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Abstract—We evaluated passive radio-frequency identification (RFID) technology for detecting the use of objects and related 

activities during trauma resuscitation. Our system consisted of RFID tags and antennas, optimally placed for object detection, 

as well as algorithms for processing the RFID data to infer object use. To evaluate our approach, we tagged 81 objects in the 

resuscitation room and recorded RFID signal strength during 32 simulated resuscitations performed by trauma teams. We then 

analyzed RFID data to identify cues for recognizing resuscitation activities. Using these cues, we extracted descriptive features 

and applied machine-learning techniques to monitor interactions with objects. Our results show that an instance of a used object 

can be detected with accuracy rates greater than 90 percent in a crowded and fast-paced medical setting using off-the-shelf 

RFID equipment, and the time and duration of use can be identified with up to 83 percent accuracy. Our results also offer 

insights into the limitations of passive RFID and areas in which it needs to be complemented with other sensing technologies. 

Index Terms—Machine learning, medical information systems, medicine and science, sensors --- RFID, object-based sensing, 

activity recognition, emergency medicine, trauma resuscitation. 

——————————      —————————— 

1 INTRODUCTION

ime- and safety-critical settings require efficient and 
error-free task performance. Trauma resuscitation—
the initial management of critically injured patients in 

the trauma bay, a dedicated room in the emergency de-
partment—is an example of such setting. The resuscita-
tion environment is dynamic and often chaotic, which 
contributes to medical errors and miscomunication. Team 
members may forget the findings and parameters of past 
tasks (e.g., given amount of intravenous (IV) fluid) or 
miss important steps, leading to inefficiencies and ad-
verse outcomes. The benefits of computerized support for 
trauma teams have been shown using an expert system 
that tracked and validated the resuscitation progress 
based on manual data input [7]. This system, however, 
had limited usability due to the need for manual data 
entry and difficulty of capturing information from multi-
ple sources. 

Automating context awareness requires selection and 
deployment of appropriate sensors, as well as processing 
of the acquired data to infer context, such as activities or 
object use. Passive RFID technology offers an unintrusive, 
low-cost and privacy-preserving sensing solution. Unlike 
accelerometers [4] and active RFID tags [12], passive RFID 

tags do not require maintenance because they operate 
without batteries. Passive RFID tags are also smaller 
(convenient for small medical objects) and cheaper (dis-
posable and usable at the item level). Although computer 
vision has similar advantages, its use may be limited by 
privacy concerns. Cameras capture at least a temporary 
record of people, whereas RFID data contain little or no 
personal information. Moreover, RFID is better at detect-
ing small or randomly oriented objects, and at tolerating 
occlusions. Despite these advantages, long-range passive 
RFID has received limited attention in the activity recog-
nition community due to performance issues. Near-field 
RFID readers have been used for achieving robust tag 
detection [5][10][18][19]. These readers, however, are in-
trusive and require users to remember to wear them. 

Our long-term goal is to develop a context-aware sys-
tem that automatically recognizes human activities in real 
time and provides feedback to improve the efficiency and 
effectiveness of time-critical medical settings such as 
trauma resuscitation. Building such a system requires a 
combination of approaches and technologies, including 
RFID, speech recognition, computer vision, and other 
sensors. In this paper, we focus on long-range passive 
RFID technology and examine its feasibility for detecting 
used objects and related activities during trauma resusci-
tation. We monitored object use by processing received 
signal strength data from tagged objects with machine-
learning techniques. To evaluate the efficacy of this ap-
proach, we conducted a study in an actual trauma bay 
equipped with six RFID readers and 81 medical objects 
tagged with off-the-shelf RFID tags. 

Using experimental data from 32 resuscitations per-
formed by medical teams on a patient mannequin, we 
found that our method could detect specific objects in a 
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crowded clinical setting with accuracy rates greater than 
90%. Although the use of some objects could not be de-
tected with high accuracy, the 95% confidence intervals of 
all results were within 5% of the average performance for 
objects detected with high and low accuracy, indicating 
consistency across different resuscitations and teams. 

We make three contributions in this work. First, we 
provide a method for detecting the use of objects in complex 
activities based on passive RFID. Our RFID setup was opti-
mized to capture the change in object state instead of just 
high read rates. Our data processing algorithms are based 
on machine learning and postprocessing for improved 
performance. Second, we provide evidence that passive 
RFID can be used for object use detection with up to 90% accu-
racy, as well as for activity recognition. Experimental data 
was collected in an actual trauma bay. Medical personnel 
were unaware of our data collection and worked in a nat-
ural way. We used off-the-shelf RFID equipment, show-
ing a promise for future use of passive RFID in similar 
patient-care settings. And third, we offer insights into the 
strengths and limitations of passive RFID. Our results 
showed that RFID consistently performed well for some 
objects and less well for others, thereby identifying ob-
jects that will require other sensors to complement RFID. 

2 RELATED WORK 

Sensor-based methods are becoming widespread for hu-
man activity recognition. While simple activities can be 
recognized using on-body sensors [4], complex activities 
require additional cues such as body location [5][12][14], 
speech [14], or objects in use [5][6][10][19][28]. 

Objects in use have been found valuable for identify-
ing tasks during surgery and other medical events 
[1][5][10][19], daily activities (e.g., making coffee) [6][18], 
and car manufacturing activities (e.g., closing the engine 
hood) [28]. Agarwal et al. used RFID to track people and 
medications to infer events during surgery [1]. Ohashi et 
al. tracked medications and blood administration during 
patient care by equipping carts with RFID readers (read 
range  10 cm), and placing tagged objects on the cart for 
detection [19]. Although feasible for bedside patient care, 
this approach cannot be applied in the operating room, 
where several people work in a larger space. To remove 
this restriction, wearable RFID readers have been used for 
tracking nursing tasks [10] and surgery phases [5]. 

Near-field RFID technologies (e.g., wearable readers) 
can achieve high accuracy of interaction detection, but 
they have three limitations. First, they require human 
participation, which is intrusive in real-world applica-
tions [5]. Even in a relaxed home setting, participants for-
got to wear the readers or grasped objects with a non-
equipped hand [18]. Second, near-field readers are not 
feasible for long-term experiments in a clinical setting as 
they may hinder patient care. This limitation affects our 
work because we are continuously running experiments 
and collecting data in the actual trauma bay, rather than 
arranging only a few experiments. To ensure minimal 
intrusion, we designed our tagging approach and RFID 
antennas setup in the trauma bay using the deployment 

and evaluation methods developed in our earlier work 
[21]. Finally, near-field readers provide binary detection 
information, rather than signal strength values. Although 
received signal strength indication (RSSI) tends to be 
noisy for passive RFID, it contains rich information that 
can be extracted using multiple, spatially distributed 
readers and data processing techniques. 

