d‖2 + δγp

√
N
)

=

(
4α3

pβ
3
p + 2α3

pβ
3
p

δγp
√
N

αp
+ 2αpβp

)
(

max
i
‖qc − qi,d‖2 +

δγp
√
N

αp

)
.
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Finally, δγp
√
N

αp
≤
(
ε
2

)3Tp
< 1 since (i) δ =

αp

γp
√
N

(
ε

2αpβp

)3Tp ,
(ii) ε < 1, and (iii) αpr−1 ≥ 1, which implies αpβp ≥
1. Plugging this into the above expression and noting that
αpβp ≤ α3

pβ
3
p , we obtain the claimed result.

Lemma 1 provides an understanding of the error accumu-
lation in the distributed power method due to finite number
of consensus iterations in each power method iteration. And
while the factor of (2αpβp)

3 in the lemma statement might
seem discouraging, the fact that the distributed power method
starts with a zero error helps keep the total error in control.
We now formally argue this in the proof of Theorem 2 below.

Proof of Theorem 2: We begin by defining qc as the
estimate of u1 obtained using Tp iterations of the centralized
power method that is initialized with the same qinit as the
distributed power method. Next, fix an i ∈ {1, . . . , N} and
notice that∥∥∥u1u

T
1 − q̂iq̂T

i

∥∥∥
2
≤ ‖u1u

T
1 − qcq

T
c ‖2 + ‖qcq

T
c − q̂iq̂T

i ‖2. (14)

The convergence rate of the centralized power method is well
studied and can be expressed as [26]

‖u1u
T
1 − qcq

T
c ‖2 ≤ tan (θ)

∣∣∣∣λ2

λ1

∣∣∣∣Tp

. (15)

In order to bound ‖qcq
T
c − q̂iq̂T

i ‖2, we make use of Lemma 1.
To invoke this lemma, we first need to show that the main
assumption of the lemma holds for all iterations tp ≤ (Tp−1).
We start with tp = 0 for this purpose and note that q(0)

c =

q̂
(0)
i = qinit, which trivially implies ‖q(0)

c − q̂
(0)
i ‖2 +

δγp
√
N

αp
≤

( ε2 )3Tp , where δ is as defined in Lemma 1. Further, under
the assumptions of the theorem, it can be shown through
elementary algebra that

(
ε
2

)3Tp ≤ 1
2αpβ2

p(2αp+δγp
√
N)

. We
now invoke mathematical induction and claim that the main
assumption of Lemma 1 is satisfied for all tp ≤ m < Tp. Then
we obtain from a recursive application of the statement of the
lemma that for tp = (m+ 1), we have

‖q(m+1)
c − q̂(m+1)

i ‖2 +
δγp
√
N

αp

≤ δγp
√
N

αp

m∑
i=0

(2αpβp)
3i

(a)

≤ 2 · δγp
√
N

αp
(2αpβp)

3m

= 2 · ε3Tp
(2αpβp)

3m

(2αpβp)3Tp

(b)

≤ 1

2αpβ2
p(2αp + δγp

√
N)

, (16)

where (a) follows from the geometric sum and the fact that
(2αpβp)

3 > 2, while (b) follows from the theorem assump-
tions and the fact that m < Tp. We have now proved that the
main assumption of Lemma 1 holds for all tp ≤ (Tp − 1). In
order to compute ‖qcq

T
c − q̂iq̂T

i ‖2, therefore, we can recursively
apply the result of this lemma up to the T thp iteration to obtain

‖qc − q̂i‖2 ≤
δγp
√
N

αp

Tp∑
i=0

(2αpβp)
3i

(c)

≤ 2ε3Tp , (17)

where (c) follows from the same arguments as in (16). The
proof of the theorem now follows by noting the fact that
‖qcq

T
c − q̂iq̂T

i ‖2 ≤ (‖qc‖2 + ‖q̂i‖2)‖qc − q̂i‖2 ≤ 4ε3Tp .

APPENDIX B
PROOF OF THEOREM 3

Notice from Algorithm 1 that sparse coding is always
performed before update of the first dictionary atom. However,
we do not perform sparse coding before updating any other
dictionary atom. Due to this distinction, we answer how
error is accumulated in matrix E

(t)
i,k,R for first dictionary

atom differently than for any other dictionary atom. In the
following, we first provide an overview of how to bound
‖B(t)

i,k+1,R‖2 when we know a bound on ‖B(t)
i,k,R‖2. Then we

will talk about bounding ‖B(t+1)
i,1,R ‖2 when we know bounds

on {‖B(t)
i,j,R‖2}Kj=1.

Recall from Step. 5 in Algorithm 1 that Ê(t)
i,k,R = YiΩ̃

(t)
i,k −∑k−1

j=1 d̂
(t)
i,j x̂

(t)
i,j,T Ω̃

(t)
i,k −

∑K
j=k+1 d̂

(t−1)
i,j x̃

(t)
i,j,T Ω̃

(t)
i,k. Now, if one

assumes that Ω̃
(t)
k = Ω

(t)
k , which we will argue is true, then the

error in E(t)
i,k,R is due to errors in {x(t)

i,j,T,R}Kj=1 and {d(t)
j }Kj=1.

