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Abstract: This paper investigates a highly parallel extension of the single-

pixel camera based on a focal plane array.  It discusses the practical 

challenges that arise when implementing such an architecture and 

demonstrates that system-specific optical effects must be measured and 

integrated within the system model for accurate image reconstruction.  

Three different projection lenses were used to evaluate the ability of the 

system to accommodate varying degrees of optical imperfection.  

Reconstruction of binary and grayscale objects using system-specific 

models and Nesterov’s proximal gradient method produced images with 

higher spatial resolution and lower reconstruction error than using either 

bicubic interpolation or a theoretical system model that assumes ideal 

optical behavior.  The high-quality images produced using relatively few 

observations suggest that higher throughput imaging may be achieved with 

such architectures than with conventional single-pixel cameras.  The optical 

design considerations and quantitative performance metrics proposed here 

may lead to improved image reconstruction for similar highly parallel 

systems. 
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1. Introduction  

Compressive sensing (CS) techniques can be implemented in applications where signal 

acquisition is sparse in some known domain [1].  Recently, such techniques have been applied 

to optical imaging systems.  The CS framework states that high-fidelity images can be 

constructed with a larger number of pixels than are physically present in the optical sensor.  

An extreme example of CS-based imaging is the “single-pixel camera”, which uses just one 

photodetector, yet can reconstruct images with several hundred thousand pixels [2].  The 

trade-off, of course, is that many sequential measurements of the object have to be made, each 

corresponding to a linear projection of the object intensity onto one of the elements in a set of 

known functions.  With selection of an appropriate set of functions, a high-resolution image 

can be recovered from a low-resolution sensor through CS reconstruction methods.  Single-

pixel camera architectures typically implement these linear projections by placing a spatial 

light modulator (SLM) at a conjugate image plane (Fig. 1(a)).  The SLM is configured to 

impart a distinct high-resolution intensity or phase modulation onto the object field for each 

projection, with the resulting light signal integrated at the single photodetector.  Due to the 

location of the SLM, we refer to this as image-plane coding (IPC). This is in contrast to 

coded-aperture architectures, which introduce a modulation at an aperture (Fourier) plane 

within the optical path [3,4].  

Since their introduction, single-pixel cameras have demonstrated potential for 

applications ranging from remote sensing [5] to 3D imaging [6], and microscopy [7,8].  

However, the single-pixel camera remains a highly-sequential measurement system, with 

consequent limitations on light collection efficiency and imaging speed.  Several 

architechures have been proposed to potentially overcome these limitations by using multiple 

pixels of a focal plane array to implement highly parallel extensions of the single-pixel 

camera (Fig. 1(b)) [9-15].  Measurement models and simulated data for these architectures 

have outlined the feasibility of the parallel approach [10-13].  Experimental implementations 

have also demonstrated some of the advantages to this strategy, particularly in the infrared 

spectral region where increasing the pixel density of imaging cameras can be challenging 

[14,15].   

In this paper, we investigate several practical factors that arise when implementing 

compressive sensing with a parallel focal plane array architecture, particularly when the pixel 

size is small.  Similar to the single pixel camera framework (Fig. 1(a)), a coded mask is 



located at a conjugate image plane with multiple elements mapped to individual array pixels 

at the sensor (Fig. 1(b)).  We demonstrate that system-specific optical effects must be 

measured and integrated into the system model for accurate image reconstruction.  Data is 

acquired using a benchtop platform (Fig. 1(c)), which takes sequential measurements that are 

reconstructed into images.  We introduce measurable, quantitative metrics to relate 

reconstruction accuracy to the hardware components and report representative figures and 

image data for our test platform.  Finally, we verify that our findings translate to imaging real 

objects by presenting data for a 1951 USAF resolution target.   

 

 

Fig. 1.  (a) A single-pixel camera applies a coded mask at an optical plane that lies conjugate to 

both the object and detector. (b) Multiple sub-masks can be mapped to neighboring detectors in 
an array-based sensor to generate a highly parallel version of the single-pixel camera. (c) 

Photograph showing the primary components of our experimental platform. 

 

2. Methods 

In this section, we describe the design and characterization of our experimental platform and 

formulate a mathematical model for compressive imaging with parallel IPC.  We identify the 

challenges that arise with physical implementation of IPC-based CS and discuss how to 

address such challenges.  We develop a mathematical model for IPC CS and describe how to 

measure and incorporate system-specific mapping parameters into the model. 