We used six ceiling-mounted antennas, with read 
ranges of 3 to 4 m, and demonstrated that tag mobility 
(due to object use) can be inferred from the RSSI. Long-
range tag motion detection has been studied with fixed 
RFID readers and algorithms to detect fluctuations in 
RSSI [11][27]. Our work differs in both experimental and 
algorithmic approaches in three distinct ways. First, we 
conducted continuous, long-term experiments in a time-
critical, crowded setting, unlike home [11] or office set-
tings [27]. Second, medical personnel participating in our 
experiments were unaware of RFID data collection. Final-
ly, we applied machine-learning techniques, rather than 
simple logical rules to address data processing challenges 
in a realistic setting characterized by many objects and 
usage patterns. 

Many prior studies have leveraged machine learning 
for activity recognition in various problem domains. For 
example, hidden Markov models (HMMs) were used to 
recognize daily activities (e.g., cereal making and teeth 
brushing [6]), physical activities (e.g., standing, walking, 
and running [15]), and office activities (e.g., phone con-
versations and face-to-face interactions [20]). Similarly, 
previous work has made use of conditional random fields 
for recognition of GPS-based activities [17] and home ac-
tivities [30], and also leveraged dynamic Bayesian net-
works for recognizing daily activities [25]. Finally, sup-
port vector machines have been used for activitiy moni-
toring of the elderly[8], Adaboost and HMM for recogniz-
ing physical activities[16], and rule- and tree-based classi-
fiers for activitiy recognition [5][13]. To our knowledge, 
however, no study has used machine learning techniques 
for object use detection based on RSSI data from passive 
RFID. In particular, the noisiness of the RFID data in our 
problem domain required careful feature extraction and 
postprocessing, in conjunction with traditional machine 
learning methods for classification. 

Our early work focused on the components needed to 
build the overall system for object use detection in the 
trauma bay [21][22][23]. In contrast, this paper focuses on 
the details and evaluation of the complete system for ob-
ject use detection in a realistic setting. Specifically, we 
started with mock resuscitations in a laboratory setting 
with teams of two experimenters (non-medical students) 
and nine objects [23]. We built a system for detecting the 
use of these objects based on their motion and location, 
which achieved an average precision rate of 63.8% and a 
recall rate of 90.6% [23]. We then used these data to exper-
iment with various feature sets and classifiers for detect-
ing whether an object is in motion from passive RFID da-
ta [22]. While this previous work provided insights into 
object use detection from RSSI data [22][23], the setups 
used were simpler than the realistic experimental setup 
achieved in this paper. Finally, the same laboratory set-
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ting was used to analyze the performance of RFID anten-
nas and tags placement [21]. This paper leverages the les-
sons learned from our early studies for the following: op-
timal placement of RFID antennas in an actual trauma 
bay; deployment of a comprehensive RFID-based object 
use detection system, including placement of tags on nu-
merous medical objects inside the actual trauma bay; ex-
tensive collection of RSSI data during realistic resuscita-
tion simulations in the trauma bay; and evaluation of our 
approach to object use detection in the trauma bay using 
this large collection of realistic RSSI data. 

3 STUDY SETUP 

We next describe our RFID deployment at the research 
site, data collection methods, and the recorded dataset. 

3.1 Identifying Activities and Objects for Tracking 

Using a hierarchical task analysis performed by medical 
experts on our research team, we created a list of tasks 
that were judged important for the performance of trau-
ma resuscitation (Table I). If omitted or performed incor-
rectly, these tasks could lead to adverse patient outcomes. 
We excluded low-level subtasks such as opening the pa-
tient’s mouth or removing a stylet from an endotracheal 
tube because their detection is challenging and noncritical 
for achieving our goals [24]. 

3.2 RFID Tag Type and Placement 

RFID tag type and position were determined based on the 
composition and size of objects, as well as their usage 
patterns. We evaluated several tagging configurations for 
each of these factors and selected the configuration for 
each object that yielded the highest RFID read rates [21]. 

1) Tag type: We selected the tag type based on object 
material. Passive RFID tags perform poorly when at-
tached to metallic surfaces or liquid containers. We 
tagged metallic items (e.g., laryngoscope) with rigid on-
metal tags. Although these special tags are expensive, 
they are feasible for reusable items. Liquid containers 
(e.g., IV fluid bags) and objects in aluminum packaging 
(e.g., CO2 detector) were tagged with regular tags, keep-
ing the tag contact with liquid or aluminum minimal. 

2) Number of tags and their placement: For each object, 
we identified surfaces available for tagging and selected 
the largest fitting tag. The surface availability depended 
on (a) object protection: for sterile objects, only the wrap-
ping could be tagged; (b) shape constraints: flat surfaces 
were preferred as tag folding degrades performance; (c) 
smoothness: tags adhered better to smooth surfaces; (d) 
size: most objects were tagged with two RFID tags for 
robust detection so that if one tag was not readable, the 
other might still be readable (single tag was used on 
small objects to avoid signal distortion [11]); and (e) dura-
tion of contact: if an object was held longer than 10 sec-
onds, we placed one tag at a point of contact with pro-
vider’s hand or patient’s body, and the other tag at the 
location where it would remain exposed (“tandem tag-
ging” [24]). Weaker or no signal from the first tag and 
strong signal from the second tag indicated that the ob-
ject was in use. 

We used 109 passive RFID tags for tagging 81 objects 
of 19 types (Table I). Examples of tagged objects include 
the thermometer, intravenous fluid bag, and a bag valve 
mask (Fig. 1). During a pilot resuscitation, we noted that 
some tags were not detectable (e.g., on the stethoscope or 
thermometer probe). These tags were small and folded 
around the object shape. In these cases, we replaced the 
initial tag with a larger one if it did not interfere with the 
object’s use. If a larger tag was not feasible, we kept the 
small tag but relocated it to improve detection rates. 

 

Fig. 1. Tagged objects (tags circled). Digital thermometer (upper 
left); fluid bag (lower left); and bag valve mask or BVM (right). 

TABLE I. LIST OF TAGGED OBJECTS, NUMBER OF TAGS, AND 
ACTIVITY INVOLVING THE OBJECT. MANUALLY ANNOTATED OBJECT 

TYPES DURING VIDEO REVIEW ARE HIGHLIGHTED IN GRAY. 

Object (# of tags) Activity 

  Cervical collar (2) Neck immobilization 

Stethoscope (2) Chest auscultation 

Thermometer (1) Temperature measurement 

Laryngoscope (1) Intubation 

CO2 indicator (2) Intubation 

Endotracheal (ET) tube (4) Intubation 

IV fluid bag (8) Fluid administration 

IV catheter (31) IV line placement 

IV start kit (16) IV line placement 

IV tubing (4) Fluid administration 

Bag valve mask (2) Ventilation 

  Rapid infuser tubing (1) Rapid fluid infusion 

Otoscope (1) Ear assessment 

Ophthalmoscope (1) Eye assessment 

Broselow tape (1) Patient weight estimation 

Foley catheter (1) Urine assessment 

Orogastric tube (1) Gastric decompression 

Blood pressure (BP) cuff (1) BP measurement 

Intraossesous access drill (1) IO catheter placement 

Team role tags (8) n/a 
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3.3 RFID Antenna Placement 

Our goal was to ensure coverage of the entire trauma bay 
and maximize object use detection with a minimum 
number of antennas due to the lack of space, possible in-
terference with medical equipment and cost. To deter-
mine the optimal antenna placement, we studied provid-
ers’ locations and their interactions with medical objects. 
Using this analysis, we divided the workspace into five 
zones: patient-bed zone, right and left zones, and foot and 
head zones (Fig. 2). When in use, objects appear in the 
patient-bed zone; when stored or left idle, objects appear 
in the left, right, and head zones. The foot zone was rarely 
used for storing or using objects, so we ignored this area. 