Infact, we will show that ‖B(t)
i,k+1,R‖2 can be bounded by

knowing bounds on errors in d̂
(t)
i,k and x

(t)
i,k,T,R only. Next,

recall from Step. 19 in Algorithm 1 that x̂(t)
i,k,R = d̂

(t)
i,kÊ

(t)T

i,k,R,
which means we only need to know a bound on d(t)

k to bound
‖B(t)

i,k+1,R‖2. Another challenge for us will be to bound error
in d(t)

k from a given bound on ‖B(t)
i,k,R‖2. We will accomplish

this by noting that there are two sources of error in d̂(t)
k . The

first source is the difference in eigenvectors of Ê(t)
k,RÊ

(t)T

k,R and

E
(t)
k,RE

(t)T

k,R . We will bound this difference using Proposition 3
in Appendix D. In order to use this proposition, we will need
a bound on ‖Ê(t)

k,RÊ
(t)T

k,R − E
(t)
k,RE

(t)T

k,R‖F , which we will also
prove using a given bound on ‖B(t)

i,k,R‖2 (Lemma 2). The
second source of error in d̂

(t)
k is the error in eigenvector

computation, which in our case is due to the distributed
power method. It follows from Theorem 2 and statement
of Theorem 3 that this error is bounded by ε. Combining
these two sources of error, we will first bound the error in
d̂

(t)
k (Lemma 3), and then using this we will finally bound
‖B(t)

i,k+1,R‖2 (Lemma 5).
In order to bound ‖B(t+1)

i,1,R ‖2 when we know bounds on
{‖B(t)

i,j,R‖2}Kj=1, the difference from previous case is that
now we can not write sparse code {x̂(t+1)

i,j,T }Kj=1 in terms of
dictionary atoms {d̂(t)

i,j}Kj=1. Therefore, in addition to bounding
errors in dictionary atoms {d̂(t)

i,j}Kj=1, we also need to bound
errors in sparse codes due to perturbations in dictionaries
after iteration t. Since we know {‖B(t)

i,k,R‖2}Kj=1, we can use
the bounds on {d̂(t)

i,j}Kj=1 derived earlier (Lemma 3). Next,
using error bounds on {d̂(t)

i,j}Kj=1, we can use Proposition 2 in
Appendix D to bound errors in {x̂(t+1)

i,j,T }Kj=1. Finally, using
these error bounds on {d̂(t)

i,j}Kj=1 and {x̂(t+1)
i,j,T }Kj=1 we will

bound ‖B(t+1)
i,1,R ‖2 (Lemma 4). This will be followed by the

remaining proof of Theorem 3.
Our first result in support of Theorem 3 shows that the

assumption of Proposition 3 in Appendix D is satisfied under
certain conditions, which will make it possible for us to bound
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the difference in the principal eigenvector of E(t)
k,RE

(t)T

k,R and

Ê
(t)
k,RÊ

(t)T

k,R .

Lemma 2. Let Ω
(t)
i,k, Ω̃

(t)
i,k, ε and ζ be as defined

in Theorem 3. Fix δd as in Theorem 1, and suppose
(i) P1–P3 are satisfied, (ii) Ω

(t)
i,k = Ω̃

(t)
i,k, and (iii)

ε ≤ δd
8N
√
nC3(1+ζ)Td−1C2

4 (8C3NC2
4+5)2(TdK−2) . Then ∀i ∈

{1, . . . , N} and for any t ∈ {1, · · · , Td} and k ∈ {1, · · · ,K}, if

‖B(t)
i,k,R‖2 ≤

{
0, t = 1, k = 1,

ε(1 + ζ)t−1C4(8C3NC
2
4 + 5)(t−1)K+k−2, o.w,

then ∆M
(t)
k = E

(t)
k,RE

(t)T

k,R − Ê
(t)
k,RÊ

(t)T

k,R is bounded as
‖∆M (t)

k ‖F ≤
1

5C3
.

Proof: Since our starting dictionaries are same, therefore,
for (t, k) = (1, 1) we have E

(1)
1,R = Ê

(1)
1,R, which means

∆Mk = 0. Hence, claim is true for (t, k) = (1, 1). In the
following, proof is provided for the claim for case (t, k) 6= 1.

Substituting B(t)
i,k,R in the definition of ∆M

(t)
k , we get

∆M
(t)
k =

N∑
i=1

E
(t)
i,k,RB

(t)T

i,k,R +B
(t)
i,k,RE

(t)T

i,k,R +B
(t)
i,k,RB

(t)T

i,k,R.

Simple algebraic manipulations, along with submultiplicativity
of matrix 2-norm, result in

‖∆M (t)
k ‖2 ≤ 2

N∑
i=1

(
‖E(t)

i,k,R‖2‖B
(t)
i,k,R‖2 + ‖B(t)

i,k,R‖
2
2

)
≤ 2N max

i

(
C4‖B(t)

i,k,R‖2 + ‖B(t)
i,k,R‖

2
2

)
, (18)

where the last inequality is due to (7). Now, using the
assumptions on bound of ‖B(t)

i,k,R‖2 and ε, we get

‖∆M (t)
k ‖2

≤ 2Nε(1 + ζ)t−1
(
C2

4 (8C3NC
2
4 + 5)(t−1)K+k−2

+ε(1 + ζ)t−1C2
4 (8C3NC

2
4 + 5)2(t−1)K+2k−4

)
≤ 2Nε(1 + ζ)t−1

(
C2

4 (8C3NC
2
4 + 5)(t−1)K+k−2

+
1

8N
√
nC3

(1 + ζ)t−1C2
4 (8C3NC

2
4 + 5)2(t−1)K+2k−4δd

(1 + ζ)Td−1C2
4 (8C3NC2

4 + 5)2(TdK−2)K

)
(a)