2.1 Experimental platform 

Our experimental platform uses a digital micromirror device (DMD) to provide two-

dimensional binary or grayscale mask patterns.  The elements of binary mask patterns were 

generated from a Bernoulli distribution with parameter value 0.5, where an outcome of 0 

indicates a mirror (mask element) that blocks all incident light and a 1 indicates a mirror that 

reflects all incident light.  The elements of grayscale mask patterns consisted of random 

values uniformly distributed between 0 and 255, providing 256 levels of light modulation.  

While previous studies have explored the structure of measurement matrices, which dictates 

mask pattern selection [16-18], the focus of this report is on optical system design and CS 

implementation; random patterns were used here as an example of a common mask design.   

We removed the projection lens from a Texas Instruments LightCrafter 4500 unit to 

provide direct access to the 1140 × 912 micromirror array.  Each mirror element is 7.64 m 

square.  The LightCrafter unit contains red, green, and blue LEDs for illumination.  The DMD 
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is imaged onto a 14-bit CCD array with 1384 × 1036 pixels, each 6.45 m square (Point Grey 

Research, GRAS-14S5M-C).  Since the object intensity is multiplied by the mask pattern in 

IPC, the locations of the object and mask in Fig. 1 are interchangeable and both configurations 

have been used previously for single-pixel cameras [2,7].  To maximize the impact of this 

work and focus on the optical architecture and subsequent image reconstruction, we generated 

objects synthetically and multiplied them by a number of mask patterns in software.  We then 

uploaded sequences of these masked objects to the on-board flash memory of LightCrafter 

4500 and projected them using the unit’s internal illumination.  All masked objects were 

imaged onto the CCD array by either a multi-element microscope objective (Olympus Plan N, 

4/0.1), a plano-convex singlet (Thorlabs LA1422-A, 40 mm focal length), or an achromatic 

doublet (Thorlabs AC254-040-A, 40 mm focal length), each referred to as lens Lp in Fig. 1(b).  

For each lens, an iris limited the entrance pupil diameter to 9 mm. 

As with the single-pixel camera and ensuing parallel architectures, the key to generating 

diverse observations for subsequent CS reconstruction is to image multiple mask elements 

onto each sensor pixel.  The number of mask elements imaged onto each sensor pixel is 

termed the undersampling factor.  In principle, a very large undersampling factor can be 

achieved by using a DMD with small mask elements, a sensor array with large pixels, or using 

a projection lens (Lp) with large demagnification factor.  However, DMD manufacturing 

constraints, optical aberrations, and imperfect alignment of system components all represent 

practical limitations to achievable undersampling factors.  For all experiments in our case, we 

used 3 × 3 binning of DMD mirrors to generate an effective mask element of 22.92 m 

square, with 2 × 2 binning on the CCD sensor to yield an effective pixel size of 12.9 m 

square.  We positioned the projection lens to produce a 0.28 magnification from mask to 

sensor, resulting in a theoretical undersampling factor of 4 (Fig. 2(a)). 

  

Fig. 2.  Illustration of IPC-based projection challenges. (a) Under ideal 4 undersampling, 

exactly 4 mask elements are imaged onto each sensor pixel. (d, e) Ideally, all light from mask 
elements labeled 1–4 is then collected by sensor pixel “A”. While element–pixel alignment 

errors (b) and distortion effects (c) can be minimized, the experimental sensor response (f) still 

shows some light leaking onto neighboring pixels. 

 

In practice, an exact integer undersampling factor is extremely difficult to achieve.  Light 

from individual mask elements can leak onto sensor pixels neighboring the geometrically 

imaged pixel.  A non-uniform or inexact magnification factor can lead to some mask elements 

mapped partially onto multiple sensor pixels.  Optical aberrations result in a broadening of the 

point spread function (PSF) that in turn causes image blurring at the sensor.  Other effects, 

such as distortion can also cause errors in mapping of mask elements to the sensor array (Fig. 
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2(c)).  Physical vibrations can cause components to drift out of position, altering the mask-to-

pixel alignment.  Collectively, these effects result in light from individual mask elements 

being captured by sensor pixels lying beyond the geometrically mapped pixel.  However, we 

show that these mapping imperfections in the imaging system can be measured in a principled 

manner and then mathematically integrated into the CS framework for improved image 

reconstruction. 