We evaluated several antenna setups to achieve high 
readout rates and maximize deviation in the RSSI signal 
when objects change status [21]. Our final configuration 
for the experiments included: (1) one ceiling-mounted an-
tenna above each zone, facing the floor (filled circles in Fig. 2 
and shaded coverage areas) to reduce the effects of hu-
man presence and movement on RFID tracking; and (2) 
two additional antennas mounted in the patient-bed zone 
(filled triangles in Fig. 2) to improve signal detection 
rates, as well as the accuracy of localization and move-
ment detection. These antennas were angled to face the 
bed and were > 2 meters above the floor to avoid work 
obstruction and reduce interference caused by human 
occlusion and movement. The actual deployment of an-
tennas #1 and #3 is shown in Fig. 2 (right). 

We used RFID readers from Alien Technology (ALR-
9900+) [2]. We installed two readers in the trauma bay, 
hidden in a space above the ceiling. Antennas #1, #2 and 
#3 were connected to reader 1, and antennas #4, #5 and 
#6 were connected to reader 2. These associations allowed 
a pair of antennas to be simultaneously active: the pairs 1-
4, 2-5, and 3-6 were activated sequentially. To reduce in-
terference, antennas scanning the patient bed zone were 
never active at the same time. 

3.4 RFID Data Collection 

RFID data were collected during 32 simulated resuscita-
tions, each about 20 min long. All teams performed four 
resuscitation scenarios with injuries requiring different 
treatments, including endotracheal intubation, admin-
istration of fluids and medications, temperature control 
and chest-tube insertion. The use of tagged objects of each 
type depended on the scenario. For example, we tagged 
two cervical collars of different sizes because scenarios 
involved different patient types (i.e., infant and child). 

Before resuscitation, the tagged objects were stored in 
cabinets. A member of the research team initiated RFID 
data collection when the patient simulator arrived in the 
room. RFID readers operated autonomously and were 
continuously scanning the environment until stopped. 

3.4.1 Ground Truth Data for Algorithm Evaluation 

Object interactions were manually annotated using video 
review of each resuscitation. Annotation included the 
event ID, object ID (e.g., large collar, stethoscope 2), inter-
action start and end times, and activity involving the ob-
ject, if any. Of the 81 tagged objects, we annotated interac-
tions with 73 objects of 11 different types across all 32 
resuscitations (Table I). The remaining objects either had 
low data rates, preventing algorithm training (e.g., oto-
scope and ophthalmoscope), or were not used in a signifi-
cant number of resuscitations (e.g., Broselow tape, Foley 
catheter, intraosseous access drill). We decided not to 
annotate interactions with the blood pressure (BP) cuff 
because we can detect its use from the vital signs monitor. 

3.5 RFID Data Analysis 

Average read rates indicated which objects may or may 
not be easily detected. Objects with low rates were prob-
lematic because of insufficient data for processing. We 
calculated the average read rate for an object by normaliz-
ing the total number of readings with the number of re-
suscitations and the number of objects of that type. 

Angled antenna Overhead antenna
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Foot zone
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Fig. 2. Environmental setting of the trauma bay: zones where medical objects appear during resuscitation, storage locations for supplies and 
equipment, and antenna positions with shaded areas of antenna coverage. Actual deployment of antennas #1 and #3 is shown on the right. 
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The average read rates varied among objects (Fig. 3) 
for several reasons: 

1) Irregular object shapes required tag folding or a smaller 
tag, weakening the ability of the reader to detect the tag. 
Examples include the otoscope, ophthalmoscope, 
and stethoscope (columns with “IS” in Fig. 3). 

2) Some objects were stored in locations with weak anten-
na coverage. Examples include the otoscope, oph-
thalmoscope and CO2 detector. The otoscope and 
ophthalmoscope were mounted on a movable me-
chanical arm, usually located between the head 
and right zones (Fig. 2). The CO2 detector was de-
tectable only intermittently while stored, hanging 
on the wall (columns with “WC” in Fig. 3). 

3) Some objects were used rarely. Objects stored in cabi-
nets could only be detected when taken out. Their 
read rates were high after they appeared or when 
used, but their total read rates were low. Examples 
are the orogastric tube, intraosseous access drill 
and tubing for rapid fluid infusion (columns with 
“RU” in Fig. 3). 

Read rates of antennas varied by object trajectory, 
which in turn depended on where the object was stored 
and used (Fig. 3). For example, when not in use, the cervi-
cal collar was stored in the right zone, with antenna #4 
having the best reception; when the collar was brought to 
the patient bed area, reception from antennas #1, #2 and 
#3 increased; when the collar was placed around the pa-
tient’s neck, antenna #5 was the most distant and had the 
lowest reception. This change in use status caused a large 
fluctuation in the RSSI of the collar, which facilitated in-
teraction detection. Detecting object interaction by using 
data from a single antenna (e.g., CO2 detector and oto-
scope) or continually from the same set of antennas (e.g., 
stethoscopes are carried around the neck and mostly stay 
in the patient-bed zone) was challenging. Interaction de-
tection was easier for objects moving across zones be-
cause the reception of different antennas depended on 

object location (e.g., cervical collar, IV fluid bag, bag-
valve mask, IV tubing, IV catheter, and thermometer). 

4 METHOD FOR DETECTING OBJECTS IN USE 

Medical objects differ based on their storage location, us-
age pattern and interaction style. Manually defined rules 
for use detection are therefore not feasible. We formulat-
ed object use detection as a binary classification problem 
and developed a machine-learning-based strategy with 
three steps: feature extraction from RSSI data, classifica-
tion and postprocessing. 

4.1 Feature Extraction 

For each object, we segmented RSSI data into fixed-size 
overlapping windows and extracted the relevant features 
from each window (Fig. 4). To determine the relevant 
features, we analyzed interactions with objects and identi-
fied three main cues that indicate objects use [24]: 

1) Zone-based location: Objects are fetched from their 
storage and moved to a place where they are used. 

TABLE II. CUES FOR DETECTING OBJECT USE AND RELATED 
FEATURES EXTRACTED FROM RSSI TO CAPTURE THOSE CUES. 