≤ 2Nε(1 + ζ)t−1

(
C2

4 (8C3NC
2
4 + 5)(t−1)K+k−2 +

1

8N
√
nC3

)
≤ 4Nε(1 + ζ)t−1C2

4 (8C3NC
2
4 + 5)(t−1)K+k−2,

where (a) is true because
(1+ζ)t−1C2

4 (8C3NC
2
4+5)2(t−1)K+2k−4δd

(1+ζ)Td−1C2
4 (8C3NC2

4+5)2(TdK−2) ≤ 1. Finally, using
once again the assumption on ε, performing algebraic
manipulations and using the fact that δd ≤ 1 , we get

‖∆M (t)
k ‖2 ≤

(8C3NC
2
4 + 5)(t−1)K+k−2

2
√
nC3(8C3NC2

4 + 5)2(TdK−2)

≤ 1√
n(8C3NC2

4 + 5)(TdK−2)
≤ 1√

n(5C3)
.

Now using the fact that rank(∆M
(t)
k ) ≤ n, we get ‖∆M (t)

k ‖F ≤√
rank(∆M

(t)
k )‖∆M (t)

k ‖2 ≤
√
n‖∆M (t)

k ‖2 ≤
1

5C3
.

We are now ready to prove that if we know a bound on
‖B(t)

i,k,R‖2 then we can bound the error in dictionary atom
d̂

(t)
i,k. This result is given in the following lemma.

Lemma 3. Let Ω
(t)
i,k, Ω̃

(t)
i,k, ε and ζ be as defined in

Theorem 3, also perform Tc consensus iterations as given
in Theorem 3. Now fix δd as in Theorem 1, and sup-
pose (i) P1–P3 are satisfied, (ii) Ω

(t)
i,k = Ω̃

(t)
i,k, and (iii)

ε ≤ δd
8N
√
nC3(1+ζ)Td−1C2

4 (8C3NC2
4+5)2(TdK−2) . Then for all

i ∈ {1, . . . , N} and for any t ∈ {1, 2, · · · , Td} and k ∈
{1, 2, · · · ,K} if we know

‖B(t)
i,k,R‖2 ≤

{
0, t = 1, k = 1,

ε(1 + ζ)t−1C4(8C3NC
2
4 + 5)(t−1)K+k−2, o.w,

then, ‖d̂(t)i,kd̂
(t)T

i,k −d
(t)
k d

(t)T

k ‖2 ≤ ε(1+ζ)t−1(8C3NC2
4 +5)(t−1)K+k−1.

Proof: To prove this lemma we first need to decompose
error in dictionary atom into two different components i.e.,
error in principal eigenvector due to perturbation in E(t)

k,RE
(t)T

k,R

and error due to distributed power method. Let d(t)
k be the

updated kth atom of centralized dictionary at iteration t,
which is the principal eigenvector of E(t)

k,RE
(t)T

k,R . In cloud K-
SVD, d̂(t)

i,k corresponds to the principal eigenvector estimate

of Ê
(t)
k,RÊ

(t)T

k,R obtained at the ith site. Let us denote the

true principal eigenvector of Ê(t)
k,RÊ

(t)T

k,R by d̃
(t)
k and let d̂(t)

i,k

be the eigenvector of Ê(t)
k,RÊ

(t)T

k,R computed using distributed
power method at the ith site. Using this notation, notice that
‖d(t)
k d

(t)T

k − d̂(t)
i,kd̂

(t)T

i,k ‖2 ≤ ‖d
(t)
k d

(t)T

k − d̃(t)
k d̃

(t)T

k ‖2 +‖d̃(t)
k d̃

(t)T

k −
d̂

(t)
i,kd̂

(t)T

i,k ‖2, where the first term is due to perturbation in

E
(t)
k,RE

(t)T

k,R and the second term is due to imperfect power
method and consensus iterations. We can now use Theorem 2
to obtain

‖d(t)
k d

(t)T

k − d̂(t)
i,kd̂

(t)T

i,k ‖2

≤ ‖d(t)
k d

(t)T

k − d̃(t)
k d̃

(t)T

k ‖2 + tan (θ̂
(t)
k )

(
λ̂

(t)
2,k

λ̂
(t)
1,k

)Tp

+ 4ε3Tp

(a)

≤ ‖d(t)
k d

(t)T

k − d̃(t)
k d̃

(t)T

k ‖2 + µνTp + 4ε3Tp

(b)
= ‖d(t)

k d
(t)T

k − d̃(t)
k d̃

(t)T

k ‖2 + ε,

where (a) is due to definition of parameters µ and ν in
Theorem 1, and (b) is due to definition of ε in Theorem 3.