2.2 Mathematical model for parallel IPC 

An image-plane-coded architecture first combines the object X with a mask C to form a 

pointwise modulated version (C ⨀ X) of the object intensity, where ⨀ denotes elementwise 

multiplication of entries.  This modulated object is then imaged onto the sensor array to obtain 

an observation Y that depends on the undersampling factor d and a system-specific matrix H 

that describes the contributions of (and mapping imperfections from) different mask elements 

to individual sensor pixels.  In an ideal and perfectly aligned paraxial system, H would be a 

d d  matrix with all entries equal to 1/d, indicating an equal and ideal mapping of light from 

each mask element to a single array pixel (Figs. 2(d) and 2(e)).  In practice, however, H 

should be selected as a m m  square matrix with m (≥ d) chosen to account for contributions 

from any number of mask elements to individual pixels.  Further, the entries of H should be 

experimentally determined for each system.  

In order to make this mathematically concrete, consider X and C to be N N  square 

matrices and define Z  as Z  = H(C ⨀ X), where  denotes a two-dimensional convolution 

operation.  Next, let Z  denote the N N  submatrix of Z  obtained by eliminating the first  

/m 2 and the last /2 1m   rows and columns of Z , i.e., 
TZ EZE , where E is a  

 N N m  1  matrix with binary entries that eliminates the boundary entries of Z .  Then 

the N N  observation Y (with n = N/d) corresponds to d d  downsampling of Z , i.e., 

TY DZD , where D represents a n N  downsampling matrix.  Finally, columnwise 

vectorization of Y gives 

    H C Hy D D T D x A x   (1) 

where ⊗ denotes the Kronecker product, TH denotes an N × N block Toeplitz matrix with 

Toeplitz blocks constructed from the convolution kernel H, DC is an N × N diagonal matrix 

with the mask elements in C as its diagonal entries, and x denotes the N × 1 (columnwise) 

vectorized version of object X.  In the CS literature, the n × N matrix  H H C
A D D T D   is 

termed the measurement matrix.  Notice that Eq. (1) corresponds to a single observation; in 

the case of multiple observations appended into a column vector, the measurement matrix AH 

corresponds to row-wise appending of  
H C

D D T D
i

, where Ci denotes the N N  mask 

associated with the i
th

 observation. 

In our case, we experimented with different values of the parameter m, which is the 

number of entries in H.  By increasing m, we can capture contributions of mask elements 

neighboring the geometrically mapped pixel.  For example, including all mask elements 

immediately surrounding the four geometrically mapped elements requires an H with m = 16.  

Likewise, including the next distant set of mask elements requires m = 36 (Fig. 2(d)).  To 

experimentally determine the m m  matrix H for a fixed value of m, we solve “
HA x y ” 

(Eq. (1)) for H using known values of C, x and y.  To this end, we modify Eq. (1) to 

emphasize H by rewriting it as 
Cx

B h y .  Here, y is the same as in Eq. (1), h is the m × 1 

vectorized version of H and CxB is an n × m matrix whose i-th row consists of m pixels from 

the object-mask combination that get mapped to the i-th element of y (these m pixels include 

the geometrically mapped as well as the neighboring pixels).  To incorporate more than one 



object-mask combination into the equation, the rows of CxB and the entries of y can be 

appended accordingly.  We solve this new system of linear equations by least squares to 

determine H for a particular system.  Recall that a reliable least squares solution requires a 

well-conditioned matrix ( CxB in this case) [19].  We also know from random matrix theory 

that random matrices are well-conditioned with very high probability [20, 21].  Therefore, we 

use object-mask combinations having random entries, by virtue of which the matrix CxB is 

also random and therefore well-conditioned, to determine H.  To quantify the accuracy of the 

estimated H, we also define a metric termed the prediction error, which is the error between 

the experimentally observed and the mathematically predicted (through H using Eq. (1)) 

observations. 

For our experiments to determine H, we generated a 64 × 64 mask C of all 1’s (so all 

DMD mirrors reflect light to the sensor array) and a set of twenty 64 × 64 random (uniform on 

[0,255]) grayscale images (Xi’s).  We then imaged this set of 20 object-mask combinations 

onto the sensor array to record twenty 32 × 32 observations Yi.  For each object-mask 

combination, we collected 
iCxB h y observations and then combined them into a larger 

system CxB h y  to solve for h (equivalently, H).  Note that the condition number of CxB

depends on the size of H and it increases as we make H larger.  For a 6 × 6 mask, the 

condition number for CxB was 10.85, while for a 26 × 26 mask the condition number was 

52.91.  To assess the dependence of prediction error on the size of H (i.e., m), we also imaged 

30 additional object-mask combinations onto the sensor array and calculated the total 

prediction error for each value of m. 