Cue Feature 

Location Average RSSI (from each antenna) 

Motion 
Difference of average RSSI between Left 
and Right sub-window (from each antenna) 

 Total difference between L and R 

 
Spearman Rank Correlation Coefficient 
between L and R 

 
Number of antennas that are common in L 
and R 

 Mahalanobis distance between L and R 

 Number of visible antennas 

Contact 
Percentage RSSI contributed by each tag on 
the object 

 

 

Fig. 3. Average read rates for each object and antenna (averaged over 32 resuscitations and number of objects of the same type). Larger 
bubbles indicate higher read rates. (None: 0 readings/resuscitation; Largest: 1388 readings/resuscitation). Arrows indicate the objects with 
low number of readings, due to irregular shape (IS), weak coverage (WC), or rare use (RU). 
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We used RSSI from different antennas to represent 
the zone-based location (Table II). 

2) Motion: Movement of a used object (and its at-
tached tag) causes fluctuations in RSSI, which can 
be detected by quantifying the variability in the 
current window. Our previous work showed the 
feasibility of this approach in a crowded laborato-
ry setting [22]. To quantify this variability, we di-
vided a time window into left (L) and right (R) 
sub-windows, and computed statistics to quantify 
the dissimilarity between them (Table II). Because 
moving objects are more likely to be detected by 
several antennas, we also counted the number of 
antennas that detected the object at least once in 
the current window. 

3) Contact: Contact between an object and a provider 
or patient means that the object is likely in use. For 
objects with tandem tagging, we expected strong 
signal from both tags when the object was idle. 
When in use, the tag in contact with a provider or 
patient emitted weaker signal or no signal at all. 
We detected contact based on the percentage RSSI 
contributed by each tag on the object (Table II). 

A cue may show different characteristics depending on 
the object type. For example, when in use, a cervical collar 
is located at the head of the bed, while an IV fluid bag is 
located at the left side. These object locations generate 
different RSSI patterns, although they both mean “in use.” 
Each cue then must be interpreted separately for each 
object type. To uncover these cues, we extracted 18 fea-
tures from the RSSI data and concatenated them to a fea-
ture vector. To handle the feature variance across object 
types, we trained a separate classifier for each object type. 

4.2 Classifier Training 

We used a supervised approach for training a classifier. 
Our dataset included RSSI data from tags and manually 
generated annotations. Features extracted from RSSI and 
annotations served as input to a learning algorithm that 
outputted a classifier. In the testing phase, the features 
were mapped to binary labels using the classifier (Fig. 4). 

By visualizing the distribution of features for our da-

taset, we concluded that they could not be modeled with 
a simple and well-known probability distribution. Rather 
than modeling the distribution of features, we used algo-
rithms that directly learn the discriminator via discrimi-
native classification methods [3]. We evaluated four rule-
based and tree-based classifiers that have performed well 
in similar detection tasks [5][13]: decision trees, random 
forests, boosting, and JRip. To train and test these classifi-
ers, we used the Weka data mining software [8]. 

4.3 Postprocessing 

A classifier generates hypothesized labels as outputs, but 
it does not provide information about confidence of the 
hypotheses. We obtained confidence estimates (posterior 
probabilities) of the binary labels by fitting a logistic re-
gression model into the classification output [3]. We also 
processed the posterior probability sequence with (Fig. 4): 

1) Smoothing: The sequence was filtered with a 
smoothing Gaussian filter to eliminate sudden 
jumps in the posterior probability sequence. 

2) Thresholding: An instance of object use was de-
clared if the smoothed probability values exceeded 
a threshold. A precision-recall curve was obtained 
by adjusting this threshold. 

3) Merging adjacent instances of use: If two use instanc-
es were  30 sec apart, we merged them to a single 
event. The rationale was that proximate uses of the 
same object most likely represent one activity. 

4) Eliminating short interactions: We removed use in-
stances shorter than a specified time interval de-
rived from annotated data, depending on the ob-
ject type. For example, annotations showed that 
the mean use time for thermometer was 23 sec and 
the minimum use time was 12 sec. As a result, we 
set a 10 sec threshold for the thermometer. 

5 EVALUATION 

We next describe our evaluation of the object use detec-
tion performance in relation to two aspects: 
 Object Instance Detection: Identifying which instance of 

a given object type was used during an event (e.g., IV 
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Fig. 4. A schematic illustrating our machine learning-based approach for detecting the use of objects. 



1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2436393, IEEE Transactions on Mobile Computing

PARLAK ET AL.:  PASSIVE RFID FOR OBJECT DETECTION AND ACTIVITY RECOGNITION DURING TRAUMA RESUSCITATION 7 

 

catheters #5 and #6 were used in event #17). By know-
ing object instances we can obtain the count and pa-
rameters of used objects; this is important contextual 
information that teams may overlook or forget. 

 Time of Object Use: Detecting the exact time interval of 
object use (e.g., IV catheter #6 was used between 126–
149 seconds in event #17). By finding the time of ob-
ject use, we can track and analyze team activities. 

5.1 Evaluation Method and Metrics 

The performance of object-instance and use detection was 
evaluated by five-fold cross-validation. Each resuscitation 
event produced a separate data sequence. We divided the 
set of these sequences into five subsets to apply five-fold 
cross-validation. The sequences were not segmented into 
pieces and each sequence appeared unbroken in the train-
ing or testing set. 

We evaluated use detection performance with three 
sets of metrics. The first set was precision and recall, wide-
ly used in detection problems [26]. We also used F-
measure (the harmonic mean of precision and recall) as a 
combined measure of performance. Precision, recall and 
F-measure vary in the range of [0,1]. High precision rates 
mean that most detections are correct (few false alarms), 
whereas high recall rates mean that most true instances 
are detected (few misses). Although precision, recall and 
F-measure show the number of false positives and false 
negatives, they do not specify the type of misses and false 
alarms. For example, a false alarm may be due to a late 
detection or complete miss, and one of these errors may 
be more serious than the other. To address this drawback, 
we used a second set of metrics defined by Ward et al. 
[31]. False negatives were categorized into three types: 

1) Underfill: Predicted segment matches a ground 
truth segment but partially misses at the start or 
end (underfill_start, underfill_end). 

2) Fragmentation: Two or more predicted segments 
match a ground truth segment. 

3) Deletion: A ground truth segment is not matched. 
False positives were also categorized into three types: 

1) Overfill: Predicted segment matches a ground 
truth segment with a spill at the start or end (over-
fill_start, overfill_end). 

2) Merge: Predicted interval includes two or more 
ground truth segments. 

3) Insertion: Predicted interval does not match a 
ground truth segment. 