Next, for symmetric matrices M (t)
k =

∑
iE

(t)
i,k,RE

(t)T

i,k,R and

M̂
(t)
k =

∑
i Ê

(t)
i,k,RÊ

(t)T

i,k,R such that M̂ (t)
k = M

(t)
k + ∆M

(t)
k ,

we can use Lemma 2 and Proposition 3 to find a bound on
deviation in principal eigenvector of M (t)

k due to perturbation
∆M

(t)
k . Since we have from Lemma 2 that ‖∆M (t)

k ‖F ≤
1

5C3
,

it follows from Proposition 3 that

‖d(t)
k d

(t)T

k − d̂(t)
i,kd̂

(t)T

i,k ‖2 ≤ 4C3‖∆M (t)
k ‖2 + ε

≤ 8C3N max
i

(
C4‖B(t)

i,k,R‖2 + ‖B(t)
i,k,R‖

2
2

)
+ ε, (19)
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where the last inequality is due to (18). Now using the bound
on ‖B(t)

i,k,R‖2 in the lemma statement, it can be shown using
some algebraic manipulations that

‖d̂(t)
i,kd̂

(t)T

i,k − d
(t)
k d

(t)T

k ‖2

≤ ε(1 + ζ)t−1C4

(
8C3NC

2
4 (8C3NC

2
4 + 5)(t−1)K+k−2

+8ε(1 + ζ)t−1C4C3N(8C3NC
2
4 + 5)2(t−1)K+2k−4 + 1

)
.

The claim in the lemma now follows by replacing the bound
on ε in the parentheses of the above inequality, followed by
some manipulations.

The next lemma shows that if we know bounds on errors in
{Ê(t)

i,k,R}Kk=1 for any t then we can bound the error in Ê(t+1)
i,1,R .

Lemma 4. Let Ω
(t)
i,k, Ω̃

(t)
i,k, ε and ζ be as defined in Theorem 3,

also perform Tc consensus iterations as given in Theorem 3.
Now fix δd as in Theorem 1 and suppose (i) P1–P3 are
satisfied, (ii) Ω

(t+1)
i,k = Ω̃

(t+1)
i,k , (iii) Ω

(t)
i,k = Ω̃

(t)
i,k , and (iv)

ε ≤ δd
8N
√
nC3(1+ζ)Td−1C2

4 (8C3NC2
4+5)2(TdK−2) , then for any

t ∈ {1, · · · , Td − 1}, and for all k ∈ {1, · · · ,K} and
i ∈ {1, · · · , N}, if ‖B(t)

i,k,R‖2 ≤ ε(1 + ζ)t−1C4(8C3C
2
4N +

5)(t−1)K+k−2 then, ‖B(t+1)
i,1,R ‖2 ≤ ε(1+ζ)tC4(8C3C

2
4N+5)tK−1.

Proof: The error in Ê
(t+1)
i,1,R is due to error in dictionary

in the previous iteration t and sparse coding at the start of
iteration (t + 1). Specifically, B(t+1)

i,1 = E
(t+1)
i,1 − Ê(t+1)

i,1 =

Yi −
∑K
j=2 d

(t)
j x

(t+1)
i,j,T − Yi +

∑K
j=2 d̂

(t)
i,j x̃

(t+1)
i,j,T . It then follow

that ‖B(t+1)
i,1 ‖2 ≤

∑K
j=2 ‖d̂

(t)
i,j x̃

(t+1)
i,j,T − d

(t)
j x

(t+1)
i,j,T ‖2 ≤∑K

j=1 ‖d̂
(t)
i,j x̃

(t+1)
i,j,T − d

(t)
j x

(t+1)
i,j,T ‖2. In reality we are

interested in finding a bound on ‖B(t+1)
i,1,R ‖2. But since

Ω
(t+1)
i,k = Ω̃

(t+1)
i,k we can define B

(t+1)
i,1,R as B

(t+1)
i,1,R =(∑K

j=2

(
Yi − d̂(t)

i,j x̃
(t+1)
i,j,T

)
−
∑K
j=2

(
Yi − d(t)

j x
(t+1)
i,j,T

))
Ω

(t+1)
i,1 .

It can be seen from this definition that B(t+1)
i,1,R is a submatrix

of B(t+1)
i,1 , which implies

‖B(t+1)
i,1,R ‖2 ≤ ‖B

(t+1)
i,1 ‖2 ≤

K∑
j=1

‖d̂(t)i,j x̃
(t+1)
i,j,T − d

(t)
j x

(t+1)
i,j,T ‖2. (20)

Now, defining d̂(t)
i,j = d

(t)
j + e

(t)
i,j , where e(t)

i,j denotes the error
in dictionary atom d

(t)
j , and substituting this in (20) we get

‖B(t+1)
i,1,R ‖2

≤ K max
j

(
‖d(t)
j x̃

(t+1)
i,j,T − d

(t)
j x

(t+1)
i,j,T ‖2 + ‖ei,j x̃(t+1)

i,j,T ‖2
)

≤ K max
j

(
‖x̃(t+1)

i,j,T − x
(t+1)
i,j,T ‖2 + ‖d̂(t)

i,j − d
(t)
j ‖2‖x̃

(t+1)
i,j,T ‖2

)
= K max

j

(
‖x̃(t+1)

i,j,T − x
(t+1)
i,j,T ‖2

+‖d̂(t)
i,j − d

(t)
j ‖2‖x̃

(t+1)
i,j,T + x

(t+1)
i,j,T − x

(t+1)
i,j,T ‖2

)
≤ K max

j

(
‖x̃(t+1)

i,j,T − x
(t+1)
i,j,T ‖2(1 + ‖d̂(t)

i,j − d
(t)
j ‖2)

+‖d̂(t)
i,j − d

(t)
j ‖2‖x

(t+1)
i,j,T ‖2

)
. (21)

Now, let X(t+1) =
[
X

(t+1)
1 X

(t+1)
2 . . . X

(t+1)
N

]
∈ RK×S

be the sparse coding matrix associated with the centralized K-
SVD (see, e.g, Sec III-A). Notice that x(t+1)

i,j,T is the jth row
of X(t+1)

i . It then follows that

‖x(t+1)
i,j,T ‖2 ≤

√
Si‖X(t+1)

i ‖max ≤
√
Si‖X(t+1)

i ‖1.