 

 

Fig. 3.  Prediction errors for experimentally determined H’s with different values of m for three 
different projection lenses. Circles indicate the PTA at m associated with the minimum 

prediction error for each lens.  Squares indicate the PTA corresponding to m = 36. 

 

3. Results 

The prediction errors for H with different values of m and for three different projection lenses 

are reported in Fig. 3.  In each case, using an experimentally determined H leads to lower 

prediction error than using the “ideal” H (comprising four entries, all equal to 0.25), resulting 

in prediction errors of 13.1%, 8.0%, and 5.3% for the plano-convex, achromatic doublet, and 

microscope objective lenses, respectively.  Fig. 3 shows that increasing m for an 

experimentally determined H initially lowers the prediction error to below 1% for either the 

achromatic doublet or microscope objective lenses.  However, as m increases beyond around 

200, the prediction error begins to increase for both these lenses, likely due to the 
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mathematical model attempting to account for elements that make insignificant contributions 

to measured pixel values.  The values of m that minimize the prediction error are marked as 

closed circles in Fig. 3.  

While the prediction error quantifies how well the estimated H captures the imperfections 

of the experimental setup, it does not directly indicate how close the system is to achieving 

perfect optical mapping.  For this purpose we define photon transfer accuracy (PTA) as the 

sum of the four central entries in the system-specific mapping matrix H.  We consider these 

four central values because our experimental platform uses an undersampling factor of two in 

each dimension.  In principle, this means that exactly four elements from the coded mask are 

mapped to each individual pixel on the sensor array.  In this ideal case, H is a 2 × 2 matrix 

with all values equal to 0.25 which results in a PTA value equal to 1.  However, as illustrated 

in Fig. 2, the optical PSF may blur the mapping from mask elements to sensor elements, 

causing light which is intended for a specific sensor pixel to be captured by adjacent pixels.  

Therefore, in practice, the H matrix must be larger in size than the “ideal” H to account for 

photons contributing to each pixel which are intended for neighboring pixels.  To quantify the 

proximity of the experimental H to the ideal H we compute the sum of the four central entries; 

the closer this sum (or PTA value) is to 1, the closer the system is to achieving ideal mask to 

sensor mapping and the narrower the optical PSF.  In this regard, Fig. 3 shows that the 

microscope objective not only has the lowest prediction error for all sizes of H, but it also 

exhibits a PTA metric (0.77) that is closest to 1. 

 

  
Fig. 4.  MTF data for the three lenses used in our experimental setup. Each projection lens was 

positioned for 3.55 demagnification from the coded mask to sensor array with a 9 mm 

entrance pupil diameter. 
 

To further relate the properties of the estimated convolution kernel matrix H to the 

physical attributes of the projection lenses, we quantified the performance of each lens in 

terms of its “modulation transfer function” (MTF).  MTF data were generated by displaying 

binary objects at the DMD with line pairs ranging from 65.5 lp/mm to 3.3 lp/mm.  For these 

input objects, a CCD sensor with 1.67 m square pixels was used for measurements to ensure 

that the experimentally measured resolution was limited by the lens itself, rather than by the 

sampling at the sensor.  Fig. 4 indicates that the objective lens MTF maintained the highest 

contrast ratio at all spatial frequencies tested, followed by the achromatic lens and then by the 

plano-convex lens.  Therefore, the objective lens exhibits the narrowest PSF, giving rise to the 

least blurring at the sensor plane.  This assessment of the quality of lenses is in agreement 

with the PTA metrics obtained from our experimentally determined H’s (Fig. 3).  

We have now established a mathematical model for the parallel IPC architecture (Eq. (1)) 

and discussed experimental estimation of the convolution kernel matrix H for different 

projection lenses.  Next, we evaluate the performance of our setup in terms of quality of the 

image X reconstructed from the observations 
Hy A x .  We first examine resolution using a 

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

 

 

4x Objective

Achromat

Plano-convex,

Diffraction limit - Objective,

Diffraction limit - Achromat

Diffraction limit - Plano-convex

Resolution (lp/mm)