Another flaw of precision and recall metrics is that 
they do not account for true negatives, especially when 
the data is skewed, potentially biasing the calculations. 
Our third set of metrics included unbiased measures of 
performance: informedness, markedness and Matthews corre-
lation coefficient (MCC) [26]. MCC is considered one of the 
best representations of a confusion matrix because it in-
corporates all of its elements. Informedness and marked-
ness vary in the range of [0,1]. Because maximum value 
for inverse precision and inverse recall is 100 percent, 
informedness and markedness are often smaller than pre-
cision and recall. MCC measures the goodness of a hy-
pothesis by computing its correlation with the ground 

truth: the greater the correlation, the more accurate the 
hypothesis. Being a correlation-based metric, MCC varies 
in the range [1,1]. MCC values close to 1 indicate high 
correlation between the ground truth and the hypothesis, 
and hence good use-detection performance. An MCC of 
zero means that the hypothesis and the ground truth are 
not correlated, indicating poor performance. Negative 
MCC values represent inverse correlation between two 
signals. When evaluating detection performance, howev-
er, inverse correlation is not relevant because negative 
performance scores are not valid. We thus observed nega-
tive MCCs only when they were close to zero. 

5.2 Experimental Results 

We evaluated the use detection performance on 72 objects 
of 11 commonly used types: two cervical collars, two 
stethoscopes (one tagged with 2 tags; one tagged with 4 
tags), thermometer, laryngoscope, two CO2 indicators, 
four ET tubes, two bag-valve-masks, eight IV fluid bags, 
31 IV catheters, 16 IV start kits and four sets of IV tubing. 
The two stethoscopes were evaluated separately (Table I). 

5.2.1 Characterizing Passive RFID Performance for 
Detecting Object Parameters 

Certain types of objects are available in different sizes to 
accommodate different patients and needs. In the trauma 
bay, cervical collars, endotracheal (ET) tubes and IV cath-
eters are available in several sizes. IV fluid bags may also 
contain fluids with different compositions. The parame-
ters for these objects (e.g., size, volume) are determined 
based on the patient’s age, weight or current condition. 
Using objects with improper parameters can be a medical 
error and may lead to adverse outcomes. 

Objects of the same type but with different parameters 
often have similar shape or packaging. It is difficult to 
identify the parameter through analysis of videos. In the 
resuscitations that we videotaped, only parameters of the 
cervical collars and CO2 indicators were visible because 
collars had different sizes and CO2 indicators were in 
packages of different colors. The contents of fluid bags 
and size of IV catheters and endotracheal tubes, on the 
other hand, were not distinguishable from the video. 

Through human and machine vision, the object type is 
first recognized (e.g., a cervical collar), and then object’s 
parameters are found (e.g., a small cervical collar). Using 
identification technologies, on the other hand, both object 
type and parameters can be found simultaneously. When 
an RFID tag is detected as in use, the object parameters are 
retrieved from a database using the tag ID. Accurate 
knowledge of objects and their time of use perfectly con-
vey the parameter information for the used objects. In 
cases during which only use time is inaccurate (detected 
time interval does not exactly match the true time inter-
val), RFID still provides the parameters of objects that 
were used in a particular resuscitation. 

In this experiment, we evaluated long-range passive 
RFID technology for identifying specific instances of ob-
ject type used during resuscitations. Once the exact in-
stance was detected, identifying its parameters was 
straightforward. We first ran our use detection algorithm 
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for each resuscitation. If an object was detected as being 
used at least once, we assumed a positive detection for 
the object in that resuscitation. Similarly, if ground truth 
was positive at least once throughout the resuscitation, 
we assumed a positive ground truth for the object in that 
resuscitation. Here we report results for eight out of 11 
types of objects because multiple instances were tagged 
for these eight types: cervical collar (2), CO2 indicator (2), 
endotracheal tube (4), bag-valve-mask (2), IV fluid bag 
(8), IV start kit (16), IV catheter (31) and IV tubing (4). 

For all types, except the ET tube and CO2 indicator, we 
were able to detect the exact object instance, and hence its 
parameters, with an accuracy of > 90%, where accuracy 
implies the sum of true positive (TP) and true negative 
(TN) rates (Fig. 5, first bar in each group). For some ob-
jects (e.g., collar, BVM), TP and TN rates contributed al-
most equally. For others (e.g., IV start kit, catheter, fluid 
bag), TN rate was significantly greater than TP rate. The 
reason is that object types with many instances generated 
high TN rates. For example, we tagged eight IV fluid bags 
and two collars. When a team used one instance of each 
type, the used instances (one collar and one fluid bag) 
represented ground truth positives, whereas unused in-
stances (one collar and seven fluid bags) represented 
ground truth negatives. Because fluid bags had more un-
used instances, these objects had a greater TN rate. 

The use of CO2 indicators was missed primarily due to 
low read rates (Section 3.5). False positive (FP) rate was 
high for endotracheal tubes because they were in anten-
na’s view even when not in use. Locations of used and 
unused tubes were in close proximity and could not be 
distinguished using RFID. In adition, team members in-
teracted with almost all tubes when searching for the ap-
propriate one, triggering more false alarms. 

5.2.2 Characterizing Passive RFID Performance for 
Detecting Time of Object Use 

To detect the time and duration of object use, we extract-
ed features from the RSSI data using a 12-second sliding 
window, and then trained a separate Logitboost classifier 
for each object type (a total of 12 classifiers). Our findings 
from this experiment are as follows: 

1) Use detection performance depended on the object type 
and its storage. 

We obtained the best MCC scores for cervical collars 
(82.4%), bag-valve mask (84.2%), fluid bags (53.4%), and 
thermometer (40.6%) (Table III). All objects, except the 
bag-valve mask, were relocated from left or right zones to 
the patient-bed zone when needed. Relocations from oth-
er zones to the patient-bed zone or within patient-bed 
zone were more difficult to detect because the displace-
ment was relatively smaller. The bag-valve mask was 
stored in the head zone, hung on the wall above the pa-
tient bed. When needed, this object was relocated to the 
patient-bed zone and to a lower height, which increased 
the fluctuations in the RSSI signal and facilitated use de-
tection. The MCC for thermometer was lower than for 
collars or fluid bags for several reasons. First, the ther-
mometer was often brought to the patient bed long before 
its use. When it was actually needed, a nurse relocated it 

closer to the patient, but this move was not always no-
ticeable in the RSSI signal. Second, the collars, bag-valve 
mask and fluid bags remained in their location of use for 
long periods (e.g., once the collar was placed around the 
patient’s neck, it stayed there throughout the resuscita-
tion). In contrast, the thermometer was in use for a much 
shorter time. As the use time became shorter, it was more 
likely that the use moment was missed or confused with 
accidental movement. 

For the thermometer and fluid bags, almost half of the 
misses were deletions and the remaining half were under-
fills and fragmentations (Fig. 6). The average length of 
underfill was 18 sec, which is short compared to the over-
all usage duration for these objects. This order-of-seconds 
lag in use detection (due to underfill) is not likely to be 
clinically relevant given the much longer period of use for 
these objects. Considering that human-generated annota-
tions of start and end use times are error prone, as is vid-
eo-to-RFID synchronization (see Section 6.5), the actual 
underfill interval may even be shorter. For the IV fluid 
bags, fragmentation rate was high because this object re-
mained in use for a long time (Fig. 6). We believe that 
fragmentations are not serious errors for detection of this 
object and can be ignored because interruptions are un-
likely once fluid administration has started. 