We therefore obtain under P1 that ‖x(t+1)
i,j,T ‖2 ≤

√
Smaxητ,max.

Next, using the bound on ‖B(t)
i,k,R‖2 and applying Lemma 3,

we get ‖d̂(t)
i,kd̂

(t)T

i,k − d
(t)
k d

(t)T

k ‖2 ≤ ε(1 + ζ)t−1C4(8C3NC
2
4 +

5)(t−1)K+k−1. Now, under the assumption that both cloud K-
SVD and centralized K-SVD use the same dref , we have
d̂

(t)T

i,k d
(t)
k ≥ 0 and therefore it follows from Lemma 7 in

Appendix D that

‖d̂(t)
i,k − d

(t)
k ‖2 ≤ ε

√
2(1 + ζ)t−1C4(8C3NC

2
4 + 5)(t−1)K+k−1

(a)

≤
√

2δd
(b)

≤ 1, (22)

where (a) follows from the assumption on ε and (b) is true
for any fixed δd as defined in Theorem 1. Using this bound
we can write

‖D(t) − D̂(t)
i ‖2 ≤ ‖D

(t) − D̂(t)
i ‖F =

√√√√ K∑
j=1

‖d̂(t)
i,j − d

(t)
j ‖22

≤
√
K max

j∈{1,··· ,K}
‖d̂(t)
i,j − d

(t)
j ‖2

≤
√

2K(1 + ζ)t−1εC4(8C3NC
2
4 + 5)tK−1. (23)

Furthermore, using lemma assumption on ε we get

‖D(t) − D̂(t)
i ‖2 ≤

√
2Kδd = min

{√
K,

C2
1τmin

44

}
. (24)

We can now use (24) and Proposition 2 in Appendix D to
bound ‖x(t+1)

i,j,T − x̃
(t+1)
i,j,T ‖2 in (21). Notice that Proposition 2

assumes the error in dictionary to be smaller than C2
1τmin

44 ,
which is satisfied by (24). Other assumptions of Proposition 2
are satisfied due to P1 and P2. Therefore, we get ∀ i ∈
{1, . . . , N} and j ∈ {1, . . . , Si},

‖x(t+1)
i,j − x̃(t+1)

i,j ‖2 ≤
3
√
T0

τminC2
‖D(t) − D̂(t)

i ‖2. (25)

Now defining X(t+1)
i and X̃(t+1)

i as before, we note that

‖x(t+1)
i,j,T − x̃

(t+1)
i,j,T ‖2

≤
√
Smax‖X(t+1)

i − X̃(t+1)
i ‖max

≤
√
Smax max

j∈{1,...,Si}
‖x(t+1)

i,j − x̃(t+1)
i,j ‖2

≤ 3
√

2KSmaxT0

τminC2
ε(1 + ζ)t−1C4(8C3NC

2
4 + 5)tK−1, (26)



14

where the last inequality follows from (25) and (23). Now
using bounds on ‖x(t+1)

i,j,T ‖2 and (26) we get the following
from (21):

‖B(t+1)
i,1,R ‖2

(c)

≤ 2K max
j
‖x̃(t+1)

i,j,T − x
(t+1)
i,j,T ‖2 + max

j
‖d̂(t)
i,j − d

(t)
j ‖2‖x

(t)
i,j,T ‖2

(d)

≤ 2K
3
√
SmaxT0

τminC2

√
2Kε(1 + ζ)t−1C4(8C3NC

2
4 + 5)tK−1

+ ε
√

2(1 + ζ)t−1C4(8C3NC
2
4 + 5)tK−1

√
Smaxητ,max

(e)

≤ ε(1 + ζ)tC4(8C3NC
2
4 + 5)tK−1.

Here, (c)–(d) follow by application of (22) and (23), and (e)
is by definition of ζ.

The last lemma that we need bounds ‖B(t)
i,k+1,R‖2 when we

have a bound on ‖B(t)
i,k,R‖2.

Lemma 5. Let Ω
(t)
i,k, Ω̃

(t)
i,k, ε and ζ be as defined in The-

orem 3, also perform Tc consensus iterations as given in
Theorem 3. Now fix δd as in Theorem 1, and suppose
(i) P1–P3 are satisfied, (ii) Ω

(t)
i,k = Ω̃

(t)
i,k, and (iii) ε ≤

δd
8N
√
nC3(1+ζ)Td−1C2

4 (8C3NC2
4+5)2(TdK−2) . For any fixed k ∈

{1, · · · ,K}, t ∈ {1, · · · , Td}, and all i ∈ {1, · · · , N}, if
‖B(t)

i,k,R‖2 ≤ ε(1 + ζ)t−1C4(8C3C
2
4N + 5)(t−1)K+k−2 then

‖B(t)
i,k+1,R‖2 ≤ ε(1 + ζ)t−1C4(8C3C

2
4N + 5)(t−1)K+k−1.