M
o

d
u

la
ti

o
n

 (
co

n
tr

as
t 

ra
ti

o
)



synthetic binary target as the object X (Fig. 5(a)).  We collected and stacked 10 observations 

of the object X into a vector y using the microscope objective lens and 10 different 

pseudorandom binary masks.  We then reconstructed a 64 × 64 X from these observations by 

making use of an optimization-based CS reconstruction technique that is based on Nesterov’s 

proximal gradient (NPG) method [22].  We used this technique because of its ability to take 

into account the non-negativity constraint inherent in optical systems.  This results in lower 

error in the reconstructed image when compared to other techniques that ignore the non-

negativity constraint.  The measurement matrix 
H

A  used in these experiments corresponds to 

either the “ideal” 2 × 2 matrix H or an experimentally determined 6 × 6 matrix H (m = 36), 

(Fig. 3). 

 

 

Fig. 5.  Images and corresponding line profiles for (a) the object, (b) a single observation 

without a coded mask, (c) 4 bicubic interpolation of the uncoded image in (b), (d) NPG-based 

CS reconstruction using the ideal H, and (e) NPG-based CS reconstruction using the 
experimentally determined H.  CS reconstructions correspond to 10 observations with the 

microscope objective as the projection lens.  Each line profile (f-j) is a vertical slice taken at the 

left side (depicted by arrow above panel (a)). 
 

Qualitative analysis of the NPG-based reconstruction (which used the “Daubechies-4 

wavelet” as the sparsifying basis) illustrates superior image detail (Figs. 5(d) and 5(e)) over a 

single observation or bicubic interpolation.  A single observation of the object without any 

post-processing results in loss of edge integrity and fine detail (Fig. 5(b)).  In particular, the 

smallest bars at the top of the object become indistinguishable (Fig. 5(b)), which can also be 

quantified in terms of a loss of contrast in the corresponding line profile (Fig. 5(g)).  Further, 

4 bicubic interpolation of the image in Fig. 5(b) fails to recover the lost detail (Figs. 5(c) and 

5(h)).  In contrast, Figs. 5(d) and 5(e) show CS-based reconstructions of the object using 
H

A  

with the ideal H (Fig. 5(d)) and the experimentally determined H (Fig. 5(e)).  When 

reconstructed using 10 observations with the ideal H, we can only partially recover the lost 

contrast at the top of the image and there are still visible artifacts throughout the reconstructed 

image (Figs. 5(d) and 5(i)).  On the other hand, reconstruction using the same set of 

observations with the experimentally determined H recovers nearly full contrast and detail 

without the visible artifacts (Figs. 5(e) and 5(j)).  

We next tested the parallel image-plane-coded system on a more structurally complex, 

grayscale object (Fig. 6(a)).  We imaged the cameraman test pattern under the same 

conditions and subsequently reconstructed using the same methods as described for the binary 

target experiment.  We once again see that reconstructions with the experimentally determined 

6 × 6 matrix H and 14 × 14 matrix H (Figs. 6(e) and 6(f), respectively) result in sharper 

images with fewer artifacts than reconstruction with the ideal H (Fig. 6(d)).  Furthermore, 

quantitative analysis of the (normalized) cumulative error between corresponding pixel values 

of the reconstructed image and the original object, i.e., the reconstruction error (Fig. 6(g)), as 
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a function of the number of observations reveals that use of the experimentally determined H 

is more accurate than using the ideal 2 × 2 H for any number of observations, except when the 

observational diversity is low (< 4 observations).  Note from Fig. 3 that the two experimental 

H matrices used in our reconstructions correspond to the ones with the lowest PTA (6 × 6 H) 

and the lowest prediction error (14 × 14 H).  However, owing to only slight differences 

between the respective PTA values and prediction errors of these H matrices, we see that they 

perform near identically in terms of the reconstruction error. 

  

Fig. 6.  Data for the grayscale cameraman test pattern.  (a) Cameraman test object. (b) A single 

observation of the object without a coded mask.  (c) 4 bicubic interpolation of (b). NPG-based 

CS reconstruction using 12 observations with (d) ideal H, (e) experimental H of size 6 × 6, and 

(f) experimental H of size 14 × 14.  (g) Reconstruction error using experimental and ideal H’s 
for increasing numbers of observations. 