We observed the lowest MCC for the stethoscope 
tagged with two tags (Table III). Hypothesized labels for 
this object included a significant number of insertions and 
deletions, which constituted most false negatives and 
false positives (Fig. 6). For most errors, the predicted time 
interval did not overlap with the ground truth. Although 
using two additional tags provided improvements, MCC 
remained at about 20%. The stethoscope has challenging 
features for RFID-based detection. First, being carried by 
a provider at all times, it can be considered a personal 
object. Because providers are mobile and gather around 
the patient bed, stethoscopes are always in motion and 
close to the patient. Second, it is often in contact with 
human body. When the stethoscope was carried around 
the neck or held in hand, the tag was not detectable. 
When it was in use, the tagged part was not in contact 
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Fig. 5. Performance scores for object parameter detection. 
(Acc.: accuracy, TP: true positive, TN: true negative, FP: false 
positive, FN: false negative) 
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with human body, but was instead occluded by the user 
leaning over the patient to listen to breath sounds. The 
data rate for this object was much lower than for other 
objects. Instead of disappearing only when covered by 
hands during use, one of the tandem tags often disap-
peared due to occlusion. Finally, we also observed varia-
bility in providers’ usage patterns. When idle, some pro-
viders carried the stethoscope around their neck and oth-
ers over their shoulder, with the stem part on the back. 
These factors made it challenging to detect the actual us-
age of the stethoscope. 

Time of use for intubation equipment (laryngoscope, 
ET tube, and CO2 indicator) could not be detected with 
high accuracy because these objects were stored in the 
head zone, which is closer to the patient bed compared to 
left and right zones. When a team decided to intubate the 
patient, these objects were brought near the patient’s 
head for easy access, making it difficult to accurately de-
tect the exact time of use. Similarly, IV catheters and IV 
start kits were usually prepared in advance and brought 
to the patient bed long before the actual use (Fig. 8, IV 
catheter). MCC was therefore greater for IV tubing be-
cause this object was brought at the time of use (Fig. 8). 

 We concluded that inter-zone relocations (especially 
from left and right zones to the patient-bed zone) were 
detectable using passive RFID. If object was fetched from 
its storage long before usage and then only relocated 
within the zone, the exact time of use could not be detect-
ed reliably using our current deployment of passive RFID 
technology. 

2) Greater data rates did not always lead to improved detec-
tion of object use. 

Although low data rates affected the use detection per-
formance, high data rates did not always improve use 
detection scores either. In our dataset, ET tubes generated 
high amounts of RFID data (Fig. 3), but their use instances 
could not be detected with high accuracy (Fig. 6, Table 
III). This finding is important because a common criterion 
for the success of RFID systems is the read rate. High read 

rates, however, do not guarantee that a change will be 
detectable. A change in RSSI must be detected to decide 
whether an object is in use. When deploying RFID tags 
and antennas for use detection, we must first ensure that 
every object is detectable with sufficient data rates. As a 
second priority, the deployment strategy should maxim-
ize the change in signal pattern due to a change in object’s 
state, instead of maximizing data rates. 

3) Confidence intervals of results were at most ± 6.3 percent. 
We ran the cross-validation ten times, calculated the 

performance metrics for each run, and found the averages 
to produce results (Table III). Because training and test 
sets are determined randomly in each run, they are ex-
pected to produce different results. Reliability and repeat-
ibility of results, however, can be claimed only when the 
variance across different runs is low. 

For analyzing the variation of results across different 
runs, we calculated the confidence interval at 95% for 
each object, reported for MCC in Table III. The confidence 
interval was  ±6.3%, and much smaller for most objects. 
The consistent performance at both high- and low-
performance ends provides an insight into the strengths 
and limitations of passive RFID, and aids in our under-
standing of how other sensory modalities may comple-
ment RFID. For object types with high use detection, pas-
sive RFID provided adequate performance. For challeng-
ing object types, such as stethoscope, other sensor modali-
ties should be considered, such as active RFID tags or 
accelerometers. A key advantage of passive tags—the 
battery-free operation—may not be important for the 
stethoscope. Unlike other objects in the trauma bay, the 
stethoscope is a personal object, similar to a pager. It is 
reasonable to expect the owner to monitor and replace the 
batteries required for active RFID tags or accelerometers. 

4) Different metrics emphasized different aspects of perfor-
mance evaluation. 

We report results for three sets of metrics: 
a) Set 1: Precision, recall, F-measure (Table III). 
b) Set 2: Informedness, markedness and Matthews 
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Fig. 6. Distribution of errors in object use detection. (TP: true positive, U-end: underfill-end, U-start: underfill-start, Frag.: fragmentation, 
Del.: deletion, TN: true negative, O-end: overfill-end, O-start: overfill-start, Ins.: insertion) 
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correlation coefficient (Table III). 
c) Set 3: Distribution of correct and erroneous in-

ferred labels, and type of errors (Fig. 6). 
Because informedness and markedness are often smaller 
than precision and recall [26], we expected that the first 
set of metrics would yield higher values. Object types 
with few instances (e.g., collar, thermometer) met our 
expectation. Objects with many instances of the same type 
(e.g., IV catheter, ET tube), however, generated high TN 
rates, which compensated for the difference between the 
first and second sets of metrics. For detection problems 
with high number of ground-truth negatives, we con-
clude that informedness-markedness-MCC family of met-
rics provides a more objective evaluation by taking true 
negatives into account. 

The third set of metrics (Fig. 6) highlighted the propor-
tion of different kinds of errors. Because they are normal-
ized by the number of ground truth negatives or posi-
tives, it was not possible to compare them directly with 
the first and second sets of metrics. For example, ther-
mometer and IV catheter showed similar distribution of 
error types (Fig. 6). However, MCC for thermometer is 
40.6% and MCC for IV catheter is 25.4% (Table III). 

6 RECOGNIZING ACTIVITIES FROM USED OBJECTS 

Although recognizing trauma team activities from used 
objects is outside the scope of this paper and part of our 
future work, we wanted to demonstrate how object use 
detection could lead to activity recognition. 

For recognizing activities, we first ran the object-use 
detection algorithm to obtain decisions about object use. 
We then defined simple rules to infer the activity from the 
used object. For activities performed with a single object 
(e.g., neck immobilization, temperature measurement), 
the time of activity corresponded to the time of use for the 
associated object (i.e., temperature measurement was per-
formed when the thermometer was used). The activity 
recognition performance would be close to the perfor-
mance of detecting the associated object’s use (Table III). 