Proof: Recall once again that we can write

B
(t)
i,k+1,R = Ê

(t)
i,k+1,R − E

(t)
i,k+1,R

=

K∑
j=k+2

(
d

(t−1)
j x

(t)
i,j,R − d̂

(t−1)
i,j x̃

(t)
i,j,R

)

−
k∑
j=1

(
d̂

(t)
i,j x̂

(t)
i,j,R − d

(t)
j x

(t)
i,j,R

)
,

now using relation x̂
(t)
i,k,R = d̂

(t)T

i,k Ê
(t)
i,k,R and doing some

rearrangements we get,

B
(t)
i,k+1,R = d̂

(t)
i,kd̂

(t)T

i,k Ê
(t)
i,k,R − d

(t)
k d

(t)T

k E
(t)
i,k,R

−
(
d

(t−1)
k+1 x

(t)
i,k+1,R − d̂

(t−1)
i,k+1x̃

(t)
i,k+1,R

)
+B

(t)
i,k,R.

It then follows that

‖B(t)
i,k+1,R‖2

≤ ‖B(t)
i,k,R‖2 +

∥∥∥d̂(t)i,kd̂
(t)T

i,k (E
(t)
i,k,R +B

(t)
i,k,R)− d(t)k d

(t)T

k E
(t)
i,k,R

∥∥∥
2

+
∥∥∥d(t−1)

k+1 x
(t)
i,k+1,R − d̂

(t−1)
i,k+1x̃

(t)
i,k+1,R

∥∥∥
2

(a)

≤ 2‖B(t)
i,k,R‖2 + ‖d̂(t)i,kd̂

(t)T

i,k − d
(t)
k d

(t)T

k ‖2C4

+
∥∥∥d(t−1)

k+1 x
(t)
i,k+1,R − d̂

(t−1)
i,k+1x̃

(t)
i,k+1,R

∥∥∥
2

(b)

≤ εC4(1 + ζ)t−1
(

(8C3NC
2
4 + 5)(t−1)K+k−2(8C3NC

2
4 + 3)

+ε8C3NC
2
4 (1 + ζ)t−1(8C3NC

2
4 + 5)2(t−1)K+2k−4

+
1

(1 + ζ)t−1

)
.

Here (a) is due to the fact that E(t)
i,k,R is a submatrix of

E
(t)
i,k and the definition of C4 in (7), (b) is obtained by

applying (19), using assumption on ‖B(t)
i,k,R‖2 and finally

using the same procedure as in Lemma 4 after (20) to bound∑K
j=1

∥∥∥d(t−1)
j x

(t)
i,j,T,R − d̃

(t−1)
i,j x̃

(t)
i,j,T,R

∥∥∥
2
. The proof of the

lemma now follows by using the assumption on ε and some
algebraic manipulations.

The proof of Theorem 3 now can be given by combining
Lemmas 2– 5. Since these lemmas require the supports of both
centralized and distributed problems to be the same, the main
challenge in proving Theorem 3 lies in showing this fact.

Proof of Theorem 3: We will prove this theorem by
mathematical induction over t. To be specific, we will prove
the following two cases:

1) For base case, we will show that the claim holds for
‖B(1)

i,k,R‖2 ∀k ∈ {1, 2, · · · ,K}.
2) For induction step we assume that for any q ∈
{1, 2, · · · , Td − 1} the claim is true for ‖B(q)

i,k,R‖2 ∀k ∈
{1, 2, · · · ,K} and Ω

(q)
i,k = Ω̃

(q)
i,k . Then we need to

show that Ω
(q+1)
i,k = Ω̃

(q+1)
i,k and claim holds for

‖B(q+1)
i,k,R ‖2 ∀k ∈ {1, 2, · · · ,K}.

Base case: t = 1 ∀ k ∈ {1, 2, · · · ,K} To prove the base
case, we will do mathematical induction over k by fixing
t = 1. Hence, the first thing we need to prove is that the bound
is true for ‖B(1)

i,1,R‖2. Since both cloud K-SVD and Central-
ized K-SVD start with the same initial dictionary, we have
d

(0)
j = d̂

(0)
i,j , ∀ j ∈ {1, 2, · · · ,K}. Therefore, we get Ω

(1)
i,j =

Ω̃
(1)
i,j , ∀ j ∈ {1, 2, · · · ,K}. It then follows that B(1)

i,1,R =

E
(1)
i,1,R−Ê

(1)
i,1,R =

∑K−1
j=1

(
d

(0)
j x

(1)
i,j,TΩ

(1)
i,j − d̂

(0)
j x̃

(1)
i,j,T Ω̃

(1)
i,j

)
=

0, thereby proving the claim.
Next, for induction argument we fix k = p ∈ {1, . . . ,K −