 

We next evaluated the relationship between quality of the projection lens and the matrix 

H.  We tested different lenses to determine whether accounting for lens imperfections in the 

system-specific H allows a lower quality lens to achieve reconstruction accuracy that is 

comparable to that of a high quality lens.  According to the MTF results (Fig. 4) and PTA data 

(Fig. 3), the microscope objective is a high quality lens and the plano-convex lens is lower 

quality, with the achromat lens being of intermediate quality.  In this experiment, we 

performed CS reconstruction for each lens using H matrices of size 36, 36, and 676 for the 

objective, achromat, and plano-convex lens respectively (see Fig. 3).  We can observe in Figs. 

7(a) and 7(d) that the reconstruction error for the plano-convex singlet is significantly higher 

than that for the other lenses, consistent with the low area under the MTF curve (Fig. 4) and 

the low PTA metric (0.16) of this lens.  On the other hand, the reconstruction errors for the 

achromatic lens (Fig. 7(b)) and microscope objective lens (Fig. 7(c)) are very similar to each 

other for the case of experimentally determined H’s, regardless of the number of observations 

(Fig. 7(d)).  This suggests that use of an appropriately calibrated H during reconstruction can 

compensate for imperfect lens performance and other factors (Fig. 2).  However, in some 

cases, a lens’ imperfections cannot be fully compensated by H, as shown by results for the 

plano-convex lens. 
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Fig. 7. Image reconstruction for three different projection lenses. NPG-based CS 

reconstructions of the cameraman test object (Fig. 6(a)) from 12 observations using (a) the 

plano-convex singlet, (b) achromatic doublet, and (c) microscope objective.  (d) Reconstruction 
error for each lens with increasing numbers of observations using both the ideal H and the 

experimentally determined H. 

 

Finally, we used the IPC-based CS architecture to image a physical object.  We modified 

our experimental platform to include additional imaging optics and a white LED (Thorlabs 

MCWHL5) for illumination, as illustrated in Fig. 8(a).  The LightCrafter 4500 unit was 

replaced by a LightCrafter 6500 unit, which offers a direct path for imaging real objects onto 

the DMD.  Two achromatic doublet lenses (Thorlabs AC254-150-A, 150 mm focal length), 

were arranged to image the object onto the DMD plane with unit magnification.  The DMD 

was then used solely to impose mask patterns onto the object, which in turn was projected to 

the CCD sensor by a 10 microscope objective (Olympus Plan F, 10/0.3) as the projection 

lens.  An undersampling ratio of 4 was maintained. 

  We measured the system specific mask-to-sensor mapping term H as in our earlier 

description, but now a uniform white object was used in place of the binary object displaying 

all ones.  The results in Figs. 8(b)-(e) are for a 1951 USAF Resolution Target object printed 

on photographic paper (Edmund Optics, 53-715).  Fig. 8(b) shows a direct image of the target 

with no mask imposed.  Fig. 8(c) shows a reconstructed image following bicubic interpolation 

of the single image in Fig. 8(b).  Figs. 8(d) and 8(e) are images reconstructed from 30 

modulated measurements.  The reconstructed images exhibit finer detail than those in Figs. 

8(b) and 8(c).  For example, the numbers down the left hand side of the image that are blurred 

in Fig. 8(b) are distinguishable in the reconstructed image in Fig. 8(e).  Significantly, the 

image reconstructed using the experimentally estimated H (Fig. 8(e)) is of higher quality than 

the image reconstructed using an ideal H (Fig. 8(d)), further indicating the importance of 

including a system-specific mapping term in the reconstruction model. 
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Fig. 8.  Experimental platform and results for imaging a 1951 USAF Resolution Target.  (a) 
Photograph showing the modified experimental platform with object illumination and imaging 

optics added.  (b) Target imaged with no mask imposed.  (c) Bicubic interpolation on the image 

shown in (b).  CS reconstruction from 30 observations using the ideal H (d) and an 
experimentally determined H of size 16 (e). 

 

4. Conclusions 

We have described the theoretical and experimental aspects of an architecture for image-

plane-coded computational imaging that is based on a highly parallel version of the single-

pixel camera.  We have established that NPG-based CS reconstruction can produce high-

resolution images of binary and grayscale objects using relatively few observations.  Some of 

the challenges that arise when translating CS-based imaging theory to practice for focal plane 

arrays were identified and the relationship between hardware quality and computational 

compensation was quantitatively and qualitatively analyzed.  An inferior quality lens can still 

provide high quality images if the convolution kernel matrix associated with the lens is 

accurately measured and integrated into the measurement matrix. This analysis of the optical 

and mathematical aspects of the parallel architecture may provide guidance for researchers 

developing IPC compressive systems and lead to more precise image reconstruction. 
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