For activities performed with multiple objects (e.g., in-
tubation), we defined rules such that (i) the use of at least 
two objects must be detected and (ii) their time of use 
must be sufficiently close. These basic rules were used to 
detect the performance of intubation activity during a 
resuscitation event (Fig. 7). Despite high false alarm rate 
for the laryngoscope, and false alarms and misses for ET 
tube and CO2 indicator, the intubation activity could be 
reliably detected. In this example, use detection occured 
 1 minute before the intubation actually started (overfill-
start). If the use of laryngoscope could be detected more 
accurately, intubation could also be better localized in 
time. Errors in object use detection, therefore, cause a 
noisy input to activity recognition. In addition, contribu-
tion of each object to the activity is different (e.g., bag-
valve mask is used throughout the intubation activity, but 
the CO2 indicator is used only for a short time). For these 
reasons, more complex and probabilistic rules are re-
quired for activity recognition, which will be addressed in 
our future work. 

7 DISCUSSION 

7.1 Detecting Object Parameters with RFID 

Using long-range passive RFID, we were able to identify 
the exact instance of a used object type (e.g., IV fluid bags 
#2 and #3 were used among all seven IV fluid bags) with 
accuracy rates  90%. By identifying the instance, we 
were also able to obtain the count and parameters of used 
objects, which are important for the resuscitation work-
flow. For example, the number of used IV fluid bags indi-
cates the volume of administered IV fluid to the patient. 

Object instance detection is similar to that of medica-
tion and blood tracking, which has been studied by others 
[14][19]. These prior studies, however, were based on 
short-range technologies, such as barcode readers or low-
frequency RFID. Short-range technologies require user 
participation in the sensing process. This requirement 
hinders work activities and may be forgotten or ignored. 

TABLE III. PRECISION (P), RECALL (R), F-MEASURE (F), MARK-

EDNESS (M), INFORMEDNESS (I) AND MATTHEWS CORRELATION 

COEFFICIENT (MCC) FOR SEVERAL OBJECTS. CONFIDENCE IN-

TERVAL FOR MCC AT 95% CONFIDENCE LEVEL IS ALSO SHOWN. 

Tagged obj. P R F M I MCC 

       Collar 82.2 92.5 87.0 79.4 85.5 82.4±1.3 

Stethosc. 4 

tags 

30.4 24.7 27.6 21.2 17.6 19.5±4.7 

Stethosc. 2 

tags 

9.3 9.3 9.6 4.0 4.3 4.2±3.6 

Thermometer 24.8 72.6 37.1 24.1 67.0 40.6±4.1 

Laryngoscope 7.3 13.2 9.4 1.9 3.3 2.5±2.2 

CO2 indicator 7.0 6.3 6.1 6.4 5.4 5.6±5.7 

ET tube 5.3 20.0 8.3 4.7 17.5 9.1±6.3 

BVM 92.0 88.1 90.1 85.0 83.5 84.2±1.0 

Fluid bag 73.7 44.7 55.2 67.5 42.7 53.4±4.7 

IV catheter 10.0 70.0 17.4 9.9 65.3 25.4±5.0 

IV start kit 4.9 22.3 8.0 4.8 21.8 10.2±2.3 

IV tubing 26.5 20.3 23.0 24.8 19.1 21.8±3.1 

 

 

Fig. 7. Hypothesis and ground truth for detecting the intubation activ-
ity and associated used objects. 
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We showed that specific objects could be tracked using 
long-range passive RFID without the need for user partic-
ipation in the sensing process. Although the current 
 90% accuracy rate for our method may appear inade-
quate for real-world scenarios, we believe that the accura-
cy will improve with technology advances, and the over-
all performance of competitive methods may be worse 
when accounted for unreliable user participation. 

7.2 Detecting Time of Object Use with RFID 

Our experimental results showed that detecting time of 
object use depended on the three main factors: 

1) Storage location relative to use location: Objects with 
best detection rates included cervical collars, IV fluid 
bags, IV tubing sets, and the thermometer. These objects 
are stored in the left or right zones, which are sufficiently 
distant from the patient bed. Relocation from their stor-
age to usage zone was clearer in the RSSI sequence, com-
pared to relocation from the head zone to the patient bed. 

2) Duration of use: Cervical collars and fluid bags are in 
use for an extended time, leading to fewer chances for 
misses or confusion with other disturbances. As the dura-
tion of interaction with the tag increased, detection rates 
improved. 

3) Time gap between relocation and use: Some objects are 
prepared and brought to the patient bed long before use, 
even before patient arrival. Examples include IV start kits 
and IV catheters in almost all resuscitations, and occa-
sionally the cervical collar (Fig. 8). These objects are small 
and do not occupy much space on the patient bed, but 
make detection of the exact use time more difficult. 

7.3 Scalability of RFID-Based Methods in Medical 
Settings 

RFID technology deployment in a hospital setting re-
quires mounting multiple antennas, coordinating RFID 
readers and tagging objects. Through this research, we 
have designed and evaluated approaches for placing 
RFID antennas, readers, and tags in the trauma bay. Be-
cause the arrangement of equipment, patient bed and 
medical personnel across trauma centers is similar, we 
believe that placement of multiple antennas and readers 
in any trauma bay can follow our approach of dividing 
the room into five zones, with some modifications based 
on the room parameters [21][24]. Once this process is 
completed, placing antennas and readers is a one-time 
operation. For our study, the hospital staff mounted the 
antennas based on instructions from our research team 
and the process took only few hours without disturbing 
the day-to-day activities. Post-installation maintenance of 
these antennas requires considerably less effort than that 
of most other medical equipment in the hospital.  

Although tagging every medical object requires effort, 
our study provided guidance for placing tags based on 
the size and shape of an object, potentially decreasing the 
time it takes to place tags. In addition, the cost of RFID 
tags is declining, making it more likely that RFID tags 
will soon become as integral a part of medical objects as 
the barcodes are today. Finally, passive RFID is already 
widely used in supply-chain management, where manu-

facturers place passive RFID tags on countless objects for 
inventory control [28][32]. Once placed on objects, passive 
RFID tags are far less intrusive compared to other sen-
sors. As we described before, participants in our study 
were not aware of tags on medical objects because the 
tags did not obstruct interaction with the objects. This 
nonintrusiveness during work has a significant advantage 
that can compensate for the effort of placing tags on ob-
jects before or after resuscitation. 

Finally, the trained machine learning models for object 
use detection depend on the room layout. The layout of 
resuscitation areas, however, is similar at most trauma 
centers. This similarity suggests that a model trained for 
one room can be used as a baseline for another room. Dif-
ferences can still be expected in use-activity signatures 
from one room to another. These differences can be re-
solved by parameter calibration or model adaptation 
(similar to adapting a speech recognition system, such as 
Siri, to an unknown user). In particular, data required for 
such adaptations might be collected by choreographing a 
series of activities including multiple objects, either dur-
ing the installation phase of the system or on a regular 
basis post installation. 