1} for t = 1. Then we need to show that it holds for
k = p + 1. Using the induction assumption we have
‖B(1)

i,p,R‖2 ≤ εC4(8C3NC
2
4 + 5)p−2. Since Ω

(1)
i,j = Ω̃

(1)
i,j , we

have B(1)
i,p+1,R = Ê

(1)
i,p+1,R − E

(1)
i,p+1,R. This results in

‖B(1)
i,p+1,R‖2

= ‖
K∑

j=p+2

(
d
(0)
j x

(1)
i,j,R − d̂

(0)
i,j x̃

(1)
i,j,R

)
−

p∑
j=1

(
d̂
(1)
i,j x̂

(1)
i,j,R − d

(1)
j x

(1)
i,j,R

)
‖2

(a)
= ‖ −

p∑
j=1

(
d̂
(1)
i,j x̂

(1)
i,j,R − d

(1)
j x

(1)
i,j,R

)
‖2

= ‖d̂(1)i,p x̂
(1)
i,p,R − d

(1)
p x

(1)
i,p,R +

p−1∑
j=1

(
d̂
(1)
i,j x̂

(1)
i,j,R − d

(1)
j x

(1)
i,j,R

)
‖2

= ‖d̂(1)i,p x̂
(1)
i,p,R − d

(1)
p x

(1)
i,p,R +B

(1)
i,p,R‖2, (27)

where (a) is true because d
(0)
j x

(1)
i,j,R − d̂

(0)
i,j x̃

(0)
i,j,R = 0.

Substituting x̂(1)
i,p,R = d̂

(1)T

i,p Ê
(1)
i,p,R, we get

‖B(1)
i,p+1,R‖2

≤ 2‖B(1)
i,p,R‖2 + ‖d̂(1)i,p d̂

(1)T

i,p − d
(1)
p d(1)

T

p ‖2‖E(1)
i,p,R‖2
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(b)

≤ 2‖B(1)
i,p,R‖2 + ‖d̂(1)i,p d̂

(1)T

i,p − d
(1)
p d(1)

T

p ‖2C4

(c)

≤ 2‖B(1)
i,p,R‖2 + C4

(
8C3N max

i

(
‖B(1)

i,p,R‖2C4 + ‖B(1)
i,p,R‖

2
2

)
+ ε
)

(d)

≤ εC4

(
(8C3NC

2
4 + 5)p−2(8C3NC

2
4 + 2)

+ε8C3NC
2
4 (8C3NC

2
4 + 5)2p−4 + 1

)
.

Here, (b) is true since E(t)
i,k,R is a submatrix of E(t)

i,k and due
to the definition of C4 in (7), (c) is due to (19) and (d) follows
from using the bound on ‖B(1)

i,p,R‖2 and some manipulations.
Now using the assumption on ε, we get ‖B(1)

i,p+1,R‖2 ≤
εC4(8C3NC

2
4 + 5)p−1.

Induction step: Bound on ‖B(q)
i,k,R‖2 holds for

t = q ∈ {1, . . . , Td − 1} and ∀ k ∈ {1, 2, · · · ,K}.
We need to show the bound holds for ‖B(q+1)

i,k,R ‖2 ∀ k ∈
{1, . . . ,K}. To show this, we will be using induction argument
over k by fixing t = q+1. As base case we bound ‖B(q+1)

i,1,R ‖2.
To bound ‖B(q+1)

i,1,R ‖2, we will be using Lemma 4, which
assumes Ω̃

(q+1)
i,1 = Ω

(q+1)
i,1 . Using the induction assumptions,

we get the following bound on error in dictionary D̂
(q)
i

using Lemma 3 and performing same steps as we carried
out in Lemma 4 to get (22) and (23): ‖D(q) − D̂

(q)
i ‖2 ≤

ε
√

2KC4(8C3NC
2
4 + 5)(q−1)K+k−2. Using the assumption

on ε, we then have ‖D(q) − D̂
(q)
i ‖2 ≤ δd

√
2K. It then

follows from arguments similar to the ones made in Lemma 4
that Ω

(q+1)
i,1 = Ω̃

(q+1)
i,1 . We can now use Lemma 4 to bound

‖B(q+1)
i,1,R ‖2 ≤ ε(1+ζ)qC4(8NC3C

2
4 +5)qK−1. Having proved

the base case, we now suppose that the claim is true for some
k = p ∈ {1, . . . ,K − 1}. We then need to show it holds
for ‖B(q+1)

i,p+1,R‖2. That claim, however, simply follows from
Lemma 5. This concludes the proof of theorem.

APPENDIX C
PROOF OF THEOREM 1

To prove Theorem 1 we need an upper bound on error
in matrices Ê(t)

i,k,R, which is given by Theorem 3. Applying
Theorem 3 to get a bound on the error in dictionary atom
d̂

(t)
i,k is a trivial task. But before using Theorem 3, we need

to show that our assumption on ε is indeed satisfied. In the
following, we will prove that the assumption on ε is satisfied
if we perform Tp power method and Tc consensus iterations
that are given according to the statement of Theorem 1.

Proof of Theorem 1: After Td iterations of cloud K-SVD,
error in any kth dictionary atom d̂

(Td)
i,k at site i is a function

of the error in Ê
(Td)
i,k,R. Specifically, notice from (19) that we

can write

‖d(Td)
k d

(Td)T

k − d̂(Td)
i,k d̂

(Td)T

i,k ‖2
≤ 8NC3 max

i
(‖B(Td)

i,k,R‖2C4 + ‖B(Td)
i,k,R‖

2
2) + ε. (28)

We can now upper bound ‖B(Td)
i,k,R‖2 in (28) using Theorem 3,

but we first need to show that the statement of Theorem 1
implies the assumption on ε in Theorem 3 is satisfied. That is,
we need to show ε ≤ δd

8N
√
nC3(1+ζ)Td−1C4(8C3NC2

4+5)2(TdK−2) .