7.4 Limitations of RFID and Potential Sensors to 
Complement RFID 

Our long-term goal is to develop a context-aware system 
that automatically acquires information about human 
activities and provides real-time feedback to improve the 
efficiency of the trauma resuscitation process. These types 
of systems must be error-free to provide benefits in a real-
istic scenario. Building such a system using only one type 
of sensors (e.g., RFID) is not feasible because no single 
modality can be expected to satisfy all requirements in-
dependently. Instead, it is required to have a combination 
of different approaches and technologies, such as RFID, 
computer vision, and other sensors, as well as a detailed 
plan on how to fuse each one of these sensor outputs for 
an optimum decision making. In this paper, we took an 
initial step toward this goal and analyzed how passive 

 

Fig. 8. Hypothesis and ground truth for detecting the object use in 
Resuscitation #17. 
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RFID can play a role in such a multi-modal system by 
identifying the strengths and limitations of this technolo-
gy for detecting objects in use and related activities. We 
found that passive RFID performance scores are promis-
ing and that complemeting this technology with other 
modalities is likely to lead to acceptable error rates. Real 
life deployment of our system therefore requires integra-
tion with other sensing technologies so that all medical 
objects and tasks can be detected with sufficient accuracy. 

A major limitation of sensor-based (including RFID-
based) activity tracking is the inability to recognize activi-
ties performed without instruments, such as manual pal-
pations, pulse assessment or verbal statements. These 
actions are often a part of complex activity, and are thus 
important to detect. Vision or speech-based technologies 
could be used for detecting these kinds of activities. 

Sterile items in the trauma bay, such as ET tubes and 
CO2 indicators, are stored in sterile wrappings. A sensor 
can only be attached to the wrapping, which prevents 
tracking after wrapping is discarded. Upon wrapping 
removal, the item may be used with a delay or not at all. 
Using active sensors for these objects is not feasible be-
cause the sensor would be discarded along with the 
wrapping. Although machine vision is an option, discern-
ing wrapped objects is challenging because most types of 
wrapped objects have similar packaging. Vision may be 
combined to pick up from where RFID left off and con-
tinue object tracking after its wrapping is removed. In 
addition, if multiple objects are used for the same activity, 
it is possible to improve the recognition of the overall 
activity based on use detection of those objects (Section 6). 

Finally, we faced challenges when attaching RFID tags 
to objects with irregular shapes and uneven surfaces (e.g., 
otoscope, stethoscope and laryngoscope). As a result, the 
reception from these objects was relatively low, as were 
the use detection rates. These objects were mostly person-
al or relatively expensive (i.e., not disposable). Using ac-
tive RFID tags or accelerometers may be a feasible solu-
tion for detecting the use of such objects. 

7.5 Practical Observations 

7.5.1 Errors in Annotations Indicated by RFID 

We observed two types of errors in the ground-truth an-
notations, each serving as a realistic comparison between 
human visual processing and RFID-based data mining. 
The first error was annotating the wrong instance of an 
object. We tagged two cervical collars, one small and one 
large. In two out of 32 recordings, the large collar was 
annotated as used although the small collar was actually 
used. Based on our discussion with the annotator, the 
trauma team should have used the large collar in these 
scenarios based on the patient age. The RFID detection 
algorithm caught a team error that was not noticed by the 
annotator. This finding highlights the strength of RFID in 
identifying the parameters of objects (e.g., volume, size), 
similar to medication and fluid tracking applications us-
ing near-field technologies. Our experiments showed that 
passive RFID technology with long-range readers could 
be used for identifying the parameters of used objects. 

The second error was annotating objects that were not 
part of the experiment. An untagged object was mistaken-
ly used instead of a tagged object of the same type in 9 
out of 32 resuscitations. Because the tag is small, it was 
difficult to see in the video whether the used object was 
tagged. These instances were incorrectly annotated and 
represented erroneous ground truth (detected and fixed 
before we ran our experiments reported in this paper). In 
contrast, RFID data showed that the tagged objects were 
in storage. This observation indicates the strength of RFID 
in detecting the location or use of small objects. 

7.5.2 Video Review and Annotation Challenges 

We annotated the ground truth of object interactions for 
our system training and evaluation. This effort pointed to 
several practical challenges stressing the need for an au-
tomated system for detecting and analyzing trauma team 
errors. First, annotating object interactions by reviewing 
videotaped resuscitations was a laborious task—it took 
approximately 40 minutes to annotate a 10-minute video 
for an object that was used or relocated frequently. The 
time required for annotation varied widely based on how 
often the object was moved (stethoscope vs. cervical col-
lar) and how difficult it was to see it in the video (trans-
parent ET tubes vs. thermometer). In addition, identifying 
object parameters (and individual object instances) from 
video recordings was often challenging. In our dataset, 
only the parameters of cervical collars and CO2 indicators 
were clearly visible in videos because collars had different 
sizes and different CO2 indicators were in packages of 
different colors. The contents of IV fluid bags and size of 
IV catheters and ET tubes were not discernable from the 
videos unless verbally reported by the providers. We 
were still able to identify these parameters by comparing 
the RFID data and annotations. 

Second, videotaping and RFID data recording had to 
be started and stopped independently, but this did not 
always happen simultaneously. We observed an offset of 
up to 280 sec between video-based annotations and RFID 
data for each resuscitation. Also, in several cases the vid-
eo recording and the RFID data recording for the same 
resuscitation were not of the same length. We cropped the 
longer one from the end to make them equal. 

8 CONCLUSION 

Detecting object use is necessary for recognizing complex 
medical activities and establishing situation awareness in 
dynamic medical settings. We developed a passive RFID-
based system for non-intrusive detection of used medical 
tools during trauma resuscitation. Our sytem consisted of 
optimally placed RFID tags and antennas, as well as a 
method for processing the RSSI data to infer object usage 
based on machine learning. 

We deployed our system in an actual trauma bay and 
recorded radio signals during 32 simulated resuscitaions 
performed by trauma teams. Using long-range passive 
RFID, we were able to identify the parameters of used 
objects with high accuracy (> 90%). Our goal was similar 
to medication or blood tracking, where barcodes or other 



1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TMC.2015.2436393, IEEE Transactions on Mobile Computing

PARLAK ET AL.:  PASSIVE RFID FOR OBJECT DETECTION AND ACTIVITY RECOGNITION DURING TRAUMA RESUSCITATION 13 

 

near field technologies have been previously used. We 
showed that specific instances of objects could be tracked 
using long-range passive RFID, without the need for hu-
man cooperation in the sensing process. 

Performance of detecting the time of object use de-
pended on several factors, such as storage location, dura-
tion of use and the time between relocation and use. Pas-
sive RFID-based tracking yielded better results for objects 
that are stored sufficiently far away from the usage zone, 
used right after being relocated, and stayed in use for 
long times. We found that although low data rates affect-
ed the use detection performance, high data rates did not 
guarantee better use detection. We proposed complemen-
tary sensing methods to track objects for which RFID did 
not perform well. Finally, we illustrated by example how 
it is possible to recognize activity even when the use de-
tection rates of individual objects are not high. 
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