Recall that by definition ε = µνTp + 4ε3Tp . Substituting this,
we must show that

µνTp + 4ε3Tp ≤ δd
8N
√
nC3(1 + ζ)Td−1C4(8C3NC2

4 + 5)2(TdK−2)
.

Since ν > 0 and ε > 0, therefore, µνTp + 4ε3Tp < µ(ν +
4ε3)Tp . It is therefore sufficient to show that µ(ν + 4ε3)Tp ≤

δd
8N
√
nC3(1+ζ)Td−1C4(8C3NC2

4+5)2(TdK−2) for our selected val-
ues of Tp and Tc. Showing that, however, is a simple exercise
and is left out for brevity. It therefore follows from Theorem 3
that ‖d(Td)

k d
(Td)T

k − d̂(Td)
k d̂

(Td)T

k ‖2 ≤ ε(1 + ζ)Td−1(8C3NC
2
4 +

5)(Td−1)K+k−1. Substituting the upper bound on ε, we get
‖d(Td)
k d

(Td)T

k − d̂(Td)
k d̂

(Td)T

k ‖2 ≤ δd.

APPENDIX D
OTHER RESULTS

In this appendix, we collect some supporting results that are
used in the proofs of our main results.

Lemma 6 (Perturbation of singular values). Let D2 be a
perturbed version of dictionary D1 such that ‖D1 −D2‖2 ≤
ε2 and let ΣT0

be as defined in Section IV-A. Then as-
suming minI∈ΣT0

σT0

(
D1|I

)
≥

√
C ′2 > ε2, we have

minI∈ΣT0
σT0

(
D2|I

)
≥
√
C ′2 − ε2.

Proof: Using [56, Theorem 1], perturbation in T th0

singular value of D1|I can be bounded as |σT0

(
D1|I

)
−

σT0

(
D2|I

)
| ≤ ‖D1|I −D2|I‖2 ≤ ‖D1 −D2‖2 ≤ ε2. Using

reverse triangular inequality, we therefor get ∀I ∈ ΣT0
, ε2 ≥

|σT0

(
D1|I

)
| − |σT0

(
D2|I

)
| ≥

√
C ′2 − |σT0

(
D2|I

)
|, which

leads to the claimed result.

Proposition 2 (Stability of sparse coding). [57, Theorem 1]
Let D2 be a perturbed version of dictionary D1 such that
‖D1 − D2‖2 ≤ ε2. Given any sample y ∈ Rn, suppose
sparse codes x ∈ RK and x̂ ∈ RK are computed by
solving the lasso problem (5) using D1 and D2, respectively.
Next, let minj 6∈supp(x) τ − |〈d1,j , y −D1x| > C1, where d1,j

denotes the jth atom of D1, and suppose D1 satisfies P2.
Then, as long as ε2 ≤ C2

1τ
44 , we have that supp(x) = supp(x̂)

and ‖x− x̂‖2 ≤ 3‖D1−D2‖2
√
T0

τC2
, where T0 = |supp(x)|.

Note that [57, Theorem 1] also requires D2 to satisfy
P2. Proposition 2 in its current form, however, is a simple
consequence of [57, Theorem 1] and Lemma 6.

Proposition 3 (Perturbation of principal eigenvector). [26,
Chap. 8] Let A ∈ Rn×n be a symmetric matrix and define
Â = A + E to be a perturbed, but symmetric version of
A. Define Q =

[
q1 | Q2

]
to be an orthogonal matrix

comprising eigenvectors of A, where q1 denotes the prin-

cipal eigenvector of A. Next, define QTAQ =

[
λ 0
0 Λ2

]
and QTEQ =

[
ε eT

e E22

]
. Then, using eig(Λ2) to denote

the (n − 1) smallest eigenvalues of A, it follows that if
g = min%∈eig(Λ2) |λ− %| > 0, and ‖E‖F ≤ g

5 then there exists
p ∈ Rn−1 satisfying ‖p‖2 ≤ 4

g‖e‖2, such that q̂1 = q1+Q2p√
1+pTp

is a unit 2-norm principal eigenvector for Â. Moreover,
‖q1q

T
1 − q̂1q̂

T
1‖2 ≤ 4

g‖e‖2.
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Lemma 7 (Errors in vectors and their outerproducts). For two
unit `2-norm vectors u and v if ‖uuT−vvT‖2 ≤ ε and uTv ≥ 0
then ‖u− v‖2 ≤

√
2ε.

Proof: Let θ = ∠(u, v) and notice that ‖uuT − vvT‖2 =
sin θ. This implies 1− cos2 θ = sin2 θ = ‖uuT − vvT‖22 ≤ ε2.
Since u and v are unit norm and uTv ≥ 0, we can write
cos θ = uTv. It then follows that 1− uTv ≤ ε2

1+uTv
< ε2. The

claim follows by noting that ‖u− v‖2 =
√

2(1− uTv).
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